Skip to main content

Optical Imaging Procedures

  • Chapter
  • First Online:
Book cover Biophotonics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 744 Accesses

Abstract

Diverse optical imaging procedures have been developed and applied successfully to biophotonics in research laboratories and clinical settings during the past several decades. Technologies that have contributed to these successes include advances in lasers and photodetectors, miniaturization of optical probes and their associated instrumentation, and development of high-speed signal processing techniques such as advanced computations in image reconstructions, computer vision and computer-aided diagnosis, machine learning, and 3-D visualizations. This chapter expands on the microscopic and spectroscopic technologies described in the previous two chapters by addressing photonic-based imaging procedures such as optical coherence tomography, miniaturized endoscopic processes, laser speckle imaging, optical coherence elastography, photoacoustic tomography, and hyperspectral imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.J. Kao, G. Keiser, A. Gogoi (eds.), Advanced Optical Methods for Brain Imaging (Springer, 2019)

    Google Scholar 

  2. H. Lee, J. Kim, H.-H. Kim, C.-S. Kim, J. Kim, Review on optical imaging techniques for multispectral analysis of nanomaterials. Nanotheranostics 6, 50–61 (2022)

    Article  Google Scholar 

  3. G. Pirovano, S. Roberts, S. Kossatz, T. Reiner, Optical imaging modalities: principles and applications in preclinical research and clinical settings. J. Nucl. Med. 61, 1419–1427 (2020)

    Article  Google Scholar 

  4. J.A. Izatt, M.A. Choma, Theory of optical coherence tomography—Chap. 2, in Optical Coherence Tomography Technology and Applications, ed. by W. Drexler, J.G. Fujimoto (Springer, Berlin, 2008)

    Google Scholar 

  5. M.E. Brezinski, Optical Coherence Tomography: Principles and Applications, 2nd ed. (Academic, 2016)

    Google Scholar 

  6. B.E. Bouma, M. Villiger, K. Otsuka, W.Y. Oh, Intravascular optical coherence tomography [Invited]. Biomed. Opt. Expr. 8(5), 2660–2686 (2017)

    Article  Google Scholar 

  7. R.A. Leitgeb, B. Baumann. Multimodal optical medical imaging concepts based on optical coherence tomography. Front. Phys. 6, article 114 (2018)

    Google Scholar 

  8. A.C.S. Tan, G.S. Tan, A.K. Denniston, P.A. Keane, M. Ang, D. Milea, U. Chakravarthy, C.M.G. Cheung, An overview of the clinical applications of optical coherence tomography angiography. Eye 32, 262–286 (2018)

    Article  Google Scholar 

  9. Y. Wang, S. Liu, S. Lou, W. Zhang, H. Cai, X. Chen, Application of optical coherence tomography in clinical diagnosis. J. X-Ray Sci. Technol. 27, 995–1006 (2019)

    Article  Google Scholar 

  10. G. Song, E.T. Jelly, K.K. Chu, W.Y. Kendall, A. Wax. A review of low-cost and portable optical coherence tomography. Prog. Biomed. Eng. 3, article 032002 (2021)

    Google Scholar 

  11. A. Lukic, S. Dochow, H. Bae, G. Matz, I. Latka, B. Messerschmidt, M. Schmitt, J. Popp, Endoscopic fiber probe for nonlinear spectroscopic imaging. Optica 4(5), 496–501 (2017)

    Article  ADS  Google Scholar 

  12. M.J. Gora, M.J. Suter, G.J. Tearney, X. Li, Endoscopic optical coherence tomography: technologies and clinical applications [Invited]. Biomed. Opt. Express 8(5), 2405–2444 (2017)

    Article  Google Scholar 

  13. J.L. Teh, A. Shabbir, S. Yuen, J.B.Y. So, Recent advances in diagnostic upper endoscopy. World J. Gastroenterol. 26(4), 433–447 (2020)

    Article  Google Scholar 

  14. Z. He, P. Wang, X. Ye, Novel endoscopic optical diagnostic technologies in medical trial research: recent advancements and future prospects. BioMed. Eng. Online 20(5) (2021)

    Google Scholar 

  15. G. Keiser, F. Xiong, Y. Cui, P.P. Shum. Review of diverse optical fibers used in biomedical research and clinical practice. J. Biomed. Optics 19, article 080902 (2014)

    Google Scholar 

  16. J. Park, D.W. Ham, B.T. Kwon, S.M. Park, H.J. Kim, J.S. Yeom, Review: Minimally invasive spine surgery: techniques, technologies, and indications. Asian Spine J. 14(5), 694–701 (2020)

    Article  Google Scholar 

  17. M.G. Patti, A.H. Zureikat, A. Fichera, F. Schlottmann, eds., Techniques in Minimally Invasive Surgery (Springer, 2021)

    Google Scholar 

  18. I. Alkatout, J. Dhanawat, J. Ackermann, D. Freytag, G. Peters, N. Maass, L. Mettler, J.M. Pape, Video feedback and video modeling in teaching laparoscopic surgery: a visionary concept from Kiel. J. Clin. Med. 10, article 163 (2021)

    Google Scholar 

  19. G.J. Ughi, M.J. Gora, A.-F. Swager, A. Soomro, C. Grant, A. Tiernan, M. Rosenberg, J.S. Sauk, N.S. Nishioka, G.J. Tearney, Automated segmentation and characterization of esophageal wall in vivo by tethered capsule optical coherence tomography endomicroscopy. Biomed. Opt. Express. 7(2), 409–419 (2016)

    Article  Google Scholar 

  20. J. Melson et al., Video capsule endoscopy (Technology evaluation report). Gastrointes. Endoscop. 93(4), 784–796 (2021)

    Article  Google Scholar 

  21. M. Villiger, D. Lorenser, R.A. McLaughlin, B.C. Quirk, R.W. Kirk, B.E. Bouma, D.D. Sampson. Deep-tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour. Sci. Rpts. 6, article 28771 (2016)

    Google Scholar 

  22. P. Keaheya, P. Ramalingamb, K. Schmelerc, R.R. Richards-Kortum, Differential structured illumination microendoscopy for in vivo imaging of molecular contrast agents. PNAS 113(39), 10769–10773 (2016)

    Article  Google Scholar 

  23. J. Li, B.C. Quirk, P.B. Noble, R.W. Kirk, D.D. Sampson, R.A. McLaughlin, Flexible needle with integrated optical coherence tomography probe for imaging during transbronchial tissue aspiration. J. Biomed. Optics 22(10), article 106002 (2017)

    Google Scholar 

  24. Y. Kozawa, T. Nakamura, Y. Uesugi, S. Sato, Wavefront engineered light needle microscopy for axially resolved rapid volumetric imaging. Biomed. Opt. Express 13(3), 1702–1717 (2022)

    Article  Google Scholar 

  25. A. Curatolo, B.F. Kennedy, D.D. Sampson, T.R. Hillman. Speckle in optical coherence tomography—Chap. 6, in Advanced Biophotonics: Tissue Optical Sectioning, ed. by V.V. Tuchin, R.K. Wang (CRC Press, 2019)

    Google Scholar 

  26. W. Heeman, W. Steenbergen, G.M. van Dam, E.C. Boerma. Clinical applications of laser speckle contrast imaging: a review. J. Biomed. Opt. 24(8), article 080901 (2019)

    Google Scholar 

  27. A. Mangraviti, F. Volpin, J. Cha, S.I. Cunningham, K. Raje, M.J. Brooke, H. Brem, A. Olivi, J. Huang, B.M. Tyler, A. Rege, Intraoperative laser speckle contrast imaging for real-time visualization of cerebral blood flow in cerebrovascular surgery: results from pre-clinical studies. Nat. Sci. Rpt. 10, article 7614 (2020)

    Google Scholar 

  28. B.F. Kennedy, K.M. Kennedy, D.D. Sampson, A review of optical coherence elastography: fundamentals, techniques and prospects. IEEE J. Sel. Topics Quantum Electron. 20(2), article 7101217 (2014)

    Google Scholar 

  29. K.V. Larin, D.D. Sampson, Optical coherence elastography—OCT at work in tissue biomechanics [Invited]. Biomed. Opt. Express 8(2), 1172–1202 (2017)

    Article  Google Scholar 

  30. Y. Li, S. Moon, J.J. Chen, Z. Zhu, Z. Chen, Ultrahigh-sensitive optical coherence elastography. Light: Sci. Appl. 9, article 58 (2020)

    Google Scholar 

  31. Y. Zhou, J. Yao, L.V. Wang, Tutorial on photoacoustic tomography. J. Biomed. Opt. 21(6), article 061007 (2016)

    Google Scholar 

  32. W. Choi, D. Oh, C. Kim, Practical photoacoustic tomography: Realistic limitations and technical solutions. J. Appl. Phys. 127, article 230903 (2020)

    Google Scholar 

  33. G. Lu, B. Fei, Medical hyperspectral imaging: a review. J. Biomed. Opt. 19(1), article 010901 (2014)

    Google Scholar 

  34. J.M. Amigo, H. Babamoradi, S. Elcoroaristizabal, Hyperspectral image analysis: a tutorial. Anal. Chim. Acta 86, 34–51 (2015)

    Article  Google Scholar 

  35. S. Ortega, H. Fabelo, D.K. Iakovidis, A. Koulaouzidis, G.M. Callico, Review: use of hyperspectral/multispectral imaging in gastroenterology. Shedding some–different–light into the dark. J. Clin. Med. 8, article 36 (2019)

    Google Scholar 

  36. J. Yoon, Hyperspectral imaging for clinical applications. BioChip J. 16, 1–12 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Keiser .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keiser, G. (2022). Optical Imaging Procedures. In: Biophotonics. Graduate Texts in Physics. Springer, Singapore. https://doi.org/10.1007/978-981-19-3482-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3482-7_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3481-0

  • Online ISBN: 978-981-19-3482-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics