Skip to main content

Immune Responses in Kawasaki Disease

  • Chapter
  • First Online:
Kawasaki Disease
  • 318 Accesses

Abstract

Kawasaki disease (KD) is a febrile vasculitis associated with mucocutaneous lesions, lymphadenopathy and cardiovascular events. Typical KD mostly occurs in children less than 5 years of age but atypical KD complicated with macrophage activation syndrome (MAS) or KD shock syndrome (KDSS) occurs in relatively older children, even adults. The etiology of KD remains unclear; however, the immune response is known to mediate by an autoinflammatory innate immune response associated with an imbalance of adaptive immunity showing augmented T helper 17 (Th17)/Th1 responses with higher IL-6, IL-10, IP-10, and IL-17 levels and reduced Th2/Treg responses with lower IL-4, IL-5, FoxP3, and TGFβ expression. This acute autoinflammatory vasculitis may be induced by an exogenous antigen derived from pathogen-associated molecular pattern (PAMP) or an endogenous antigen derived from damage-associated molecular pattern (DAMP). The altered immunity would manifest typical or atypical KD under genetic and environmental backgrounds. Some patients of KD (3–5%) are complicated with KDSS associated with over-production of nitric oxide, coagulopathy and shock symptom, and few patients (1–2%) are complicated with MAS, showing hemophagocytosis, thrombocytopenia, and hyperferritinemia. KD patients with these variant complications usually manifest intravenous immunoglobulin (IVIG) resistance and require additional anti-inflammatory medication. The immune reaction of KD reveals a kinetic progression for early administration of IVIG within 4 days of the illness did not provide a better outcome, and early administration of corticosteroids alone exacerbated the prognosis, but a combination of corticosteroids with IVIG provided the best treatment response. Further studies are proposed to identify the immunopathogenesis of IVIG-resistance, MAS and KDSS, to protect hosts from antigen exposure, and genetic susceptibility, and to combat MAS and/or KDSS by blockade of mechanistic biomarkers, anti-signal transduction, manipulations of host milieu, hit the brakes for immunosuppression and anti-hemophagocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kawasaki T, Kosaki F, Okawa S, Shigematsu I, Yanagawa H. A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics. 1974;54:271–6.

    Article  CAS  PubMed  Google Scholar 

  2. Wang CL, Wu YT, Liu CA, Kuo HC, Yang KD. Kawasaki disease: infection, immunity and genetics. Pediatr Infect Dis J. 2005;24:998–1004.

    Article  PubMed  Google Scholar 

  3. Chang L, Yang HW, Lin TY, Yang KD. Perspective of immunopathogenesis and immunotherapies for Kawasaki disease. Front Pediatr. 2021;9:697632. https://doi.org/10.3389/fped.2021.697632.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen MR, Kuo HC, Lee YJ, Chi H, Li SC, Lee HC, Yang KD. Phenotype, susceptibility, autoimmunity, and immunotherapy between Kawasaki disease and coronavirus disease-19 associated multisystem inflammatory syndrome in children. Front Immunol. 2021;12:632890. https://doi.org/10.3389/fimmu.2021.632890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Esper F, Shapiro ED, Weibel C, Ferguson D, Landry ML, Kahn JS. Association between a novel human coronavirus and Kawasaki disease. J Infect Dis. 2005;191(4):499–502.

    Article  CAS  PubMed  Google Scholar 

  6. Burns JC, Newburger JW. Genetics insights into the pathogenesis of Kawasaki disease. Circ Cardiovasc Genet. 2012;5(3):277–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dajani AS, Taubert KA, Gerber MA, Shulman ST, Ferrieri P, Freed M, et al. Diagnosis and therapy of Kawasaki disease in children. Circulation. 1993;87:1776–80.

    Article  CAS  PubMed  Google Scholar 

  8. Torii Y, Horiba K, Hayano S, Kato T, Suzuki T, Kawada JI, et al. Comprehensive pathogen detection in sera of Kawasaki disease patients by high-throughput sequencing: a retrospective exploratory study. BMC Pediatr. 2020;20(1):482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rhim JW, Kang HM, Han JW, Lee KY. A presumed etiology of Kawasaki disease based on epidemiological comparison with infectious or immune-mediated diseases. Front Pediatr. 2019;7:202.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Marrani E, Burns JC, Cimaz R. How should we classify Kawasaki disease? Front Immunol. 2018;9:2974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sakurai Y. Autoimmune aspects of Kawasaki disease. J Investig Allergol Clin Immunol. 2019;29(4):251–61.

    Article  CAS  PubMed  Google Scholar 

  12. Lee KY. Pneumonia, acute respiratory distress syndrome, and early immune-modulator therapy. Int J Mol Sci. 2017;18(2):388.

    Article  PubMed Central  CAS  Google Scholar 

  13. Chang LY, Lu CY, Shao PL, Lee PI, Lin MT, Fan TY, et al. Viral infections associated with Kawasaki disease. J Formos Med Assoc. 2014;113(3):148–54.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Levin M. Childhood multisystem inflammatory syndrome - a new challenge in the pandemic. N Engl J Med. 2020;383:393–5.

    Article  CAS  PubMed  Google Scholar 

  15. Riphagen S, Gomez X, Gonzales-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during Covid-19 pandemic. Lancet. 2020;395(10237):1607–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Verdoni L, Mazza A, Gervasoni A, Martelli L, Ruggeri M, Ciuffreda M, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet. 2020;395(10239):1771–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheung EW, Zachariah P, Gorelik M, Boneparth A, Kernie SG, Orange JS, et al. Multisystem inflammatory syndrome related to Covid-19 in previously healthy children and adolescents in New York City. JAMA. 2020;8:e2010374.

    Google Scholar 

  18. Pouletty M, Borocco C, Ouldali N, Caseris M, Basmaci R, Lachaume N, et al. Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-Covid-19): a multicentre cohort. Ann Rheum Dis. 2020;79(8):999–1006.

    Article  CAS  PubMed  Google Scholar 

  19. Feldstein LR, Rose EB, Horwitz SM, Collins JP, Newhams MM, Son MBF, et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med. 2020;383(4):334–46.

    Article  CAS  PubMed  Google Scholar 

  20. Lin IC, Kuo HC, Lin YJ, Wang FS, Wang L, Huang SC, Chien SJ, Huang CF, Wang CL, Yu HR, Chen RF, Yang KD. Augmented TLR2 expression on monocytes in both human Kawasaki disease and a mouse model of coronary arteritis. PLoS One. 2012;7(6):e38635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cho HJ, Bak SY, Kim SY, Yoo R, Baek HS, Yang S, et al. High neutrophil: lymphocyte ratio is associated with refractory Kawasaki disease. Pediatr Int. 2017;59(6):669–74.

    Article  CAS  PubMed  Google Scholar 

  22. Jia S, Li C, Wang G, Yang J, Zu Y. The T helper type 17/regulatory T cell imbalance in patients with acute Kawasaki disease. Clin Exp Immunol. 2010;162(1):131–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo MM, Tseng WN, Ko CH, Pan HM, Hsieh KS, Kuo HC. Th17- and Treg-related cytokine and mRNA expression are associated with acute and resolving Kawasaki disease. Allergy. 2015;70(3):310–8.

    Article  CAS  PubMed  Google Scholar 

  24. Jinkawa A, Shimizu M, Nishida K, Kaneko S, Usami M, Sakumura N, et al. Cytokine profile of macrophage activation syndrome associated with Kawasaki disease. Cytokine. 2019;119:52–6.

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Zheng Q, Zou L, Wu J, Guo L, Teng L, et al. Kawasaki disease shock syndrome: clinical characteristics and possible use of IL-6, IL-10 and IFN-γ as biomarkers for early recognition. Pediatr Rheumatol Online J. 2019;17:1.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang CL, Wu YT, Lee CJ, Liu HC, Huang LT, Yang KD. Decreased nitric oxide production after intravenous immunoglobulin treatment in patients with Kawasaki disease. J Pediatr. 2002;141(4):560–5.

    Article  CAS  PubMed  Google Scholar 

  27. Lin Y, Shi L, Deng Y-j, Liu Y, Zhang H-w. Kawasaki disease shock syndrome complicated with macrophage activation syndrome in a 5-month old boy: a case report. Medicine (Baltimore). 2019;98(4):e14203.

    Article  Google Scholar 

  28. Downie ML, Manlhiot C, Collins TH, Chahal N, Yeung RSM, McCrindle BW. Factors associated with development of coronary artery aneurysms after Kawasaki disease are similar for those treated promptly and those with delayed or no treatment. Int J Cardiol. 2017;236:157–61.

    Article  PubMed  Google Scholar 

  29. Kato H, Koike S, Yokoyama T. Kawasaki disease: effect of treatment on coronary artery involvement. Pediatrics. 1979;63(2):175–9.

    Article  CAS  PubMed  Google Scholar 

  30. Chen S, Dong Y, Yin Y, Krucoff MW. Intravenous immunoglobulin plus corticosteroid to prevent coronary artery abnormalities in Kawasaki disease: a meta-analysis. Heart. 2013;99:76–82.

    Article  CAS  PubMed  Google Scholar 

  31. Dionne A, Burns JC, Dahdah N, Tremoulet AH, Gauvreau K, de Ferranti SD, Baker AL, Son MB, Gould P, Fournier A, Newburger JW, Friedman KG. Treatment intensification in patients with Kawasaki disease and coronary aneurysm at diagnosis. Pediatrics. 2019;143(6):e20183341.

    Article  PubMed  Google Scholar 

  32. Wang CL, Wu YT, Liu CA, Lin MW, Lee CJ, Huang LT, et al. Expression of CD40 ligand on CD4+ T-cells and platelets correlated to the coronary artery lesion and disease progress in Kawasaki disease. Pediatrics. 2003;111(2):E140–7.

    Article  PubMed  Google Scholar 

  33. Kuo HC, Yang KD, Liang CD, Bong CN, Yu HR, Wang L, et al. The relationship of eosinophilia to intravenous immunoglobulin treatment failure in Kawasaki disease. Pediatr Allergy Immunol. 2007;18(4):354–9.

    Article  PubMed  Google Scholar 

  34. Kuo HC, Wang CL, Liang CD, Yu HR, Huang CF, Wang L, et al. Association of lower eosinophil-related T helper 2 (Th2) cytokines with coronary artery lesions in Kawasaki disease. Pediatr Allergy Immunol. 2009;20(3):266–72.

    Article  PubMed  Google Scholar 

  35. Kuo HC, Onouchi Y, Hsu YW, Chen WC, Huang JD, Huang YH, et al. Polymorphisms of transforming growth factor-β signaling pathway and Kawasaki disease in the Taiwanese population. J Hum Genet. 2011;56(12):840–5.

    Article  CAS  PubMed  Google Scholar 

  36. Takahashi K, Oharaseki T, Naoe S, Wakayama M, Yokouchi Y. Neutrophilic involvement in the damage to coronary arteries in acute stage of Kawasaki disease. Pediatr Int. 2005;47(3):305–10.

    Article  PubMed  Google Scholar 

  37. Kobayashi M, Matsumoto Y, Ohya M, Harada K, Kanno H. Histologic and immunohistochemical evaluation of infiltrating inflammatory cells in Kawasaki disease arteritis lesions. Appl Immunohistochem Mol Morphol. 2020;29(1):62–7.

    Article  CAS  Google Scholar 

  38. Kanegaye JT, Wilder MS, Molkara D, Frazer JR, Pancheri J, Tremoulet AH, et al. Recognition of a Kawasaki disease shock syndrome. Pediatrics. 2009;123(5):e783–9.

    Article  PubMed  Google Scholar 

  39. Gamez-Gonzalez LB, Moribe-Quintero I, Cisneros-Castolo M, Varela-Ortiz J, Muñoz-Ramírez M, Garrido-García M, et al. Kawasaki disease shock syndrome: unique and severe subtype of Kawasaki disease. Pediatr Int. 2018;60:781–90.

    Article  CAS  PubMed  Google Scholar 

  40. Watanabe T. Clinical features of acute kidney injury in patients with Kawasaki disease. World J Clin Pediatr. 2018;7(3):83–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Quick RD, Sehgal I, Feldman A, Murphey D, Fernandez M, Hauger SB. Kawasaki disease shock syndrome: identifying risks. Open Forum Infect Dis. 2019;6(Supplement_2):S557.

    Article  Google Scholar 

  42. Latino GA, Manlhiot C, Yeung RS, Chahal N, McCrindle BW. Macrophage activation syndrome in the acute phase of Kawasaki disease. J Pediatr Hematol Oncol. 2010;32(7):527–31.

    Article  PubMed  Google Scholar 

  43. Zhang M, Behrens EM, Atkinson TP, Shakoory B, Grom AA, Cron RQ. Genetic defects in cytolysis in macrophage activation syndrome. Curr Rheumatol Rep. 2014;16:439.

    Article  PubMed  CAS  Google Scholar 

  44. Sepulveda FE, Garrigue A, Maschalidi S, Garfa-Traore M, Ménasché G, Fischer A, de Saint BG. Polygenic mutations in the cytotoxicity pathway increase susceptibility to develop HLH immunopathology in mice. Blood. 2016;127(17):2113–21.

    Article  CAS  PubMed  Google Scholar 

  45. Strippoli R, Caiello I, De Benedetti F. Reaching the threshold: a multilayer pathogenesis of macrophage activation syndrome. J Rheumatol. 2013;40:761.

    Article  CAS  PubMed  Google Scholar 

  46. Han SB, Lee SY. Macrophage activation syndrome in children with Kawasaki disease: diagnostic and therapeutic approaches. World J Pediatr. 2020;16(6):566–74.

    Article  PubMed  Google Scholar 

  47. Nguyen T, Medvedev N, Delcea M, Greinacher A. Anti-platelet factor 4/polyanion antibodies mediate a new mechanism of autoimmunity. Nat Commun. 2017;8:14945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gollomp K, Kim M, Johnston I, Hayes V, Welsh J, Arepally GM, et al. Neutrophil accumulation and NET release contribute to thrombosis in HIT. JCI Insight. 2018;3(18):e99445.

    Article  PubMed Central  Google Scholar 

  49. Gottlieb M, Long B, Koyfman A. The evaluation and management of toxic shock syndrome in the emergency department: a review of the literature. J Emerg Med. 2018;54(6):807–14.

    Article  PubMed  Google Scholar 

  50. Holman RC, Christensen KY, Belay ED, Steiner CA, Effler PV, Miyamura J, et al. Racial/ethnic differences in the incidence of Kawasaki syndrome among children in Hawaii. Hawaii Med J. 2010;69(8):194–7.

    PubMed  PubMed Central  Google Scholar 

  51. Onouchi Y. The genetics of Kawasaki disease. Int J Rheum Dis. 2018;21(1):26–30.

    Article  PubMed  Google Scholar 

  52. Vastert SJ, van Wijk R, D'Urbano LE, de Vooght KM, de Jager W, Ravelli A, Magni-Manzoni S, Insalaco A, Cortis E, van Solinge WW, Prakken BJ, Wulffraat NM, de Benedetti F, Kuis W. Mutations in the perforin gene can be linked to macrophage activation syndrome in patients with systemic onset juvenile idiopathic arthritis. Rheumatology (Oxford). 2010;49(3):441–9.

    Article  CAS  Google Scholar 

  53. Chen L, Song S, Ning Q, Zhu D, Jia J, Zhang H, Zhao J, Hao S, Liu F, Chu C, Huang M, Chen S, Xie L, Xiao T, Huang M. Prediction for intravenous immunoglobulin resistance combining genetic risk loci identified from next generation sequencing and laboratory data in Kawasaki disease. Front Pediatr. 2020;8:462367.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kuo HC, Chang JC, Kuo HC, Yu HR, Wang CL, Lee CP, et al. Identification of an association between genomic hypomethylation of FCGR2A and susceptibility to Kawasaki disease and intravenous immunoglobulin resistance by DNA methylation array. Arthritis Rheumatol. 2015;67(3):828–36.

    Article  CAS  PubMed  Google Scholar 

  55. Huang YH, Li SC, Huang LH, Chen PC, Lin YY, Lin CC, et al. Identifying genetic hypomethylation and upregulation of toll-like receptors in Kawasaki disease. Oncotarget. 2017;8(7):11249–58.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chen KD, Huang YH, Guo M, Lin TY, Weng WT, Yang HJ, et al. The human blood DNA methylome identifies crucial role of beta-catenin in the pathogenesis of Kawasaki disease. Oncotarget. 2018;9(47):28337–50.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Huang LH, Kuo HC, Pan CT, Lin YS, Huang YH, Li SC. Multiomics analyses identified epigenetic modulation of the S100A gene family in Kawasaki disease and their significant involvement in neutrophil transendothelial migration. Clin Epigenetics. 2018;10(1):135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kuo HC, Hsieh KS, Ming-Huey Guo M, Weng KP, Ger LP, Chan WC, Li SC. Next-generation sequencing identifies micro-RNA-based biomarker panel for Kawasaki disease. J Allergy Clin Immunol. 2016;138(4):1227–30.

    Article  CAS  PubMed  Google Scholar 

  59. Ni FF, Li CR, Li Q, Xia Y, Wang GB, Yang J. Regulatory T cell microRNA expression changes in children with acute Kawasaki disease. Clin Exp Immunol. 2014;178(2):384–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Freudenberg K, Lindner N, Dohnke S, Garbe AI, Schallenberg S, Kretschmer K. Critical role of TGF-β and IL-2 receptor signaling in Foxp3 induction by an inhibitor of DNA methylation. Front Immunol. 2018;9:125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Shevach EM, Thornton AM. tTregs, pTregs, and iTregs: similarities and differences. Immunol Rev. 2014;259(1):88–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhao C, Li X, Yang Y, Li Z, Li M, Tan Q, Liang W, Liu Z. An analysis of Treg/Th17 cells imbalance associated microRNA networks regulated by moxibustion therapy on Zusanli (ST36) and Shenshu (BL23) in mice with collagen induced arthritis. Am J Transl Res. 2019;11(7):4029–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–8.

    Article  CAS  PubMed  Google Scholar 

  64. Berkman SA, Lee ML, Gale RP. Clinical uses of intravenous immunoglobulins. Ann Intern Med. 1990;112(4):278–92.

    Article  CAS  PubMed  Google Scholar 

  65. McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation. 2017;135(17):e927–99.

    Article  PubMed  Google Scholar 

  66. Kuo HC, Yang KD, Chang WC, Ger LP, Hsieh KH. Kawasaki disease: an update on diagnosis and treatment. Pediatr Neonatol. 2012;53:4–11.

    Article  PubMed  Google Scholar 

  67. Terai M, Shulman ST. Prevalence of coronary artery abnormalities in Kawasaki disease is highly dependent on gamma globulin dose but independent of salicylate dose. J Pediatr. 1997;131(6):888–93.

    Article  CAS  PubMed  Google Scholar 

  68. Kobayashi T, Saji T, Otani T, Takeuchi K, Nakamura T, Arakawa H, et al. Efficacy of immunoglobulin plus prednisolone for prevention of coronary artery abnormalities in severe Kawasaki disease (RAISE study): a randomised, open-label, blinded-endpoints trial. Lancet. 2012;379(9826):1613–20.

    Article  CAS  PubMed  Google Scholar 

  69. Miyata K, Kaneko T, Morikawa Y, Sakakibara H, Matsushima T, Misawa M, Takahashi T, Nakazawa M, Tamame T, Tsuchihashi T, Yamashita Y, Obonai T, Chiga M, Hori N, Komiyama O, Yamagishi H, Miura M, Post RAISE Group. Efficacy and safety of intravenous immunoglobulin plus prednisolone therapy in patients with Kawasaki disease (Post RAISE): a multicentre, prospective cohort study. Lancet Child Adolesc Health. 2018;2(12):855–62.

    Article  PubMed  Google Scholar 

  70. Arane K, Mendelsohn K, Mimouni M, Mimouni F, Koren Y, Brik Simon D, et al. Japanese scoring systems to predict resistance to intravenous immunoglobulin in Kawasaki disease were unreliable for Caucasian Israeli children. Acta Paediatr. 2018;107(12):2179–84.

    Article  CAS  PubMed  Google Scholar 

  71. Burns JC. Revisiting once again steroids for the treatment of acute Kawasaki disease. J Am Heart Assoc. 2020;9:e018300.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kato S, Kimura M, Tsuji K, Kusakawa S, Asai T, Juji T, et al. HLA antigens in Kawasaki disease. Pediatrics. 1978;61(2):252–5.

    Article  CAS  PubMed  Google Scholar 

  73. Oh J, Han JW, Lee SJ, Lee KY, Suh BK, Koh DK, et al. Polymorphisms of HLA genes in Korean children with Kawasaki disease. Pediatr Cardiol. 2008;29(2):402–8.

    Article  PubMed  Google Scholar 

  74. Huang FY, Chang TY, Chen MR, Hsu CH, Lee HC, Lin SP, et al. Genetic variations of HLA-DRB1 and susceptibility to Kawasaki disease in Taiwanese children. Hum Immunol. 2007;68(1):69–74.

    Article  CAS  PubMed  Google Scholar 

  75. Chen MR, Chang ZY, Chiu NC, Chi H, Yang KD, Chang L, et al. Validation of genome-wide associated variants for Kawasaki disease in a Taiwanese case-control sample. Sci Rep. 2020;10(1):11756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang Y, Qian SY, Yuan Y, Wang Q, Gao L, Chen X, et al. Do cytokines correlate with refractory Kawasaki disease in children? Clin Chim Acta. 2020;506:222–7.

    Article  CAS  PubMed  Google Scholar 

  77. Hu P, Jiang GM, Wu Y, Huang BY, Liu SY, Zhang DD, et al. TNF-alpha is superior to conventional inflammatory mediators in forecasting IVIG nonresponse and coronary arteritis in Chinese children with Kawasaki disease. Clin Chim Acta. 2017;471:76–80.

    Article  CAS  PubMed  Google Scholar 

  78. Tremoulet AH. Adjunctive therapies in Kawasaki disease. Int J Rheum Dis. 2018;21(1):76–9.

    Article  CAS  PubMed  Google Scholar 

  79. Cohen S, Tacke CE, Straver B, Meijer N, Kuipers IM, Kuijpers TW. A child with severe relapsing Kawasaki disease rescued by IL-1 receptor blockade and extracorporeal membrane oxygenation. Ann Rheum Dis. 2012;71(12):2059–61.

    Article  PubMed  Google Scholar 

  80. Nozawa T, Imagawa T, Ito S. Coronary-artery aneurysm in tocilizumab-treated children with Kawasaki’s disease. N Engl J Med. 2017;377(19):1894–6.

    Article  PubMed  Google Scholar 

  81. Hamada H, Suzuki H, Abe J, et al. Inflammatory cytokine profiles during Cyclosporin treatment for immunoglobulin-resistant Kawasaki disease. Cytokine. 2012;60(3):681–5.

    Article  CAS  PubMed  Google Scholar 

  82. Best D, Millar J, Kornilov I, Sinelnikov Y, Chiletti R, Rycus P, et al. Extracorporeal membrane oxygenation for Kawasaki disease: two case reports and the extracorporeal life support organization experience 1999-2015. Perfusion. 2017;32(7):609–12.

    Article  PubMed  Google Scholar 

  83. Zhang H, Xie L, Xiao T. Extracorporeal membrane oxygenation support for cardiac dysfunction due to Kawasaki disease shock syndrome. Front Pediatr. 2019;7:221.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Consiglio CR, Cotugno N, Sardh F, Pou C, Amodio D, Rodriguez L, et al. The immunology of multisystem inflammatory syndrome in children with COVID-19. Cell. 2020;183(4):968–981.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li SM, Liu WT, Yang F, Yi QJ, Zhang S, Jia HL. Phosphorylated proteomics analysis of human coronary artery endothelial cells stimulated by Kawasaki disease patients serum. BMC Cardiovasc Disord. 2019;19(1):21.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Delaveris CS, Chiu SH, Riley NM, Bertozzi CR. Modulation of immune cell reactivity with cis-binding Siglec agonists. Proc Natl Acad Sci U S A. 2021;118(3):e2012408118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Castellani ML, Shaik-Dasthagirisaheb YB, Tripodi D, Anogeianaki A, Felaco P, Toniato E, et al. Interrelationship between vitamins and cytokines in immunity. J Biol Regul Homeost Agents. 2010;24(4):385–90.

    CAS  PubMed  Google Scholar 

  89. Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science. 2007;317(5835):256–60.

    Article  CAS  PubMed  Google Scholar 

  90. Jun JS, Jung YK, Lee DW. Relationship between vitamin D levels and intravenous immunoglobulin resistance in Kawasaki disease. Korean J Pediatr. 2017;60(7):216–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rhodes JM, Subramanian S, Laird E, Griffin G, Kenny RA. Perspective: vitamin D deficiency and Covid-19 severity - plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2, and thrombosis. J Intern Med. 2020;289(1):97–115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Stagi S, Rigante D, Lepri G, Matucci Cerinic M, Falcini F. Severe vitamin D deficiency in patients with Kawasaki disease: a potential role in the risk to develop heart vascular abnormalities? Clin Rheumatol. 2016;35(7):1865–72.

    Article  PubMed  Google Scholar 

  93. Li X, Lu C, Fan D, Lu X, Xia Y, Zhao H, et al. Human umbilical mesenchymal stem cells display therapeutic potential in rheumatoid arthritis by regulating interactions between immunity and gut microbiota via the aryl hydrocarbon receptor. Front Cell Dev Biol. 2020;8:131.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bassi ÊJ, Moraes-Vieira PM, Moreira-Sá CS, Almeida DC, Vieira LM, Cunha CS, et al. Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes. 2012;61(10):2534–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li Y, Li H, Cao Y, Wu F, Ma W, Wang Y, et al. Placenta-derived mesenchymal stem cells improve airway hyperresponsiveness and inflammation in asthmatic rats by modulating the Th17/Treg balance. Mol Med Rep. 2017;16(6):8137–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hough KP, Chanda D, Duncan SR, Thannickal VJ, Deshane JS. Exosomes in immunoregulation of chronic lung diseases. Allergy. 2017;72(4):534–44.

    Article  CAS  PubMed  Google Scholar 

  97. Shiue SJ, Rau RH, Shiue HS, Hung YW, Li ZX, Yang KD, Cheng JK. Mesenchymal stem cell exosomes as a cell-free therapy for nerve injury-induced pain in rats. Pain. 2019 Jan;160(1):210–23. https://doi.org/10.1097/j.pain.0000000000001395.

    Article  CAS  PubMed  Google Scholar 

  98. Coxon CH, Geer MJ, Senis YA. ITIM receptors: more than just inhibitors of platelet activation. Blood. 2017;129(26):3407–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Smith KG, Clatworthy MR. FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol. 2010;10(5):328–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shrestha S, Wiener H, Olson AK, Edberg JC, Bowles NE, et al. Functional FcγRIIB gene variants influence intravenous immunoglobulin (IVIG) response in Kawasaki disease (KD) patients. J Allergy Clin Immunol. 2011;128(3):677–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Thiruppathi M, Sheng JR, Li L, Prabhakar BS, Meriggioli MN. Recombinant IgG2a Fc (M045) multimers effectively suppress experimental autoimmune myasthenia gravis. J Autoimmun. 2014;52:64–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Debré M, Bonnet MC, Fridman WH, et al. Infusion of Fcγ fragments for treatment of children with acute immune thrombocytopenic purpura. Lancet. 1993;342:945–9.

    Article  PubMed  Google Scholar 

  103. Jefferis R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov. 2009;8:226–34.

    Article  CAS  PubMed  Google Scholar 

  104. Alter G, Ottenhoff THM, Joosten SA. Antibody glycosylation in inflammation, disease and vaccination. Semin Immunol. 2018;39:102–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yamada K, et al. Galactosylation of IgG1 modulates FcgammaRIIB-mediated inhibition of murine autoimmune hemolytic anemia. J Autoimmun. 2013;47:104–10.

    Article  CAS  PubMed  Google Scholar 

  106. Tian RR, Zhang MX, Liu M, Fang X, Li D, Zhang L, Zheng P, Zheng YT, Liu Y. CD24Fc protects against viral pneumonia in simian immunodeficiency virus-infected Chinese rhesus monkeys. Cell Mol Immunol. 2020;17(8):887–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. OncoImmune, Inc. CD24Fc as a non-antiviral immunomodulator in COVID-19 treatment (SAC-COVID). https://clinicaltrials.gov/ct2/show/NCT04317040

  108. Altevogt P, Sammar M, Hüser L, Kristiansen G. Novel insights into the function of CD24: a driving force in cancer. Int J Cancer. 2021;148(3):546–59.

    Article  CAS  PubMed  Google Scholar 

  109. Chen GY, Tang J, Zheng P, Liu Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science. 2009;323(5922):1722–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sammar M, Siwetz M, Meiri H, Fleming V, Altevogt P, Huppertz B. Expression of CD24 and Siglec-10 in first trimester placenta: implications for immune tolerance at the fetal-maternal interface. Histochem Cell Biol. 2017;147(5):565–74.

    Article  CAS  PubMed  Google Scholar 

  111. Delaveris C, Wilk A, Riley N, Stark J, Yang S, Rogers A, et al. Synthetic Siglec-9 agonists inhibit neutrophil activation associated with COVID-19. ChemRxiv. 2020; https://doi.org/10.26434/chemrxiv.13378148.

  112. Crayne CB, Albeituni S, Nichols KE, Cron RQ. The immunology of macrophage activation syndrome. Front Immunol. 2019;10:119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Karakike E, Giamarellos-Bourboulis EJ. Macrophage activation-like syndrome: a distinct entity leading to early death in sepsis. Front Immunol. 2019;10:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang F, Zhang S, Jeon R, Vuckovic I, Jiang X, Lerman A, et al. Interferon gamma induces reversible metabolic reprogramming of M1 macrophages to sustain cell viability and pro-inflammatory activity. EBioMedicine. 2018;30:303–16.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Grom AA, Horne A, De Benedetti F. Macrophage activation syndrome in the era of biologic therapy. Nat Rev Rheumatol. 2016;12(5):259–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pilania RK, Jindal AK, Johnson N, Prithvi A, Vignesh P, Suri D, et al. Macrophage activation syndrome in children with Kawasaki disease: an experience from a tertiary care hospital in Northwest India. Rheumatology (Oxford). 2021;60(7):3413–9.

    Article  CAS  Google Scholar 

  117. Lind-Holst M, Hartling UB, Christensen AE. High-dose anakinra as treatment for macrophage activation syndrome caused by refractory Kawasaki disease in an infant. BMJ Case Rep. 2019;12(8):e229708.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, K.D. (2022). Immune Responses in Kawasaki Disease. In: Kuo, HC. (eds) Kawasaki Disease. Springer, Singapore. https://doi.org/10.1007/978-981-19-2944-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2944-1_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2943-4

  • Online ISBN: 978-981-19-2944-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics