Skip to main content

Omics in Industrial Wastewater Treatment

  • Chapter
  • First Online:
  • 629 Accesses

Abstract

The scientific revolution in omics technologies has paved the way for emerging technologies in wastewater treatment. These approaches have been adopted to investigate the metabolic potential, diversity, and spatiotemporal dynamics of microorganisms in wastewater systems. The prokaryotic, eukaryotic diversity can be utilized in industrial wastewater systems for higher performance. Industrial wastewater contains high concentrations of organic and inorganic pollutants, exerting a huge pressure on the environment. The adverse effects on biodiversity, soil, natural water bodies, and groundwater emphasizes the urgent need for proper wastewater treatment techniques prior to its disposal to the environment. Wastewater treatment via omics technologies offers advantages namely enhanced nutrient removal, cost reduction, wide applicability, the possibility of biofuel/bioenergy production, etc. The availability of diverse microbial communities can be expected in biological wastewater treatment plants, and they possess different metabolic capabilities which could be harnessed in the wastewater treatment process. Microorganisms can play a key role in the performance optimization of wastewater treatment plants. Coupling microalgae and cyanobacteria, production of microbes-based nanomaterials, use of bacterial and algae symbiotic systems for wastewater treatment have been recognized as promising techniques in biological wastewater treatment. The chapter focusses on the important aspects of omics, applications, limitations, challenges, and futuristic approaches in omics technologies related to industrial wastewater treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aftalion F (2001) A history of the international chemical industry. Chemical Heritage Foundation, Philadelphia, PA

    Google Scholar 

  • Agrawal K, Verma P (2021) Metagenomics: a possible solution for uncovering the “mystery box” of microbial communities involved in the treatment of wastewater. In: Wastewater Treatment. Elsevier, Amsterdam

    Google Scholar 

  • Anand V, Kashyap M, Samadhiya K, Kiran B (2019) Strategies to unlock lipid production improvement in algae. Int J Environ Sci Technol 16:1829–1838

    Article  Google Scholar 

  • Barik D (2018) Energy from toxic organic waste for heat and power generation. Woodhead Publishing, Cambridge

    Google Scholar 

  • Brink A, Sheridan C, Harding K (2018) Combined biological and advance oxidation processes for paper and pulp effluent treatment. S Afr J Chem Eng 25:116–122

    Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sustain Energy Rev 19:360–369

    Article  CAS  Google Scholar 

  • Chan YJ, Chong MF, Law CL, Hassell DG (2009) A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem Eng J 155(1–2):1–18. https://doi.org/10.1016/J.CEJ.2009.06.041

    Article  CAS  Google Scholar 

  • Cooper MB, Smith AG (2015) Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr Opin Plant Biol 26:147–153

    Article  PubMed  Google Scholar 

  • Dutta D, Arya S, Kumar S (2021) Industrial wastewater treatment: current trends, bottlenecks, and best practices. Chemosphere 285:131245

    Article  CAS  PubMed  Google Scholar 

  • Ekwanzala MD, Budeli P, Unuofin JO (2021) Application of metatranscriptomics in wastewater treatment processes. In: Wastewater treatment. Elsevier, Amsterdam

    Google Scholar 

  • El-Sheekh M, El-Dalatony M, Thakur N, Zheng Y, Salama E-S (2021) Role of microalgae and cyanobacteria in wastewater treatment: genetic engineering and omics approaches. Int J Environ Sci Technol 19:2173–2194

    Article  Google Scholar 

  • Gaur VK, Sharma P, Gupta S, Varjani S, Srivastava JK, Wong JWC, Ngo HH (2022) Opportunities and challenges in omics approaches for biosurfactant production and feasibility of site remediation: strategies and advancements. Environ Technol Innov 25:102132. https://doi.org/10.1016/J.ETI.2021.102132

    Article  CAS  Google Scholar 

  • Glushankova IS, Bessonova EN, Blinov SM, Kudryashova EN, Belkin PA, Rudakova LV (2021) Denitrification of quarry wastewater from mining enterprises by galvanocoagulation. In: International Perm Forum Science and Global Challenges of the 21st Century. Springer, Berlin, pp 343–351

    Google Scholar 

  • Hagare D, Sivakumar M, Singh RN (2009) Wastewater characteristics, management and reuse in mining & mineral processing industries. In: Wastewater recycle, reuse, and reclamation, vol 1, pp 337–371

    Google Scholar 

  • Hailei W, Ping L, Ying W, Lei L, Jianming Y (2017) Metagenomic insight into the bioaugmentation mechanism of Phanerochaete chrysosporium in an activated sludge system treating coking wastewater. J Hazard Mater 321:820–829

    Article  CAS  PubMed  Google Scholar 

  • Hanchang S (2009) Industrial wastewater-types, amounts and effects. In: Point sources of pollution: local effects and their control, vol 2, p 191

    Google Scholar 

  • Hoekstra AY (2015) The water footprint of industry. In: Assessing and measuring environmental impact and sustainability. Elsevier, Amsterdam

    Google Scholar 

  • Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB (2016) A critical review on textile wastewater treatments: possible approaches. J Environ Manage 182:351–366

    Article  CAS  PubMed  Google Scholar 

  • Huffer S, Taeger T (2004) Sustainable leather manufacturing—a topic with growing importance. J Am Leather Chem Assoc 99:423–428

    Google Scholar 

  • Karacakaya P, Kılıç NK, Duygu E, Dönmez G (2009) Stimulation of reactive dye removal by cyanobacteria in media containing triacontanol hormone. J Hazard Mater 172:1635–1639

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Chandra R (2018) Characterisation of manganese peroxidase and laccase producing bacteria capable for degradation of sucrose glutamic acid-Maillard reaction products at different nutritional and environmental conditions. World J Microbiol Biotechnol 34:32. https://doi.org/10.1007/s11274-018-2416-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Chandra R (2020) Bioremediation of Melanoidins containing distillery waste for environmental safety. In: Bharagava R, Saxena G (eds) Bioremediation of industrial waste for environmental safety. Springer, Singapore. https://doi.org/10.1007/978-981-13-3426-9_20

    Chapter  Google Scholar 

  • Kumar V, Thakur IS, Singh AK, Shah MP (2020) Application of metagenomics in remediation of contaminated sites and environmental restoration. In: Shah M, Rodriguez-Couto S, Sengor SS (eds) Emerging technologies in environmental bioremediation. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-819860-5.00008-0

    Chapter  Google Scholar 

  • Kumar V, Singh K, Shah MP, Singh AK, Kumar A, Kumar Y (2021a) Application of omics technologies for microbial community structure and function analysis in contaminated environment. In: Wastewater treatment. Elsevier, Amsterdam

    Google Scholar 

  • Kumar V, Singh K, Shah MP (2021b) Advanced oxidation processes for complex wastewater treatment. In: Shah MP (ed) Advance oxidation process for industrial effluent treatment. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-821011-6.00001-3

    Chapter  Google Scholar 

  • Kumar V, Agrawal S, Shahi SK, Motghare A, Singh S, Ramamurthy PC (2022) Bioremediation potential of newly isolated Bacillus albus strain VKDS9 for decolourization and detoxification of biomethanated distillery effluent and its metabolites characterization for environmental sustainability. Environ Technol Innov 26:102260. https://doi.org/10.1016/j.eti.2021.102260

    Article  CAS  Google Scholar 

  • Kyzas GZ, Matis KA (2020) Wastewater treatment processes: part I. PRO 8(3):334. https://doi.org/10.3390/pr8030334

    Article  Google Scholar 

  • Lemlikchi W, Sharrock P, Mecherri M, Fiallo M, Nzihou A (2012) Treatment of textile waste waters by hydroxyapatite co-precipitation with adsorbent regeneration and reuse. Waste Biomass Valor 3:75–79

    Article  CAS  Google Scholar 

  • Liu N, Li F, Ge F, Tao N, Zhou Q, Wong M (2015) Mechanisms of ammonium assimilation by Chlorella vulgaris F1068: isotope fractionation and proteomic approaches. Bioresour Technol 190:307–314

    Article  CAS  PubMed  Google Scholar 

  • Manasa RL, Mehta A (2020) Wastewater: sources of pollutants and its remediation. Environ Biotechnol 2:197–219

    Google Scholar 

  • Mao G, Hu H, Liu X, Crittenden J, Huang N (2021) A bibliometric analysis of industrial wastewater treatments from 1998 to 2019. Environ Pollut 275:115785

    Article  CAS  PubMed  Google Scholar 

  • McDaniel EA, Wahl SA, Ishii SI, Pinto A, Ziels R, Nielsen PH, McMahon KD, Williams RB (2021) Prospects for multi-omics in the microbial ecology of water engineering. arXiv preprint arXiv:2105.08856

    Google Scholar 

  • Mishra A, Medhi K, Malaviya P, Thakur IS (2019) Omics approaches for microalgal applications: prospects and challenges. Bioresour Technol 291:121890

    Article  CAS  PubMed  Google Scholar 

  • Molazadeh M, Ahmadzadeh H, Pourianfar HR, Lyon S, Rampelotto PH (2019) The use of microalgae for coupling wastewater treatment with CO2 biofixation. Front Bioeng Biotechnol 7:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller EE, Pinel N, Laczny CC, Hoopmann MR, Narayanasamy S, Lebrun LA, Roume H, Lin J, May P, Hicks ND (2014) Community-integrated omics links dominance of a microbial generalist to fine-tuned resource usage. Nat Commun 5:1–10

    Article  Google Scholar 

  • Nasr FA, Doma HS, Abdel-Halim HS, El-Shafai SA (2007) Chemical industry wastewater treatment. Environmentalist 27:275–286

    Article  Google Scholar 

  • Ng WJ (2006) Industrial wastewater treatment. World Scientific

    Book  Google Scholar 

  • Ng IS, Tan SI, Kao PH, Chang YK, Chang JS (2017) Recent developments on genetic engineering of microalgae for biofuels and bio-based chemicals. Biotechnol J 12:1600644

    Article  Google Scholar 

  • Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M, Maruyama S, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T (2007) A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol 5:1–8

    Article  Google Scholar 

  • Obotey Ezugbe E, Rathilal S (2020) Membrane technologies in wastewater treatment: a review. Membranes 10(5):89. https://doi.org/10.3390/membranes10050089

    Article  CAS  PubMed Central  Google Scholar 

  • Perera IA, Abinandan S, Subashchandrabose SR, Venkateswarlu K, Naidu R, Megharaj M (2019) Advances in the technologies for studying consortia of bacteria and cyanobacteria/microalgae in wastewaters. Crit Rev Biotechnol 39:709–731

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez E, García-Encina PA, Stams AJ, Maphosa F, Sousa DZ (2015) Meta-omics approaches to understand and improve wastewater treatment systems. Rev Environ Sci Biotechnol 14:385–406

    Article  Google Scholar 

  • Sahu O, Chaudhari PK (2013) Review on chemical treatment of industrial wastewater. J Appl Sci Environ Manag 17:241–257

    CAS  Google Scholar 

  • Salama E-S, Roh H-S, Dev S, Khan MA, Abou-Shanab RA, Chang SW, Jeon B-H (2019) Algae as a green technology for heavy metals removal from various wastewater. World J Microbiol Biotechnol 35:1–19

    Article  CAS  Google Scholar 

  • Samer MSE-M (2015) Biological and chemical wastewater treatment processes. IntechOpen, Rijeka, p Ch. 1. https://doi.org/10.5772/61250

    Book  Google Scholar 

  • Schroeder ED (2003) Water resources. In: Encyclopedia of physical science and technology, pp 721–751. https://doi.org/10.1016/B0-12-227410-5/00821-8

    Chapter  Google Scholar 

  • Shahedi A, Darban A, Taghipour F, Jamshidi-Zanjani A (2020) A review on industrial wastewater treatment via electrocoagulation processes. Curr Opin Electrochem 22:154–169

    Article  CAS  Google Scholar 

  • Sheik AR, Muller EE, Wilmes P (2014) A hundred years of activated sludge: time for a rethink. Front Microbiol 5:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Shete BS, Shinkar N (2013) Comparative study of various treatments for dairy industry wastewater. IOSR J Eng 3:42–47

    Article  Google Scholar 

  • Singh S, Anil AG, Khasnabis S, Kumar V, Nath B, Sunil Kumar Naik TS, Subramanian S, Kumar V, Singh J, Ramamurthy PC (2021) Sustainable removal of Cr(VI) using graphene oxide-zinc oxide nanohybrid: adsorption kinetics, isotherms, and thermodynamics. Environ Res 203:111891. https://doi.org/10.1016/j.envres.2021.111891

    Article  CAS  PubMed  Google Scholar 

  • Sivaram N, Barik D (2019) Toxic waste from leather industries. In: Energy from toxic organic waste for heat and power generation. Elsevier, Amsterdam

    Google Scholar 

  • Tripathi R, Gupta A, Thakur IS (2019) An integrated approach for phycoremediation of wastewater and sustainable biodiesel production by green microalgae, Scenedesmus sp. ISTGA1. Renew Energy 135:617–625. https://doi.org/10.1016/J.RENENE.2018.12.056

    Article  CAS  Google Scholar 

  • Van Lier JB, Mahmoud N, Zeeman G (2008) Anaerobic wastewater treatment. In: Biological wastewater treatment: principles, modelling and design, pp 415–456

    Google Scholar 

  • Wang Y, Ho S-H, Cheng C-L, Guo W-Q, Nagarajan D, Ren N-Q, Lee D-J, Chang J-S (2016) Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresour Technol 222:485–497

    Article  CAS  PubMed  Google Scholar 

  • Woodard & Curran Inc (2005) Industrial waste treatment handbook, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Ye J, Song Z, Wang L, Zhu J (2016) Metagenomic analysis of microbiota structure evolution in phytoremediation of a swine lagoon wastewater. Bioresour Technol 219:439–444

    Article  CAS  PubMed  Google Scholar 

  • Zou H-X, Pang Q-Y, Zhang A-Q, Lin L-D, Li N, Yan X-F (2015) Excess copper induced proteomic changes in the marine brown algae Sargassum fusiforme. Ecotoxicol Environ Saf 111:271–280

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pabasari A. Koliyabandara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jayasinghe, R., Koliyabandara, P.A., Hewawasam, C., Jayasanka, D.J., Vithanage, M. (2022). Omics in Industrial Wastewater Treatment. In: Kumar, V., Thakur, I.S. (eds) Omics Insights in Environmental Bioremediation. Springer, Singapore. https://doi.org/10.1007/978-981-19-4320-1_10

Download citation

Publish with us

Policies and ethics