Skip to main content

Ovum Pick-Up and In Vitro Embryo Production in Bovine

  • Chapter
  • First Online:
Book cover Frontier Technologies in Bovine Reproduction

Abstract

Ovum pick-up (OPU) and in vitro embryo production (IVEP) are envisaged to change the face of dairying across the globe. This biotechnique promises to multiply superior bovine germplasm with efficient use of sexed semen technology and inferring genomic selection indices at the embryonic stage to produce high genetic potential calves. Bovines well tolerate the technique, and its efficiency can be improved either by ovarian stimulation before OPU or by media modulation to provide a conducive growing environment for zygotes. Due to improved culture conditions, the conception rates are slowly getting at par with both fresh and frozen embryos. However, in future, integrating the work of genomics and artificial intelligence in OPU-IVEP would help fulfill the claimed promises generously. In this chapter, the process of OPU and in vitro embryo production are discussed in detail besides discussing the similarities and dissimilarities between in vivo and in vitro embryo production. Further, the futuristic views and potential of OPU-IVEP technology are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla H, Shimoda M, Hirabayashi M, Hochi S (2009) A combined treatment of ionomycin with ethanol improves blastocyst development of bovine oocytes harvested from stored ovaries and microinjected with spermatozoa. Theriogenology 72:453–460

    Article  CAS  PubMed  Google Scholar 

  • Adams GP, Matteri RL, Ginther OJ (1992) Effect of progesterone on ovarian follicles, emergence of follicular waves and circulating follicle-stimulating hormone in heifers. J Reprod Fertil 96:627–640

    Article  CAS  PubMed  Google Scholar 

  • Alberto ML, Meirelles FV, Perecin F, Ambrósio CE, Favaron PO, Franciolli ALR, Mess AM, Dos Santos JM, Rici REG, Bertolini M, Miglino MA (2013) Development of bovine embryos derived from reproductive techniques. Reprod Fertil Dev 25:907–917

    Article  CAS  PubMed  Google Scholar 

  • Austin CR (1951) Observations on the penetration of the sperm in the mammalian egg. Australian J Scient Res Ser 4:581–596

    CAS  Google Scholar 

  • Avery B, Greve, T (1995) Apparent (ab)normalities of in vitro produced bovine embryos. In: Proceeding of international symposium of Societá Italiana per Il Progressodella Zootecnica, 30, Milan, Italy. pp 171–183

    Google Scholar 

  • Baldassarre H, Currin L, Michalovic L, Bellefleur AM, Gutierrez K, Mondadori RG, Glanzner WG, Schuermann Y, Bohrer RC, Dicks N, Lopez R, Grand FX, Vigneault C, Blondin P, Gourdon J, Bordignon V (2018) Interval of gonadotropin administration for in vitro embryo production from oocytes collected from Holstein calves between 2 and 6 months of age by repeated laparoscopy. Theriogenology 116:64–70

    Article  CAS  PubMed  Google Scholar 

  • Baruselli PS, Sá Filho MF, Ferreira RM, Sales JNS, Gimenes LU, Vieira LM, Mendanha MF, Bó GA (2012) Manipulation of follicle development to ensure optimal oocyte quality and conception rates in cattle. Reprod Domest Anim 47:134–141

    Article  PubMed  Google Scholar 

  • Baruselli PS, Batista EOS, Vieira LM, Ferreira RM, Guerreiro BG, Bayeux BM, Sales JNS, Souza A, Gimenes L (2016) Factors that interfere with oocyte quality for in vitro production of cattle embryos: effects of different developmental & reproductive stages. Anim Reprod 13:264–272

    Article  Google Scholar 

  • Bergfelt DR, Lightfoot KC, Adams GP (1994) Ovarian dynamics following ultrasound-guided transvaginal follicle ablation in cyclic heifers. Theriogenology 41:161

    Article  Google Scholar 

  • Bilodeau-Goeseels S (2012) Bovine oocyte meiotic inhibition before in vitro maturation and its value to in vitro embryo production: does it improve developmental competence? Reprod Domest Anim 47(4):687–693

    Article  CAS  PubMed  Google Scholar 

  • Blondin P (2017) Logistics of large scale commercial IVF embryo production. Reprod Fertil Dev 29:32–36

    Article  Google Scholar 

  • Blondin P, Bousquet D, Twagiramungu H, Barnes F, Sirard MA (2002) Manipulation of follicular development to produce developmentally competent bovine oocytes. Biol Reprod 66(1):38–43

    Article  CAS  PubMed  Google Scholar 

  • Bó GA, Baruselli PS, Moreno D, Cutaia L, Caccia M, Tríbulo R, Tríbulo H, Mapletoft RJ (2002) The control of follicular wave development for self-pointed embryo transfer programs in cattle. Theriogenology 57:53–72

    Article  PubMed  Google Scholar 

  • Bó GA, Cedeño A, Mapletoft RJ (2019) Strategies to increment in vivo and in vitro embryo production and transfer in cattle. Anim Reprod 16:411–422

    Article  PubMed  PubMed Central  Google Scholar 

  • Bols PEJ, Vandenheede JMM, Van Soom A, de Kruif A (1995) Transvaginal ovum pick-up (OPU) in the cow: a new disposable needle guidance system. Theriogenology 43:677–687

    Article  CAS  PubMed  Google Scholar 

  • Bols PE, Leroy JLMR, Viana JHM (2005) Technical and biological aspects of ultrasound-guided transvaginal oocyte retrieval in the cow: an overview. Acta Sci Vet 2005:103–108

    Google Scholar 

  • Brackett BG, Bousquet D, Boice ML, Donawick WJ, Evans JF, Dressel MA (1982) Normal development following in vitro fertilization in the cow. Biol Reprod 27:147–158

    Article  CAS  PubMed  Google Scholar 

  • Breitbart H, Cohen G, Rubinstein S (2005) Role of actin cytoskeleton in mammalian sperm capacitation and the acrosome reaction. Reproduction 129(3):263–268

    Article  CAS  PubMed  Google Scholar 

  • Broadbent PJ, Dolman DF, Watt RG, Smith AK, Franklin MF (1997) Effect of frequency of follicle aspiration on oocyte yield and subsequent superovulatory response in cattle. Theriogenology 47(5):1027–1040

    Article  CAS  PubMed  Google Scholar 

  • Brück I, Raun K, Synnestvedt B, Greve T (1992) Follicle aspiration in the mare using a transvaginal ultrasound-guided technique. Equine Vet J 24(1):58–59

    Article  PubMed  Google Scholar 

  • Cavalieri FLB, Morotti F, Seneda MM, Colombo AHB, Andreazzi MA, Emanuelli IP, Rigolon LP (2018) Improvement of bovine in vitro embryo production by ovarian follicular wave synchronization prior to ovum pick-up. Theriogenology 117:57–60

    Article  CAS  PubMed  Google Scholar 

  • Chang MC (1951) Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168:697–698

    Article  CAS  PubMed  Google Scholar 

  • Chang MC (1959) Fertilization of rabbit ova in vitro. Nature 184(Supplement 7):466–467

    Article  PubMed  Google Scholar 

  • Chastant-Maillard S, Quinton H, Lauffenburger J, Cordonnier-Lefort N, Richard C, Marchal J, Mormede P, Renard JP (2003) Consequences of transvaginal follicular puncture on Well-being in cows. Reproduction 125(4):555–563

    Article  CAS  PubMed  Google Scholar 

  • Chaubal SA, Ferre LB, Molina JA, Faber DC, Bols PEJ, Rezamand P, Yang X (2007) Hormonal treatments for increasing the oocyte and embryo production in an OPU–IVP system. Theriogenology 67(4):719–728

    Article  CAS  PubMed  Google Scholar 

  • Cognié Y, Baril G, Poulin N, Mermillod P (2003) Current status of embryo technologies in sheep and goat. Theriogenology 59:171–188

    Article  PubMed  Google Scholar 

  • Cook NL, Squires EL, Ray BS, Cook VM, Jasko DJ (1992) Transvaginal ultrasonically guided follicular aspiration of equine oocytes: preliminary results. J Equine Vet Sci 12(4):204–207

    Article  Google Scholar 

  • Demetrio DGB, Benedetti E, Demetrio CGB, Fonseca J, Oliveira M, Magalhaes A, Dos Santos RM (2020) How can we improve embryo production and pregnancy outcomes of Holstein embryos produced in vitro? (12 years of practical results at a California dairy farm). Anim Reprod 17(3):e20200053. https://doi.org/10.1590/1984-3143-AR2020-0053

    Article  PubMed  PubMed Central  Google Scholar 

  • Dieleman SJ, Hendriksen PJM, Viuff D, Thomsen PD, Hyttel P, Knijn HM, Wrenzycki C, Kruip TAM, Niemann H, Gadella BM, Bevers MM, Vos PLAM (2002) Effects of in vivo prematuration and in vivo final maturation on developmental capacity and quality of pre-implantation embryos. Theriogenology 57(1):5–20

    Article  CAS  PubMed  Google Scholar 

  • Eyestone WH, First NL (1989) Co-culture of early cattle embryos to the blastocyst stage with oviducal tissue or in conditioned medium. Reproduction 85(2):715–720. https://doi.org/10.1530/jrf.0.0850715

    Article  CAS  Google Scholar 

  • Fernandes CAC, Miyauchi TM, Figueiredo ACS, Palhão MP, Varago FC, Nogueira ESC, Neves JP, Miyauchi TA (2014) Hormonal protocols for in vitro production of zebu and taurine embryos. Pesq Agrop Brasil 49:813–817

    Article  Google Scholar 

  • Ferré LB, Kjelland ME, Strøbech LB, Hyttel P, Mermillod P, Ross PJ (2020) Recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods. Animal 14(5):991–1004

    Article  PubMed  Google Scholar 

  • Fry RC, Niall EM, Simpson TL, Squires TJ, Reynolds J (1997) The collection of oocytes from bovine ovaries. Theriogenology 47(5):977–987

    Article  CAS  PubMed  Google Scholar 

  • Fukui Y (1990) Effect of follicle cells on the acrosome reaction fertilization and developmental competence of bovine oocytes matured in vitro. Mol Reprod Dev 26(1):40–46. https://doi.org/10.1002/mrd.1080260107

    Article  CAS  PubMed  Google Scholar 

  • Garcia A, Salaheddine M (1998) Effects of repeated ultrasound-guided transvaginal follicular aspiration on bovine oocyte recovery and subsequent follicular development. Theriogenology 50(4):575–585

    Article  CAS  PubMed  Google Scholar 

  • Gardner DK, Lane M, Schoolcraft WB (2002) Physiology and culture of the human blastocyst. J Reprod Immunol 55(1–2):85–100. https://doi.org/10.1016/S0165-0378(01)00136-X

    Article  CAS  PubMed  Google Scholar 

  • Gordon I (2003) Laboratory production of cattle embryos, vol 27. CABI, New York

    Book  Google Scholar 

  • Graf A, Krebs S, Heininen-Brown M, Zakhartchenko V, Blum H, Wolf E (2014) Genome activation in bovine embryos: review of the literature and new insights from RNA sequencing experiments. Anim Reprod Sci 149(1–2):46–58

    Article  CAS  PubMed  Google Scholar 

  • Greve T, Loskutoff NM, Buckrell BC, Christian CR, Leibo SP, Betteridge KJ (1992) Morphology and freezing tolerance of in vitro derived bovine embryos after culture in vivo or in vitro. In: Flechon JE (ed) 5ème colloque Franco Tchécoslovaque sur la reproduction des animaux domestiques. Jouy-en Josas, Paris

    Google Scholar 

  • Hansen PJ (2020) The incompletely fulfilled promise of embryo transfer in cattle—why aren’t pregnancy rates greater and what can we do about it? J Anim Sci 98(11):skaa288. https://doi.org/10.1093/jas/skaa288

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen PJ, Dobbs KB, Denicol AC, Siqueira LGB (2016) Sex and the preimplantation embryo: implications of sexual dimorphism in the preimplantation period for maternal programming of embryonic development. Cell Tissue Res 363(1):237–247. https://doi.org/10.1007/s00441-015-2287-4

    Article  PubMed  Google Scholar 

  • Hasler JF (2014) Forty years of embryo transfer in cattle: a review focusing on the journal Theriogenology, the growth of the industry in North America, and personal reminisces. Theriogenology 81:152–169. https://doi.org/10.1016/j.theriogenology.2013.09.010

    Article  PubMed  Google Scholar 

  • Holm P, Booth PJ, Schmidt MH, Greve T, Callesen H (1999) High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 52:683–700

    Article  CAS  PubMed  Google Scholar 

  • Hyttel P, Fair T, Callesen H, Greve T (1997) Oocyte growth, capacitation and final maturation in cattle. Theriogenology 47:23–32

    Article  Google Scholar 

  • Iwamatsu T, Chang MC (1969) In vitro fertilization of mouse eggs in the presence of bovine follicular fluid. Nature 224(5222):919–920

    Article  CAS  PubMed  Google Scholar 

  • Kruip TA, Boni R, Wurth YA, Roelofsen MWM, Pieterse MC (1994) Potential use of ovum pick-up for embryo production and breeding in cattle. Theriogenology 42(4):675–684

    Article  CAS  PubMed  Google Scholar 

  • Landry DA, Bellefleur AM, Labrecque R, Grand FX, Vigneault C, Blondin P, Sirard MA (2016) Effect of cow age on the in vitro developmental competence of oocytes obtained after FSH stimulation and coasting treatments. Theriogenology 86(5):1240–1246

    Article  CAS  PubMed  Google Scholar 

  • Lazzari G, Wrenzycki C, Herrmann D, Duchi R, Kruip T, Niemann H, Galli C (2002) Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome. Biol Reprod 67:767–775

    Article  CAS  PubMed  Google Scholar 

  • Leibo SP, Loskutoff NM (1993) Cryobiology of in vitro derived bovine embryos. Theriogenology 59:81–94

    Article  Google Scholar 

  • Lima WM, Vieira AD, Thaller Neto A, Mezzalira A, Matos RC, Gregory RM (2007) Improved superovulatory response in beef cattle following ovarian follicular ablation using a simplified transvaginal device. Anim Reprod Sci 100:364–370

    Article  CAS  PubMed  Google Scholar 

  • Lonergan P, Fair T (2008) In vitro produced bovine embryos—dealing with the warts. Theriogenology 69(1):17–22

    Article  CAS  PubMed  Google Scholar 

  • Lonergan P, Fair T (2016) Maturation of oocytes in vitro. Annu Rev Anim Biosci 4:255–268. https://doi.org/10.1146/annurev-animal-022114-110822

    Article  CAS  PubMed  Google Scholar 

  • Lonergan P, Rizos D, Kanka J, Nemcova L, Mbaye AM, Kingston M, Wade M, Duffy P, Boland MP (2003) Temporal sensitivity of bovine embryos to culture environment after fertilization and implication for blastocyst quality. Reproduction 126:337–346

    Article  CAS  PubMed  Google Scholar 

  • Looney CR, Lindsey BR, Gonseth CL, Johnson DL (1994) Commercial aspects of oocyte retrieval and in vitro fertilization (IVF) for embryo production in problem cows. Theriogenology 41:67–72

    Article  Google Scholar 

  • Lu KH (1987) Pregnancy established in cattle by transfer of embryos derived from in vitro fertilization of oocytes matured in vitro. Vet Rec 121:259–260

    Article  CAS  PubMed  Google Scholar 

  • Lu KH, Gordon I, Chen HB, McGovern H (1987) In vitro culture of early bovine embryos derived from in vitro fertilization of follicular oocytes matured in vitro. Association of Embryo Technology in Europe, Paris, p 70

    Google Scholar 

  • McEvoy TG, Alink FM, Moreira VC, Watt RG, Powell KA (2006) Embryo technologies and animal health–consequences for the animal following ovum pick-up, in vitro embryo production and somatic cell nuclear transfer. Theriogenology 65(5):926–942

    Article  CAS  PubMed  Google Scholar 

  • Merton JS, De Roos APW, Mullaart E, De Ruigh L, Kaal L, Vos PLAM, Dieleman SJ (2003) Factors affecting oocyte quality and quantity in commercial application of embryo technologies in the cattle breeding industry. Theriogenology 59(2):651–674

    Article  CAS  PubMed  Google Scholar 

  • Monteiro FM, Ferreira MM, Potiens JR, Eberhardt BG, Trinca LA, Barros CM (2010) Influence of superovulatory protocols on in vitro production of Nellore (Bos indicus ) embryos. Reprod Domest Anim 45:860–864

    CAS  PubMed  Google Scholar 

  • Neglia G, Gasparrini B, Caracciolo di Brienza V, Di Palo R, Zicarelli L (2003) First pregnancies to term after transfer of buffalo vitrified embryos entirely produced in vitro. Vet Res Commun 28:233–326

    Article  Google Scholar 

  • O’Doherty AM, McGettigan P, Irwin RE, Magee DA, Gagne D, Fournier E, Al-Naib A, Sirard MA, Walsh CP, Robert C, Fair T (2018) Intragenic sequences in the trophectoderm harbour the greatest proportion of methylation errors in day 17 bovine conceptuses generated using assisted reproductive technologies. BMC Genomics 19(1):438. https://doi.org/10.1186/s12864-018-4818-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ongaratto FL, Rodriguez VP, Tribulo A, Bó GA (2015) Effect of follicle wave synchronization and gonadotropin treatments on the number and quality of cumulus-oocyte complex obtained by ultrasound-guided ovum pick-up in beef cattle. Anim Reprod 12:876–883

    Google Scholar 

  • Parrish JJ (2014) Bovine in vitro fertilization: in vitro oocyte maturation and sperm capacitation with heparin. Theriogenology 81(1):67–73. https://doi.org/10.1016/j.theriogenology.2013.08.005

    Article  PubMed  Google Scholar 

  • Parrish JJ, Susko-Parrish JL, Leibfried-Rutledge ML, Critser ES, Eyestone WH, First NL (1986) Bovine in vitro fertilization with frozen-thawed semen. Theriogenology 25(4):591–600

    Article  CAS  PubMed  Google Scholar 

  • Petyim S, Bage R, Forsberg M, Rodriguez-Martinez H, Larsson B (2000) The effect of repeated follicular puncture on ovarian function in dairy heifers. J Vet Med A 47(10):627–640

    Article  CAS  Google Scholar 

  • Pieterse MC, Kappen KA, Kruip TAM, Taverne MAM (1988) Aspiration of bovine oocytes during transvaginal ultrasound scanning of the ovaries. Theriogenology 30:751–762

    Article  CAS  PubMed  Google Scholar 

  • Pieterse MC, Vos PLAM, Kruip TA, Wurth YA, Van Beneden TH, Willemse AH, Taverne MAM (1991) Transvaginal ultrasound guided follicular aspiration of bovine oocytes. Theriogenology 35(1):19–24

    Article  Google Scholar 

  • Pincus G, Enzmann EV (1935) The comparative behavior of mammalian eggs in vivo and in vitro: I. the activation of ovarian eggs. J Exp Med 62(5):665–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pontes JHF, Silva KCF, Basso AC, Rigo AG, Ferreira CR, Santos GMG, Sanches BV, Porcionato JPF, Vieira PHS, Faifer FS, Sterza FAM, Schenk JL, Seneda MM (2010) Large-scale in vitro embryo production and pregnancy rates from Bos taurus, Bos indicus, and indicus-taurus dairy cows using sexed sperm. Theriogenology 74(8):1349–1355

    Article  CAS  PubMed  Google Scholar 

  • Pontes JHF, Sterza FM, Basso AC, Ferreira CR, Sanches BV, Rubin KCP, Seneda MM (2011) Ovum pick up, in vitro embryo production, and pregnancy rates from a large-scale commercial program using Nelore cattle (Bos indicus ) donors. Theriogenology 75(9):1640–1646

    Article  CAS  PubMed  Google Scholar 

  • Pryor JH, Looney CR, Romo S, Kraemer DC, Long CR (2011) Cryopreservation of in vitro produced bovine embryos: effects of lipid segregation and post-thaw laser assisted hatching. Theriogenology 75:24–33. https://doi.org/10.1016/j.theriogenology.2010.07.006

    Article  CAS  PubMed  Google Scholar 

  • Qi M, Yao Y, Ma H, Wang J, Zhao X, Liu L, Sun F (2013) Transvaginal ultrasound-guided ovum pick-up (OPU) in cattle. J Biomim Biomater Biomed Eng 18:118

    Google Scholar 

  • Rizos D, Ward F, Duffy P, Boland MP, Lonergan P (2002) Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol Reprod Dev 62(3):320–327

    Article  CAS  PubMed  Google Scholar 

  • Rizos D, Clemente M, Bermejo-Alvarez P, De La Fuente J, Lonergan P, Gutiérrez-Adán A (2008) Consequences of in vitro culture conditions on embryo development and quality. Reprod Domest Anim 43:44–50

    Article  PubMed  Google Scholar 

  • Seneda MM, Zangirolamo AF, Bergamo LZ, Morotti F (2020) Follicular wave synchronization prior to ovum pick-up. Theriogenology 150:180–185

    Article  PubMed  Google Scholar 

  • Sirard MA (2011) Follicle environment and quality of in vitro matured oocytes. J Assist Reprod Genet 28(6):483–488

    Article  PubMed  PubMed Central  Google Scholar 

  • Sirard MA (2018) 40 years of bovine IVF in the new genomic selection context. Reproduction 156:R1–R7

    Article  CAS  PubMed  Google Scholar 

  • Sirard MA, Lambert RD (1986a) Birth of calves after in vitro fertilisation using laparoscopy and rabbit oviduct incubation of zygotes. Vet Rec 119:167–169. https://doi.org/10.1136/vr.119.8.167

    Article  CAS  PubMed  Google Scholar 

  • Sirard MA, Lambert RD (1986b) Birth of calves after in vitro fertilisation using laparoscopy and rabbit oviduct incubation of zygotes. Vet Rec 119(8):167–169

    Article  CAS  PubMed  Google Scholar 

  • Sirard MA, Parrish JJ, Ware CB, Leibfried-Rutledge ML, First NL (1988) The culture of bovine oocytes to obtain developmentally competent embryos. Biol Reprod 39(3):546–552

    Article  CAS  PubMed  Google Scholar 

  • Stroebech L, Mazzoni G, Pedersen HS, Freude KK, Kadarmideen HN, Callesen H, Hyttel P (2015) In vitro production of bovine embryos: revisiting oocyte development and application of systems biology. Anim Reprod 12:465–472

    Google Scholar 

  • Swain JE (2010) Optimizing the culture environment in the IVF laboratory: impact of pH and buffer capacity on gamete and embryo quality. Reprod Biomed Online 21:6–16

    Article  PubMed  Google Scholar 

  • Taneja M, Bols PE, de Velde AV, Ju JC, Schreiber D, Tripp MW et al (2000) Developmental competence of juvenile calf oocytes in vitro and in vivo: influence of donor animal variation and repeated gonadotropin stimulation. Biol Reprod 62(1):206–213

    Article  CAS  PubMed  Google Scholar 

  • Tanghe S, Van Soom A, Nauwynck H, Coryn M, de Kruif A (2002) Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol Reprod Dev 61(3):414–424

    Article  CAS  PubMed  Google Scholar 

  • Tervit HR, Whittingham DG, Rowson LEA (1972) Successful culture in vitro of sheep and cattle ova. Reproduction 30(3):493–497. https://doi.org/10.1530/Jrf.0.0300493

    Article  CAS  Google Scholar 

  • Van Soom A, Boerjan M, Ysebaert MT, De Kruif A (1996) Cell allocation to the inner cell mass and the trophectoderm in bovine embryos cultured in two different media. Mol Reprod Dev 45(2):171–182

    Article  PubMed  Google Scholar 

  • Viana JHM (2020) 2019 statistics of embryo production and transfer in domestic farm animals. Embryo Technol Newsl 38:4

    Google Scholar 

  • Viana JHM, Ferreira AM, Sá WF, Camargo LSA (2000) Follicular dynamics in zebu cattle. Pesq Agropec Bras, Brasília 35(12):2501–2509. https://doi.org/10.1590/S0100-204X2000001200021

    Article  Google Scholar 

  • Viana JHM, Camargo LSA, de Moraes FA, de Sa WF, de Carvalho Fernandes CA, Junior ADPM (2004) Short intervals between ultrasonographically guided follicle aspiration improve oocyte quality but do not prevent establishment of dominant follicles in the Gir breed (Bos indicus ) of cattle. Anim Reprod Sci 84(1–2):1–12

    Article  PubMed  Google Scholar 

  • Vieira LM, Rodrigues CA, Castor Neto A, Guerreiro BM, Silveira CRA, Moreira RJC, Sá Filho MF, Bó GA, Mapletoft RJ, Baruselli PS (2014) Super-stimulation prior to the ovum pick-up to improve in vitro embryo production in lactating and non-lactating Holstein cows. Theriogenology 82:318–324

    Article  CAS  PubMed  Google Scholar 

  • Vieira LM, Rodrigues CA, Netto AC, Guerreiro BM, Silveira CRA, Freitas BG, Baruselli PS (2015) Efficacy of a single intramuscular injection of porcine FSH in hyaluronan prior to ovum pick-up in Holstein cattle. Theriogenology 85(5):877–886

    Article  PubMed  CAS  Google Scholar 

  • Ward F, Enright B, Rizos D, Boland M, Lonergan P (2002) Optimization of in vitro bovine embryo production: effect of duration of maturation, length of gamete co-incubation, sperm concentration and sire. Theriogenology 57(8):2105–2117

    Article  PubMed  Google Scholar 

  • Watanabe Y, Souza HA, Mingoti R, Ferreira R, Oliveira Santana Batista E, Dayan A, Watanabe O, Meirelles F, Nogueira M, Ferraz J, Baruselli P (2017) Number of oocytes retrieved per donor during OPU and its relationship with in vitro embryo production and field fertility following embryo transfer. Anim Reprod 14:635–644

    Article  Google Scholar 

  • Wrenzycki C (2016) In vitro culture systems: how far are we from optimal conditions? Anim Reprod 13(3):279–282. https://doi.org/10.21451/1984-3143-AR869

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Layek, S.S., Patil, S.P., Gorani, S., Karuppanasamy, K., Kishore, G., Gupta, R.O. (2022). Ovum Pick-Up and In Vitro Embryo Production in Bovine. In: Kumaresan, A., Srivastava, A.K. (eds) Frontier Technologies in Bovine Reproduction. Springer, Singapore. https://doi.org/10.1007/978-981-19-3072-0_11

Download citation

Publish with us

Policies and ethics