Skip to main content

Breeding Strategies for Developing Disease-Resistant Wheat: Present, Past, and Future

  • Chapter
  • First Online:
Cereal Diseases: Nanobiotechnological Approaches for Diagnosis and Management

Abstract

Since its origin in Southeast Turkey, wheat (Triticum aestivum L. AABBDD; Family Poaceae) has been a prime dietary cultivated cereal that is consumed worldwide by nearly 20% of the world population. However, there are a wide plethora of biological variables that seriously threaten production around the world. Among the biological stresses, phytopathogens are considered the most serious threat to yield. This can be further elaborated by the fact that since the nineteenth century, more than 30 diseases have been reported to have had a drastic impact as epidemics, including karnal bunt, smut, mildew, blight, rust, etc. So far, in response, various landraces and several wild-related genera (such as Thinopyrum, Triticum, Hordeum, Aegilopsis, Elymus, and Leymus) represent the different gene pools that have been utilized in developing disease-resistant varieties. With the emergence of advanced molecular markers, whole genome sequences, and new genomic approaches, there are multiple ways and tools for researchers to enhance durability and wide-range disease resistance in a short period. The present documentation of trait introgression offers an effective option to narrow down the cost of unsustainable fungicides. Therefore, the current chapter is an attempt to incorporate various successful reports regarding the development of more resistant wheat cultivars using new breeding strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AgRenSeq:

Associated genetics R gene enrichment sequencing

Cas9:

CRISPR-associated protein 9

CRISPR:

Clustered regularly interspaced palindromic repeats

dsRNA:

Double-stranded RNA

EMS:

Ethyl methanesulfonate

FHB:

Fusarium head blight

GE:

Genome editing

GWAS:

Genome-wide association sequences

LRR:

Leucine-rich repeat proteins

MAPK:

Mitogen-activated protein kinase

miRNA:

MicroRNA

MNs:

Meganucleases

MutChromSeq:

Mutant chromosome sequencing

NBS:

Nucleotide-binding site

NLR:

Nucleotide-binding and leucine-rich repeat

PGT:

Puccinia graminis f. sp. tritici

PST:

Puccinia striiformis f. sp. tritici

PT:

Puccinia triticina

QTL:

Quantitative trait locus

R gene:

Resistance gene

siRNA:

Small interfering RNAs

SSNs:

Sequence-specific nucleases

TACCA:

Targeted chromosome-based cloning via long-range assembly

TAL:

Transcription-activator-like

TALENs:

Transcription activator-like effector nucleases

ZFNs:

Zinc-finger nucleases

References

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acevedo-Garcia J, Spencer D, Thieron H, Reinstädler A, Hammond-Kosack K, Phillips AL, Panstruga R (2017) mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnol J 15:367–378

    Article  CAS  PubMed  Google Scholar 

  • Ahmad S, Wei X, Sheng Z, Hu P, Tang S (2020) CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects. Brief Func Genomics 19:26–39

    Article  CAS  Google Scholar 

  • Ahn SY, Kim SA, Yun HK (2015) Inhibition of Botrytis cinerea and accumulation of stilbene compounds by lightemitting diodes of grapevine leaves and differential expression of defense-related genes. Eur J Plant Pathol 143(4):753–765

    Article  CAS  Google Scholar 

  • Alahmad S, Dinglasan E, Leung KM, Riaz A, Derbal N, Voss-Fels KP, Able JA, Bassi FM, Christopher J, Hickey LT (2018) Speed breeding for multiple quantitative traits in durum wheat. Plant Meth 14:1–15

    Article  Google Scholar 

  • Alemu A, Brazauskas G, Gaikpa DS, Henriksson T, Islamov B, Ørgensen LN, Koppel M, Koppel R, Liatukas Ž, Svensson JT, Chawade A (2021) Genome-wide association analysis and genomic prediction for adult-plant resistance to Septoria Tritici blotch and powdery mildew in winter wheat. Front Genet 12:661742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali S, Gladieux P, Leconte M, Gautier A, Justesen AF, Hovmøller MS, Enjalbert J, de Vallavieille-Pope C (2014) Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici. PLoS Pathog 10:e1003903

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersen EJ, Nepal MP, Purintun JM, Nelson D, Mermigka G, Sarris PF (2020) Wheat disease resistance genes and their diversification through integrated domain fusions. Front Genet 11:898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora S, Steuernagel B, Gaurav K, Chandramohan S, Long Y, Matny O, Johnson R, Enk J, Periyannan S, Singh N (2019) Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat Biotechnol 37:139–143

    Article  CAS  PubMed  Google Scholar 

  • Ashkani S, Yusop MR, Shabanimofrad M, Azady A, Ghasemzadeh A, Azizi P, Latif MA (2015) Allele mining strategies: principles and utilisation for blast resistance genes in rice (Oryza sativa L.). Curr Issues Mol Biol 17:57–73

    PubMed  Google Scholar 

  • Beddow JM, Pardey PG, Chai Y, Hurley TM, Kriticos DJ, Braun HJ, Park RF, Cuddy WS, Yonow T (2015) Research investment implications of shifts in the global geography of wheat stripe rust. Nat Plants 15:132

    Google Scholar 

  • Bhattacharya S (2017) Deadly new wheat disease threatens Europe’s crops. Nature 542:145–146

    Article  CAS  PubMed  Google Scholar 

  • Bolton MD, Kolmer JA, Garvin DF (2008) Wheat leaf rust caused by Puccinia triticina. Mol Plant Pathol 9:563–575

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown DW, Proctor RH (2013) Fusarium: genomics, molecular and cellular biology. Caister Academic Press, Norfolk

    Google Scholar 

  • Brown JKM, Chartrain L, Lasserre-Zuber P, Saintenac C (2015) Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genet Biol 79:33–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso CADA, Reis EM, Moreira EN (2008) Development of a warning system for wheat blast caused by Pyricularia grisea. Summa Phytopathol 34:216–221

    Article  Google Scholar 

  • Chang Q, Lin X, Yao M, Liu P, Guo J, Huang L (2020) Hexose transporter PsHXT1-mediated sugar uptake is required for pathogenicity of wheat stripe rust. Plant Biotechnol J 18(12):2367–2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay A, Purohit J, Mehta S, Parmar H, Karippadakam S, Rashid A, Balamurugan A, Bansal S, Prakash G, Achary VMM, Reddy MK (2022) Precision genome editing toolbox: applications and approaches for improving rice’s genetic resistance to pathogens. Agronomy 12:565

    Article  CAS  Google Scholar 

  • Chen W, Wellings C, Chen X, Kang Z, Liu T (2014) Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol Plant Pathol 15:433–446

    Article  PubMed  PubMed Central  Google Scholar 

  • Chhuneja P, Kaur S, Goel R, Aghaee M, Dhaliwal H (2007) Introgression of leaf rust and stripe rust resistance genes from Aegilops Umbellulata to hexaploid wheat through induced homoeologous pairing. Phytopathology 105:872–884

    Google Scholar 

  • Choudhary JR, Tripathi A, Kaldate R, Rana M, Mehta S, Ahlawat J, Bansal M, Zaid A, Wani SH (2022) Breeding Efforts for Crop Productivity in Abiotic Stress Environment. In: Augmenting Crop Productivity in Stress Environment. Springer, Singapore, pp 63–103

    Chapter  Google Scholar 

  • Coriton O, Jahier J, Leconte M, Virginie H, Gwenn T, Dedryver F, deVallavieille PC (2019) Double dose efficiency of the yellow rust resistance gene Yr17 in bread wheat lines. Plant Breed 139:263–271

    Article  Google Scholar 

  • Crespo-Herrera LA, Garkava-Gustavsson L, Åhman I (2017) A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.). Hereditas 154:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuthbert PA, Somers DJ, Thomas J, Cloutier S, Brule-Babel A (2006) Fine mapping Fhb1, a major gene controlling fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 112:1465–1472

    Article  CAS  PubMed  Google Scholar 

  • Dakouri A, McCallum BD, Radovanovic N, Cloutier S (2013) Molecular and phenotypic characterization of seedling and adult plant leaf rust resistance in a world wheat collection. Mol Breed 32:663–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dilawari R, Kaur N, Priyadarshi N, Kumar B, Abdelmotelb KF, Lal SK, Singh B, Tripathi A, Aggarwal SK, Jat BS, Mehta S (2021) Genome Editing: A Tool from the Vault of Science for Engineering Climate-Resilient Cereals. In: Harsh environment and plant resilience: molecular and functional aspects. Springer, Cham, pp 45–72

    Chapter  Google Scholar 

  • Dodds PN, Lagudah ES (2016) Starving the enemy. Science 354:1377–1378

    Article  CAS  PubMed  Google Scholar 

  • Duveiller E, Sharma RC (2009) Genetic improvement and crop management strategies to minimize yield losses in warm non-traditional wheat growing areas due to spot blotch pathogen Cochliobolus sativus. J Phytopathol 157:521–534

    Article  Google Scholar 

  • Duveiller E, Sharma RC (2012) Wheat resistance to spot blotch or foliar blight. In: Sharma I (ed) Disease resistance in wheat. CABI, Wallingford, pp 120–135

    Chapter  Google Scholar 

  • Duy PN, Lan DT, Pham Thu H, Thi Thu HP, Nguyen Thanh H, Pham NP et al (2021) Improved bacterial leaf blight disease resistance in the major elite Vietnamese rice cultivar TBR225 via editing of the OsSWEET14 promoter. PLoS One 16:9

    Article  Google Scholar 

  • Dwivedi SL, Ceccarelli S, Blair MW, Upadhyaya HD, Are AK, Ortiz R (2016) Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci 21:31–42

    Article  CAS  PubMed  Google Scholar 

  • Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN (2014) The past, present and future of breeding rust resistant wheat. Front Plant Sci 5:641

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO STAT (2018) FAO online database. Available at: http://www.fao.org/faostat/en/#data. Last Access: May 2019

  • Feng H, Duan X, Zhang Q, Li X, Wang B, Huang L, Wang X, Kang Z (2014) The target gene of tae‐miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Mol Plant Pathol 15:284–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueroa M, Upadhyaya NM, Sperschneider J, Park RF, Szabo LJ, Steffenson B, Ellis JG, Dodds PN (2016) Changing the game: using integrative genomics to probe virulence mechanisms of the stem rust pathogen Puccinia graminis f. sp. tritici. Front Plant Sci 7:205

    Article  PubMed  PubMed Central  Google Scholar 

  • Figueroa M, Hammond-Kosack KE, Solomon PS (2018) A review of wheat diseases-a field perspective. Mol Plant Pathol 19:1523–1536

    Article  PubMed  Google Scholar 

  • Fones H, Gurr S (2015) The impact of Septoria tritici Blotch disease on wheat: an EU perspective. Fungal Genet Biol 79:3–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert J, Haber S (2013) Overview of some recent research developments in fusarium head blight of wheat. Can J Plant Pathol 35:149–174

    Article  CAS  Google Scholar 

  • Gil-Humanes J, Voytas DF (2014) Wheat rescued from fungal disease. Nat Biotechnol 32:886–887

    Article  CAS  PubMed  Google Scholar 

  • Grote U, Fasse A, Nguyen TT, Erenstein O (2021) Food security and the dynamics of wheat and maize value chains in Africa and Asia. Front Sustain Food Syst 4:617009

    Article  Google Scholar 

  • Gupta SK, Ashwini C, Sunita K, Kumble VP, Qazi MRH (2005) Development and validation of molecular markers linked to an Aegilops umbellulata–derived leaf-rust-resistance gene, Lr9, for marker-assisted selection in bread wheat. Genome 48:823–830

    Article  CAS  PubMed  Google Scholar 

  • Gupta N, Batra N, Bhardwaj SC (2017) Wheat rust research–Status, efforts and way ahead. J Wheat Res 9:72–86

    Google Scholar 

  • Hahn F, Loures SL, Sparks CA, Kanyuka K, Nekrasov V (2021) Efficient CRISPR/ cas-mediated targeted mutagenesis in spring and winter wheat varieties. Plan Theory 10:1481

    CAS  Google Scholar 

  • Hao C, Jiao C, Hou J, Li T, Liu H, Wang Y, Zheng J, Liu H, Bi Z, Xu F (2020) Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Mol Plant 13:1733–1751

    Article  CAS  PubMed  Google Scholar 

  • He Y, Wang Q, Zeng J, Sun T, Yang, Guang-xiao HE, Guang Y (2015) Current status and trends of wheat genetic transformation studies in China. J Integr Agric 14:438–452

    Article  Google Scholar 

  • Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SC, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BB (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37:744–754

    Article  CAS  PubMed  Google Scholar 

  • Hovmøller MS, Walter S, Bayles RA, Hubbard A, Flath K, Sommerfeldt N, Leconte M, Czembor P, Rodriguez-Algaba J, Thach T, Hansen JG, Lassen P, Justesen AF, Ali S, de Vallavieille-Pope C (2015) Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol 65:402–411

    Article  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    Article  CAS  PubMed  Google Scholar 

  • Huang F, Qureshi JA, Meagher RL Jr, Reisig DD, Head GP, Andow DA (2014) Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize. PLoS One 9:e112958

    Article  PubMed  PubMed Central  Google Scholar 

  • Huerta-Espino J, Singh R, German S, McCallum B, Park R, Chen WQ, Bhardwaj S, Goyeau H (2011) Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 179:143–160

    Article  Google Scholar 

  • Igarashi S, Utimada C, Igarashi L, Kazuma A, Lopes R (1986) Pyricularia sp. em trigo. I. Ocorrencia de Pyricularia sp. no Estado do Parana. Fitopatol Bras 11:351–352

    Google Scholar 

  • Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee P, Hossain MS, Gupta DR, Rahman MM, Mahboob MG, Cook N, Salam MU, Surovy MZ, Sancho VB, Maciel JLN, NhaniJunior A, Castroagudın VL, Reges JTA, Ceresini PC, Ravel S, Kellner R (2016) Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol 14:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahier J, Abelard P, Tanguy M, Dedryver F, Rivoal R, Khatkar S, Bariana HS, Koebner R (2001) The Aegilops ventricosa segment on chromosome 2AS of the wheat cultivar ‘VPM1’ carries the cereal cyst nematode resistance gene Cre5. Plant Breed 120:125–128

    Article  CAS  Google Scholar 

  • Jamil S, Shahzad R, Ahmad S, Fatima R, Zahid R, Anwar M, Iqbal MZ, Wang X (2020) Role of genetics, genomics, and breeding approaches to combat stripe rust of wheat. Front Nutr 7:580715

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang C, Kan J, Ordon F, Perovic D, Yang P (2020) Bymovirus-induced yellow mosaic diseases in barley and wheat: viruses, genetic resistances and functional aspects. Theor Appl Genet 133:1623–1640

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Szabo LJ, Pretorius ZA, Singh RP, Ward R, Fetch T (2008) Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 92:923–926

    Article  CAS  PubMed  Google Scholar 

  • Jupe F, Witek K, Verweij W, Sliwka J, Pritchard L, Etherington GJ, Maclean D, Cock PJ, Leggett RM, Bryan GJ (2013) Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J 76:530–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser N, Douches D, Dhingra A, Glenn KC, Herzig PR, Stowe EC et al (2020) The role of conventional plant breeding in ensuring safe levels of naturally occurring toxins in food crops. Trends Food Sci Technol 100:51–66

    Article  CAS  Google Scholar 

  • Kaur N (2008) Allele mining and sequence diversity at the wheat powdery mildew resistance locus Pm3. Doctoral dissertation, University of Zurich

    Google Scholar 

  • Khan S, Anwar S, Yu S, Sun M, Yang Z, Gao Z (2019) Development of drought-tolerant transgenic wheat: achievements and limitations. Int J Mol Sci 20:3350

    Article  CAS  PubMed Central  Google Scholar 

  • Kim SH, Qi D, Ashfield T, Helm M, Innes RW (2016) Using decoys to expand the recognition specificity of a plant disease resistance protein. Science 351:684–687

    Article  CAS  PubMed  Google Scholar 

  • Kis A, Hamar É, Tholt G, Bán R, Havelda Z (2019) Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR /Cas9 system. Plant Biotechnol J 17:1004–1006

    Article  PubMed  PubMed Central  Google Scholar 

  • Kisten L, Tolmay VL, Mathew I, Sydenham SL, Venter E (2020) Genome-wide association analysis of Russian wheat aphid (Diuraphis noxia) resistance in Dn4 derived wheat lines evaluated in South Africa. PLoS One 15:e0244455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kocheshkova AA, Kroupin PY, Bazhenov MS, Karlov GI, Pochtovyy AA, Upelniek VP (2017) Pre-harvest sprouting resistance and haplotype variation of ThVp-1 gene in the collection of wheat-wheatgrass hybrids. PLoS One 12:e0188049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokhmetova A, Sehgal D, Ali S, Atishova M, Kumarbayeva M, Leonova I, Dreisigacker S (2021) Genome-wide association study of tan spot resistance in a hexaploid wheat collection from Kazakhstan. Front Genet 11:581214

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolmer JA (2005) Tracking wheat rust on a continental scale. Curr Opin Plant Biol 8:441–449

    Article  PubMed  Google Scholar 

  • Kumar D, Dutta S, Singh D, Prabhu KV, Kumar M, Mukhopadhyay K (2017) Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis. Planta 245(1):161–182

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Kumar A, Chhokar V, Gangwar OP, Bhardwaj SC, Sivasamy M, Prasad SV, Prakasha TL, Khan H, Singh R, Sharma P (2020) Genome-wide association studies in diverse spring wheat panel for stripe, stem, and leaf rust resistance. Front Plant Sci 11:748

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Sharma A, Sharma R, Srivastva P, Choudhary A (2021a) Exploration of wheat wild relative diversity from Lahaul valley: a cold arid desert of Indian Himalayas. Cereal Res Commun. https://doi.org/10.1007/s42976-021-00166-w

  • Kumar A, Sharma A, Sharma R, Choudhary A, Srivastava P, Kaur H, Padhy AK (2021b) Morpho-physiological evaluation of Elymus semicostatus (Nees ex Steud.) Melderis as potential donor for drought tolerance in Wheat (Triticum aestivum L.). Gen Res Cop Evol 69(1):411–430. https://doi.org/10.1007/s10722-021-01241-1

    Article  CAS  Google Scholar 

  • Kumar A, Choudhary A, Kaur H, Aggarwal SK, Mehta S (2022a) Smut and bunt diseases of wheat: biology, identification, and management. In: New horizons in wheat and barley research. Springer, Singapore, pp 107–131

    Chapter  Google Scholar 

  • Kumar A, Choudhary A, Kaur H, Mehta S (2022b) A walk towards wild grasses to unlock the clandestine of gene pools for wheat improvement: a review. Plant Stress 3:100048

    Article  CAS  Google Scholar 

  • Kuraparthy V, Sood S, Chhuneja P, Dhaliwal H, Kaur S, Bowden R, Gill B (2007) A cryptic wheat– translocation with leaf rust resistance gene. Crop Sci 47(5)

    Google Scholar 

  • Langner T, Kamoun S, Belhaj K (2018) CRISPR crops: plant genome editing toward disease resistance. Annu Rev Phytopathol 56:479–512

    Article  CAS  PubMed  Google Scholar 

  • Leonard KJ, Szabo LJ (2005) Stem rust of small grains and grasses caused by Puccinia graminis. Mol Plant Pathol 6:99–111

    Article  PubMed  Google Scholar 

  • Li J, Zhang Y, Zhang Y, Yu P-L, Pan H, Rollins JA (2018) Introduction of large sequence inserts by CRISPR-Cas9 to create pathogenicity mutants in the multinucleate filamentous pathogen Sclerotinia sclerotiorum. MBio 9:e00567-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Li F, Wen W, Liu J, Zhang Y, Cao S, He Z, Rasheed A, Jin H (2019) Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biol 19:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Dong Z, Ma C, Xia Q, Tian X, Sehgal S, Koo DK, Friebe B, Ma P, Liu W (2020a) A spontaneous wheat-Aegilops longissima translocation carrying Pm66 confers resistance to powdery mildew. Theor Appl Genet 133:1149–1159

    Article  CAS  PubMed  Google Scholar 

  • Li W, Deng Y, Ning Y, He Z, Wang GL (2020b) Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding. Annu Rev Plant Biol 71:575–603

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li Y, Ma L (2020c) Recent advances in CRISPR/Cas9 and applications for wheat functional genomics and breeding. aBiotech 2:375–385. https://doi.org/10.1007/s42994-021-00042-5

    Article  CAS  Google Scholar 

  • Li J, Jiao G, Sun Y, Chen J, Zhong Y, Yan L, Jiang D, Ma Y, Xia L (2020d) Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9. Plant Biotechnol J 19:937–951

    Article  CAS  Google Scholar 

  • Liang C, Zeng YZ, Hong XL, Hong XL, LiPu D, Huijun X, Zhiyong X (2008) Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. J Exp Bot 59:4195–4204

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin Q, Zong Y, Xue C, Wang S, Jin S, Zhu Z, Wang Y, Anzalone AV, Raguram A, Doman JL (2020) Prime genome editing in rice and wheat. Nat Biotechnol 38:582–585

    Article  CAS  PubMed  Google Scholar 

  • Liu HJ, Yan J (2019) Crop genome-wide association study: a harvest of biological relevance. Plant J 97:8–18

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Yang L, Zhou X, Zhou M, Lu Y, Ma L, Ma H, Zhang Z (2013) Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. J Exp Bot 64:2243–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Koo DH, Xia Q, Li C, Bai F, Song Y, Friebe B, Gill BS (2017) Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theor Appl Genet 130:841–848

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Guo Y, Zhou Y (2018) Poverty alleviation in rural China: policy changes, future challenges and policy implications. China Agric Econ Rev 10:241–259

    Article  Google Scholar 

  • Liu Y, Luo W, Linghu Q, Abe F, Hisano H, Sato K, Kamiya Y, Kawaura K, Onishi K, Endo M et al (2021) In planta genome editing in commercial wheat varieties. Front Plant Sci 12:648841

    Article  PubMed  PubMed Central  Google Scholar 

  • Lujan Basile SM, Ramirez IA, Crescente JM, Conde MB, Demichelis M, Abbate P, Rogers WJ, Pontaroli AC, Helguera M, Vanzetti LS (2019) Haplotype block analysis of an Argentinean hexaploid wheat collection and GWAS for yield components and adaptation. BMC Plant Biol 19:553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma K, Li X, Li Y, Wang Z, Zhao B, Wang B, Li Q (2021) Disease resistance and genes in 146 wheat cultivars (Lines) from the Huang-Huai-Hai Region of China. Agronomy 11:1025

    Article  CAS  Google Scholar 

  • Mago R, Verlin D, Zhang P, Bansal U, Bariana H, Jin Y, Ellis J, Hoxha S, Dundas I (2013) Development of wheat-Aegilops speltoides recombinants and simple PCR-based markers for Sr32 and a new stem rust resistance gene on the 2S#1 chromosome. Theor Appl Genet 126:2943–2955

    Article  CAS  PubMed  Google Scholar 

  • Mago R, Zhang P, Vautrin S, Simkova H, Bansal U, Luo MC, Rouse M, Karaoglu H, Periyannan S, Kolmer J, Jin Y, Ayliffe MA, Bariana H, Park RF, McIntosh R, Dolezel J, Bergès H, Spielmeyer W, Lagudah ES, Ellis JG, Dodds PN (2015) The wheat Sr50 reveals a rich diversity at a cereal disease resistance locus. Nat Plants 15:186

    Google Scholar 

  • Maqbool A, Saitoh H, Franceschetti M, Stevenson CEM, Uemura A, Kanzaki H, Kamoun S, Terauchi R, Banfield MJ (2015) Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. elife 4:e08709

    Article  PubMed Central  Google Scholar 

  • Mascher M, Jost M, Kuon JE, Himmelbach A, Assfalg A, Beier S, Scholz U, Graner A, Stein N (2014) Mapping-by sequencing accelerates forward genetics in barley. Genome Biol 15:R78

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehta S, Lal SK, Sahu KP, Venkatapuram AK, Kumar M, Sheri V, Varakumar P, Vishwakarma C, Yadav R, Jameel MR, Ali M, Achary VMM, Reddy MK (2020) CRISPR/Cas9-edited rice: a new frontier for sustainable agriculture. In: New frontiers in stress management for durable agriculture. Springer, Singapore, pp 427–458

    Chapter  Google Scholar 

  • McCallum BD, Hiebert CW, Cloutier S, Bakkeren G, Rosa SB, Humphreys DG, Marais GF, McCartney CA, Panwar V, Rampitsch C, Saville BJ, Wang X (2016) A review of wheat leaf rust research and the development of resistant cultivars in Canada. Can J Plant Pathol 38:1–18

    Article  CAS  Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379

    Article  CAS  PubMed  Google Scholar 

  • Miedaner T, Juroszek P (2021) Climate change will influence disease resistance breeding in wheat in Northwestern Europe. Theor Appl Genet 134:1771–1785

    Article  PubMed  PubMed Central  Google Scholar 

  • Mujeeb-Kazi A, Munns R, Rasheed A, Ogbonnaya FC, Ali N, Hollington P, Dundas I, Saeed N, Wang R, Rengasamy P, Saddiq MS (2019) Breeding strategies for structuring salinity tolerance in wheat. Adv Agron 155:121–187

    Article  Google Scholar 

  • Muñoz IV, Sarrocco S, Malfatti L, Baroncelli R, Vannacci G (2019) CRISPR-Cas for fungal genome editing: a new tool for the management of plant diseases. Front Plant Sci 10:135. https://doi.org/10.3389/fpls.2019.00135

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray GM, Brennan JP (2009) Estimating disease losses to the Australian wheat industry. Australas Plant Pathol 38:558–570

    Article  Google Scholar 

  • Olivera Firpo P, Newcomb M, Szabo L, Rouse MN, Johnson JL, Gale SW, Luster D, Hodson D, Cox JA, Burgin L (2015) Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in southern Ethiopia in 2013/14. Phytopathology 105:917–928

    Article  Google Scholar 

  • Olivera Firpo P, Newcomb M, Flath K, Sommerfeldt-Impe N, Szabo L, Carter M, Luster D, Jin Y (2017) Characterization of Puccinia graminis f. sp. tritici isolates derived from an unusual wheat stem rust outbreak in Germany in 2013. Plant Pathol 66:1258–1266

    Article  Google Scholar 

  • Pardey P, Beddow J, Kriticos D, Hurley T, Park R, Duveiller E, Sutherst R, Burdon J, Hodson D (2013) Right-sizing stem-rust research. Science 340:147–148

    Article  CAS  PubMed  Google Scholar 

  • Pasquariello M, Berry S, Burt C (2020) Yield reduction historically associated with the Aegilops ventricosa 7DV introgression is genetically and physically distinct from the eyespot resistance gene Pch1. Theor Appl Genet 133:707–717

    Article  CAS  PubMed  Google Scholar 

  • Paul NC, Park S-W, Liu H, Choi S, Ma J, MacCready JS, Chilvers MI, Sang H (2021) Plant and fungal genome editing to enhance plant disease resistance using the CRISPR/Cas9 System. Front Plant Sci 12:700925

    Article  PubMed  PubMed Central  Google Scholar 

  • Periyannan S, Milne RJ, Figueroa M, Lagudah ES, Dodds PN (2017) An overview of genetic rust resistance: from broad to specific mechanisms. PLoS Pathog 13:e1006380

    Article  PubMed  PubMed Central  Google Scholar 

  • Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis. f. sp. tritici in Uganda. Plant Dis 84:203

    Article  CAS  PubMed  Google Scholar 

  • Pretorius Z, Bender C, Visser B, Terefe T (2010) First report of a Puccinia graminis f. sp. tritici race virulent to the Sr24 and Sr31 wheat stem rust resistance genes in South Africa. Plant Dis 94:784

    Article  CAS  PubMed  Google Scholar 

  • Prins R, Groenewald JZ, Marais G, Snape J, Koebner R (2001) AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor Appl Genet 103:618–624

    Article  CAS  Google Scholar 

  • Qi T, Zhu X, Tan C, Liu P, Guo J, Kang Z (2018) Host-induced gene silencing of an important pathogenicity factor P s CPK 1 in Puccinia striiformis f. sp tritici enhances resistance of wheat to stripe rust. Plant Biotechnol J 16:797–807

    Article  CAS  PubMed  Google Scholar 

  • Qi T, Guo J, Liu P, He F, Wan C, Islam MA (2019) Stripe rust effector PstGSRE1 disrupts nuclear localization of ROS-promoting transcription factor TaLOL2 to defeat ROS-induced defense in wheat. Mol Plant 12:1624–1638

    Article  CAS  PubMed  Google Scholar 

  • Raffan S, Sparks C, Huttly A, Hyde L, Martignago D, Mead A, Hanley SJ, Wilkinson PA, Barker G, Edwards KJ et al (2021) Wheat with greatly reduced accumulation of free asparagine in the grain, produced by CRISPR/Cas9 editing of asparagine synthetase gene TaASN2. Plant Biotechnol J 19(8):1602–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai R, Das BK, Bhagwat SG (2017) Development and validation of scar marker for stem rust resistance gene Sr26 in wheat (Triticum aestivum L.). Biol Syst Open Access 6:181

    Article  Google Scholar 

  • Rasool G, Ullah A, Jan A, Waris M, Tariq MA, Ahmad Q (2021) Morphological evaluation of wheat genotypes for grain yield under arid environment of Balochistan. Pure Appl Biol 10:1441–1449

    Article  Google Scholar 

  • Razzaq A, Kaur P, Akhter N, Wani SH, Saleem F (2021) Next-generation breeding strategies for climate-ready crops. Front Plant Sci 12:620420

    Article  PubMed  PubMed Central  Google Scholar 

  • Rong W, Qi L, Wang J, Du L, Xu H, Wang A, Zhang Z (2013) Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat. Funct Integr Genomics 13:403–409

    Article  CAS  PubMed  Google Scholar 

  • Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z (2014) The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J 12:468–479

    Article  CAS  PubMed  Google Scholar 

  • Różewicz M, Wyzińska M, Grabiński J (2021) The most important fungal diseases of cereals—problems and possible solutions. Agronomy 11:714

    Article  Google Scholar 

  • Sack GM (2020) Editing Fusarium graminearum using CRISPR/Cas9. Honors Program Theses, p 431

    Google Scholar 

  • Sanchez-Martın J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrana J, Kubaláková M, Krattinger SG, Wicker T (2016) Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 17:221

    Article  PubMed  PubMed Central  Google Scholar 

  • Satheesh V, Zhang H, Wang X, Lei M (2019) Precise editing of plant genomes–prospects and challenges. In: Seminars in cell and developmental biology, vol 96. Academic Press, pp 115–123

    Google Scholar 

  • Schenke D, Cai D (2020) Applications of CRISPR/Cas to improve crop disease resistance: beyond inactivation of susceptibility factors. Science 23:101478. https://doi.org/10.1016/j.isci.2020.101478

    Article  CAS  Google Scholar 

  • Schumann GL, D’Arcy CJ (2009) Essential plant pathology. APS Press, St. Paul, MN

    Google Scholar 

  • Segretin ME, Pais M, Franceschetti M, Chaparro-Garcia A, Bos JIB, Banfield MJ, Kamoun S (2014) Single amino acid mutations in the potato immune receptor R3a expand response to Phytophthora effectors. Mol Plant-Microbe Interact 27:624–637

    Article  CAS  PubMed  Google Scholar 

  • Shabeer A, Bockus WW (1988) Tan spot effects on yield and yield components relative to growth stage in winter wheat. Plant Dis 72:599–602

    Article  Google Scholar 

  • Shahriar SA, Islam MN, Chun CNW, Rahim MA, Paul NC, Uddain J, Siddiquee S (2021) Control of plant viral diseases by CRISPR/Cas9: resistance mechanisms, strategies and challenges in food crops. Plan Theory 10:1264

    CAS  Google Scholar 

  • Shakeel A, Xiangjin W, Zhonghua S, Peisong H, Shaoqing T (2020) CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects. Brief Funct Genom 19:26–39

    Article  Google Scholar 

  • Shakeel A, Liqun T, Rahil S, Amos M, Gundra SR, Shakra J, Chen W, Zhonghua S, Gaoneng S, Xiangjin W, Peisong H, Magdy M, Shikai H, Shaoqing T (2021) CRISPR-based crop improvements: a way forward to achieve zero hunger. J Agric Food Chem 69:8307–8323

    Article  Google Scholar 

  • Sheikh SK, Vishal G, Devanshi P, Sonali A, Dechan C, Saima F, Rafakat H (2021) Epidemiology of stripe rust of wheat: a review. Int J Curr Microbiol App Sci 10:1158–1172

    Article  Google Scholar 

  • Simón MR, Börner A, Struik PC (2021) Editorial: fungal wheat diseases: etiology, breeding, and integrated management. Front Plant Sci 12:671060

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh S, Franks CD, Huang L (2004) Lr41, Lr39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS. Theor Appl Genet 108:586–591

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Hodson DP, Jin Y, Lagudah ES, Ayliffe MA, Bhavani S, Rouse MN, Pretorius ZA, Szabo LJ, Huerta-Espino J, Basnet BR, Lan C, Hovmøller MS (2015) Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 105:872–884

    Article  PubMed  Google Scholar 

  • Singh V, Singh G, Chaudhury A, Ojha A, Tyagi BS, Chowdhary AK, Sheoran S (2016) Phenotyping at hot spots and tagging of QTLs conferring spot blotch resistance in bread wheat. Mol Biol Rep 43:1–11

    Article  Google Scholar 

  • Singh M, Nara U, Kumar A, Thapa S, Chandan J, Singh H (2021a) Enhancing genetic gains through marker-assisted recurrent selection: from phenotyping to genotyping. Cereal Res Commun. https://doi.org/10.1007/s42976-021-00207-4

  • Singh M, Nara U, Kumar A, Choudhary A, Singh H, Thapa S (2021b) Salinity tolerance mechanisms and their breeding implications. J Gen Eng Biotech 19:173

    Article  Google Scholar 

  • Singh A, Mehta S, Yadav S, Nagar G, Ghosh R, Roy A, Chakraborty A, Singh IK (2022) How to cope with the challenges of environmental stresses in the era of global climate change: an update on ROS stave off in plants. Int J Mol Sci 23:1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steuernagel B, Periyannan SK, Hernández-Pinzón I, Witek K, Rouse MN, Yu G et al (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol 34(6):652–655

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Bernardo A, Tian B, Chen H, Wang S, Ma H, Cai S, Liu D, Zhang D, Li T (2019) A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat Genet 51:1099–1105

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Hu Y, Zhong S, Luo P (2018) The potential role of powdery mildew-resistance gene Pm40 in Chinese wheat-breeding programs in the Post-Pm21 Era. Engineering 4:500–506

    Article  CAS  Google Scholar 

  • Tehseen MM, Kehel Z, Sansaloni CP, Lopes MDS, Amri A, Kurtulus E, Nazari K (2021) Comparison of genomic prediction methods for yellow, stem, and leaf rust resistance in wheat landraces from Afghanistan. Plan Theory 10:558

    Google Scholar 

  • Tembo B, Mulenga RM, Sichilima S, M’siska KK, Mwale M, Chikoti PC (2020) Detection and characterization of fungus (Magnaporthe oryzae pathotype Triticum) causing wheat blast disease on rain-fed grown wheat (Triticum aestivum L.) in Zambia. PLoS One 15:e0238724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thind AK, Wicker T, Simkova H, Fossati D, Moullet O, Brabant C, Vrana J, Dolezel J, Krattinger SG (2017) Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat Biotechnol 35:793–796

    Article  CAS  PubMed  Google Scholar 

  • Tyagi S, Kumar R, Kumar V, Won SY, Shukla P (2021) Engineering disease resistant plants through CRISPR-Cas9 technology. GM Crops & Food 12:125–144

    Article  Google Scholar 

  • Varga E, Wiesenberger G, Hametner C, Ward TJ, Dong Y, Schöfbeck D, Mccormick S, Broz K, Stückler R, Schuhmacher R, Krska R, Kistler HC, Berthiller F, Adam G (2015) New tricks of an old enemy: isolates of Fusarium graminearum produce a type A trichothecene mycotoxin. Environ Microbiol 17:2588–2600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma AK, Mandal S, Tiwari A, Monachesi C, Catassi GN, Srivastava A, Gatti S, Lionetti E, Catassi C (2021) Current status and perspectives on the application of CRISPR/Cas9 gene-editing system to develop a low-gluten. Non-Transgenic Wheat Variety Foods 10:2351

    CAS  PubMed  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951. https://doi.org/10.1038/nbt.2969

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, Lyu Z, Chen L, Xu S, Guo J (2020) Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368:eaba5435

    Article  CAS  PubMed  Google Scholar 

  • Wellings CR (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129–141

    Article  Google Scholar 

  • Williamson VM, Thomas V, Ferris H, Dubcovsky J (2013) An Aegilops ventricosa translocation confers resistance against root-knot nematodes to common wheat. Crop Sci 53:1412–1418

    Article  PubMed  PubMed Central  Google Scholar 

  • Worku D, Zerihun T, Daniel K, Habtemariam Z, Dawit A, Wanyera R (2016) Development of wheat germplasm for stem rust resistance in eastern Africa. Afr Crop Sci J 24:25–33

    Article  Google Scholar 

  • Wulff BBH, Moscou MJ (2014) Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front Plant Sci 5:692

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan F, Zheng Y, Zhang W (2006) Obtained transgenic wheat expressing pac1 mediated by Agrobacterium is resistant against Barley yellow dwarf virus-GPV. Chin Sci Bull 51:2362–2368

    Article  CAS  Google Scholar 

  • Zaidi SS, Mahas A, Vanderschuren H, Mahfouz MM (2020) Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biol 21:289

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaynab M, Sharif Y, Fatima M, Afzal MZ, Aslam MM, Raza MF et al (2020) CRISPR/Cas9 to generate plant immunity against pathogen. Microb Pathog 141:103996. https://doi.org/10.1016/j.micpath.2020.103996

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Liu X, Wang X, Zhou M, Zhou X, Ye X, Wei X (2012) An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes. New Phytol 196:1155–1170

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Wang Q, Wang X, Liu J, Li M, Huang L, Kang Z (2013) Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust. Plant Mol Biol 83:433–443

    Article  PubMed  Google Scholar 

  • Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D (2017a) Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91:714–724

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D (2017b) Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in bread confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Google Scholar 

  • Zhang Y, Geng H, Cui Z, Wang H, Liu D (2021) Functional analysis of wheat NAC transcription factor, TaNAC069, in regulating resistance of wheat to leaf rust fungus. Front Plant Sci 12:604797

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao TJ, Zhao SY, Chen HM, Zhao QZ, Hu ZM, Hou BK, Xia GM (2006) Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling. Plant Cell Rep 25:1199–1204

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choudhary, A., Kumar, A., Kaur, H., Pandey, V., Singh, B., Mehta, S. (2022). Breeding Strategies for Developing Disease-Resistant Wheat: Present, Past, and Future. In: Abd-Elsalam, K.A., Mohamed, H.I. (eds) Cereal Diseases: Nanobiotechnological Approaches for Diagnosis and Management. Springer, Singapore. https://doi.org/10.1007/978-981-19-3120-8_8

Download citation

Publish with us

Policies and ethics