Skip to main content

Energy-Efficient Process in Organic Synthesis

  • Chapter
  • First Online:
  • 582 Accesses

Abstract

In the view of achieving the goal of the sustainable growth, the development of the energy efficient processes and technologies is one of the most sought-after areas of research. Especially in the present scenario where the sources of non-renewable energy such as coal, petroleum, etc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anastas, P., Eghbali, N.: Green chemistry: principles and practice. Chem. Soc. Rev. 39(1), 301–312 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. Kappe, C.O., Dallinger, D.: The impact of microwave synthesis on drug discovery. Nat. Rev. Drug. Discov. 5(1), 51–63 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Mandal, B.: Alternate energy sources for sustainable organic synthesis. ChemistrySelect 4(28), 8301–8310 (2019)

    Article  CAS  Google Scholar 

  4. Gedye, R., Smith, F., Westaway, K., Ali, H., Baldisera, L., Laberge, L., Rousell, J.: The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett. 27(3), 279–282 (1986)

    Article  CAS  Google Scholar 

  5. Salih, K.S.M., Baqi, Y.: Microwave-assisted palladium-catalyzed cross-coupling reactions: generation of carbon-carbon bond. Catalysts 10(1), 4 (2020)

    Article  CAS  Google Scholar 

  6. Fairoosa, J., Saranya, S., Radhika, S., Anilkumar, G.: Recent advances in microwave assisted multicomponent reactions. ChemistrySelect 5(17), 5180–5197 (2020)

    Article  CAS  Google Scholar 

  7. Nicolaou, K.C., Bulger, P.G., Sarlah, D.: Palladium-catalyzed cross-coupling reactions in total synthesis. Angew. Chemie Int. Ed. 44(29), 4442–4489 (2005)

    Article  CAS  Google Scholar 

  8. Johansson Seechurn, C.C.C., Kitching, M.O., Colacot, T.J., Snieckus, V.: Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 nobel prize. Angew. Chemie Int. Ed. 51(21), 5062–5085 (2012)

    Article  CAS  Google Scholar 

  9. Hervé, G., Len, C.: First ligand-free, microwave-assisted, heck cross-coupling reaction in pure water on a nucleoside-application to the synthesis of antiviral BVDU. RSC Adv. 4(87), 46926–46929 (2014)

    Article  CAS  Google Scholar 

  10. Glasnov, T.N., Stadlbauer, W., Kappe, C.O.: Microwave-assisted multistep synthesis of functionalized 4-arylquinolin-2(1 H)-ones using palladium-catalyzed cross-coupling chemistry. J. Org. Chem. 70(10), 3864–3870 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. Du, L., Wang, Y.: Microwave-promoted heck reaction using Pd(OAc)2 as catalyst under ligand-free and solvent-free conditions. Synth. Commun. 37(2), 217–222 (2007)

    Article  CAS  Google Scholar 

  12. Karu, R., Gedu, S.: Microwave assisted domino heck cyclization and alkynylation: synthesis of alkyne substituted dihydrobenzofurans. Green Chem. 20(2), 369–374 (2018)

    Article  CAS  Google Scholar 

  13. Heravi, M.M., Zadsirjan, V.: Prescribed drugs containing nitrogen heterocycles: an overview. RSC Adv. 10(72), 44247–44311 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang, B., Rajale, T., Wever, W., Tu, S., Li, G.: Multicomponent reactions for the synthesis of heterocycles. Chem. Asian J. 5(11), 2318–2335 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. Manjashetty, T.H., Yogeeswari, P., Sriram, D.: Microwave assisted one-pot synthesis of highly potent novel isoniazid analogues. Bioorg. Med. Chem. Lett. 21(7), 2125–2128 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. Mahindra, A., Bagra, N., Jain, R.: Palladium-catalyzed regioselective C-5 arylation of protected L-histidine: microwave-assisted C–H activation adjacent to donor arm. J. Org. Chem. 78(21), 10954–10959 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. Mahindra, A., Jain, R.: Regiocontrolled palladium-catalyzed and copper-mediated C–H bond functionalization of protected L-histidine. Org. Biomol. Chem. 12(23), 3792–3796 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. Tripathi, G., Singh, A.K., Kumar, A.: Arylpyrazoles: heterocyclic scaffold of immense therapeutic application. Curr. Org. Chem. 24(14), 1555–1581 (2020)

    Article  CAS  Google Scholar 

  19. Flood, D.T., Hintzen, J.C.J., Bird, M.J., Cistrone, P.A., Chen, J.S., Dawson, P.E.: Leveraging the Knorr Pyrazole synthesis for the facile generation of thioester surrogates for use in native chemical ligation. Angew. Chemie 130(36), 11808–11813 (2018)

    Article  Google Scholar 

  20. Kumar, A., Rao, M.L.N.: Pot-economic synthesis of diarylpyrazoles and pyrimidines involving Pd-catalyzed cross-coupling of 3-trifloxychromone and triarylbismuth. J. Chem. Sci. 130(12), 1–11 (2018)

    Article  CAS  Google Scholar 

  21. Sabitha, G., SatheeshBabu, R., Yadav, J.S.: One pot synthesis of 4-(2-hydroxybenzoyl)-pyrazoles from 3-formylchromones under microwave irradiation in solvent-free conditions. Synth. Commun. 28(24), 4571–4576 (1998)

    Article  CAS  Google Scholar 

  22. Du, K., Xia, C., Wei, M., Chen, X., Zhang, P.: Microwave-assisted rapid synthesis of sugar-based pyrazole derivatives with anticancer activity in water. RSC Adv. 6(71), 66803–66806 (2016)

    Article  CAS  Google Scholar 

  23. Molina, P., Tárraga, A., Otón, F.: Imidazole derivatives: a comprehensive survey of their recognition properties. Org. Biomol. Chem. 10(9), 1711–1724 (2012)

    Article  CAS  PubMed  Google Scholar 

  24. Attanasi, O.A., Bianchi, L., Campisi, L.A., De Crescentini, L., Favi, G., Mantellini, F.: A novel solvent-free approach to imidazole containing nitrogen-bridgehead heterocycles. Org. Lett. 15(14), 3646–3649 (2013)

    Google Scholar 

  25. Ansari, A.J., Sharma, S., Pathare, R.S., Gopal, K., Sawant, D.M., Pardasani, R.T.: Solvent-free multicomponent synthesis of biologically-active fused–imidazo heterocycles catalyzed by reusable Yb(OTf)3 under microwave irradiation. ChemistrySelect 1(5), 1016–1021 (2016)

    Article  CAS  Google Scholar 

  26. Aldred, K.J., Kerns, R.J., Osheroff, N.: Mechanism of quinolone action and resistance. Biochemistry 53(10), 1565–1574 (2014)

    Article  CAS  PubMed  Google Scholar 

  27. Lengyel, L.C., Sipos, G., Sipocz, T., Vago, T., Dormán, G., Gerencser, J., Makara, G., Darvas, F.: Synthesis of condensed heterocycles by the Gould-Jacobs reaction in a novel three-mode pyrolysis reactor. Org. Process Res. Dev. 19(3), 399–409 (2015)

    Article  CAS  Google Scholar 

  28. Zewge, D., Chen, C., Deer, C., Dormer, P.G., Hughes, D.L.: A mild and efficient synthesis of 4-quinolones and quinolone heterocycles. J. Org. Chem. 72(11), 4276–4279 (2007)

    Article  CAS  PubMed  Google Scholar 

  29. Dave, C.G., Joshipura, H.M.: Microwave assisted Gould-Jacob reaction: synthesis of 4-quinolones under solvent-free conditions. Ind. J. Chem. B 41(3), 650–652 (2002)

    Google Scholar 

  30. Jia, C.-S., Dong, Y.-W., Tu, S.-J., Wang, G.-W.: Microwave-assisted solvent-free synthesis of substituted 2-quinolones. Tetrahedron 63(4), 892–897 (2007)

    Article  CAS  Google Scholar 

  31. Michael, J.P.: Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep. 25(1), 166–187 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. Mohammadkhani, L., Heravi, M.M.: Microwave-assisted synthesis of quinazolines and quinazolinones: an overview. Front Chem. 8, 921 (2020)

    Article  CAS  Google Scholar 

  33. Rad-Moghadam, K., Samavi, L.: One-pot three-component synthesis of 2-substituted 4-aminoquinazolines. J. Heterocycl. Chem. 43(4), 913–916 (2006)

    Article  CAS  Google Scholar 

  34. Seijas, J.A., Vázquez-Tato, M.P., Carballido-Reboredo, M.R., Crecente-Campo, J., Romar-Lopez, L.: Lawesson’s reagent and microwaves: a new efficient access to benzoxazoles and benzothiazoles from carboxylic acids under solvent-free conditions. Synlett 2, 313–317 (2007)

    Article  CAS  Google Scholar 

  35. Mwande-Maguene, G., Jakhlal, J., Lekana-Douki, J.-B., Mouray, E., Bousquet, T., Pellegrini, S., Grellier, P., Ndouo, F.S.T., Lebibi, J., Pelinski, L.: One-pot microwave-assisted synthesis and antimalarial activity of ferrocenyl benzodiazepines. New J. Chem. 35(11), 2412–2415 (2011)

    Article  CAS  Google Scholar 

  36. Rao, M.L.N., Kumar, A.: Pd-catalyzed chemo-selective mono-arylations and bis-arylations of functionalized 4-chlorocoumarins with triarylbismuths as threefold arylating reagents. Tetrahedron 70(39), 6995–7005 (2014)

    Article  CAS  Google Scholar 

  37. Rajitha, B., Kumar, V.N., Someshwar, P., Madhav, J.V., Reddy, P.N., Reddy, Y.T.: Dipyridine copper chloride catalyzed coumarin synthesis via Pechmann condensation under conventional heating and microwave irradiation. ARKIVOC 12, 23–27 (2006)

    Article  Google Scholar 

  38. Vahabi, V., Hatamjafari, F.: Microwave assisted convenient one-pot synthesis of coumarin derivatives via Pechmann condensation catalyzed by FeF3 under solvent-free conditions and antimicrobial activities of the products. Molecules 19(9), 13093–13103 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Crecente-Campo, J., Vazquez-Tato, M.P., Seijas, J.A.: Microwave-promoted, one-pot, solvent-free synthesis of 4-arylcoumarins from 2-hydroxybenzophenones. Eur. J. Org. Chem. 21, 4130–4135 (2010)

    Article  CAS  Google Scholar 

  40. Fiorito, S., Epifano, F., Taddeo, V.A., Genovese, S.: Ytterbium triflate promoted coupling of phenols and propiolic acids: synthesis of coumarins. Tetrahedron Lett. 57(26), 2939–2942 (2016)

    Article  CAS  Google Scholar 

  41. Balakrishna, C., Kandula, V., Gudipati, R., Yennam, S., Devi, P.U., Behera, M.: An efficient microwave-assisted propylphosphonic anhydride (T3P®)-mediated one-pot chromone synthesis via enaminones. Synlett 29(8), 1087–1091 (2018)

    Article  CAS  Google Scholar 

  42. Heravi, M.M., Zadsirjan, V., Hamidi, H., Amiri, P.H.T.: Total synthesis of natural products containing benzofuran rings. RSC Adv. 7(39), 24470–24521 (2017)

    Article  Google Scholar 

  43. Rao, M.L.N., Awasthi, D.K., Banerjee, D.: Microwave-mediated solvent-free rap-stoermer reaction for efficient synthesis of benzofurans. Tetrahedron Lett. 48(3), 431–434 (2007)

    Article  CAS  Google Scholar 

  44. McNaught, A.D., Wilkinson, A.: IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”) (1997)

    Google Scholar 

  45. Stolle, A., Szuppa, T., Leonhardt, S.E.S., Ondruschka, B.: Ball milling in organic synthesis: solutions and challenges. Chem. Soc. Rev. 40(5), 2317–2329 (2011)

    Article  CAS  PubMed  Google Scholar 

  46. Avila-Ortiz, C.G., Juaristi, E.: Novel methodologies for chemical activation in organic synthesis under solvent-free reaction conditions. Molecules 25(16), 3579 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  47. Zhu, X., Li, Z., Jin, C., Xu, L., Wu, Q., Su, W.: Mechanically activated synthesis of 1,3,5-triaryl-2-pyrazolines by high speed ball milling. Green Chem. 11(2), 163–165 (2009)

    Article  CAS  Google Scholar 

  48. Sharma, H., Kaur, N., Singh, N., Jang, D.O.: Synergetic catalytic effect of ionic liquids and ZnO nanoparticles on the selective synthesis of 1,2-disubstituted benzimidazoles using a ball-milling technique. Green Chem. 17(8), 4263–4270 (2015)

    Article  CAS  Google Scholar 

  49. Thorwirth, R., Stolle, A., Ondruschka, B., Wild, A., Schubert, U.S.: Fast, ligand-and solvent-free copper-catalyzed click reactions in a ball mill. Chem. Commun. 47(15), 4370–4372 (2011)

    Article  CAS  Google Scholar 

  50. Maleki, A., Javanshir, S., Naimabadi, M.: Facile synthesis of imidazo[1,2-a]pyridines via a one-pot three-component reaction under solvent-free mechanochemical ball-milling conditions. RSC Adv. 4(57), 30229–30232 (2014)

    Article  CAS  Google Scholar 

  51. Wang, F.-J., Xu, H., Xin, M., Zhang, Z.: I 2-mediated amination/cyclization of ketones with 2-aminopyridines under high-speed ball milling: solvent-and metal-free synthesis of 2,3-substituted imidazo[1,2-a]pyridines and zolimidine. Mol. Divers 20(3), 659–666 (2016)

    Article  CAS  PubMed  Google Scholar 

  52. Kaupp, G., Naimi-Jamal, M.R.: Quantitative cascade condensations between o-phenylenediamines and 1,2-dicarbonyl compounds without production of wastes. Eur. J. Org. Chem. 2002(8), 1368–1373 (2002)

    Article  Google Scholar 

  53. Wang, G.-W., Dong, Y.-W., Wu, P., Yuan, T.-T., Shen, Y.-B.: Unexpected solvent-free cycloadditions of 1,3-cyclohexanediones to 1-(pyridin-2-yl)-enones mediated by manganese (III) acetate in a ball mill. J. Org. Chem. 73(18), 7088–7095 (2008)

    Article  CAS  PubMed  Google Scholar 

  54. Nathaniel, T.G.: The solvent-free and catalyst-free conversion of an aziridine to an oxazolidinone using only carbon dioxide. Green Chem. 13(11), 3224–3229 (2011)

    Article  CAS  Google Scholar 

  55. Egorov, I.N., Santra, S., Kopchuk, D.S., Kovalev, I.S., Zyryanov, G.V., Majee, A., Ranu, B.C., Rusinov, V.L., Chupakhin, O.N.: Ball milling: an efficient and green approach for asymmetric organic syntheses. Green Chem. 22(2), 302–315 (2020)

    Article  CAS  Google Scholar 

  56. Wang, Y.-F., Chen, R.-X., Wang, K., Zhang, B.-B., Li, Z.-B., Xu, D.-Q.: Fast, solvent-free and hydrogen-bonding-mediated asymmetric michael addition in a ball mill. Green Chem. 14(4), 893–895 (2012)

    Article  CAS  Google Scholar 

  57. Rantanen, T., Schiffers, I., Bolm, C.: Solvent-free asymmetric anhydride opening in a ball mill. Org. Process Res. Dev. 11(3), 592–597 (2007)

    Article  CAS  Google Scholar 

  58. Seo, T., Ishiyama, T., Kubota, K., Ito, H.: Solid-state Suzuki-Miyaura cross-coupling reactions: olefin-accelerated C–C coupling using mechanochemistry. Chem. Sci. 10(35), 8202–8210 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fulmer, D.A., Shearouse, W.C., Medonza, S.T., Mack, J.: Solvent-free Sonogashira coupling reaction via high speed ball milling. Green Chem. 11, 1821–1825 (2009)

    Article  CAS  Google Scholar 

  60. Su, W., Yu, J., Li, Z., Jiang, Z.: Solvent-free cross-dehydrogenative coupling reactions under high speed ball-milling conditions applied to the synthesis of functionalized tetrahydroisoquinolines. J. Org. Chem. 76(21), 9144–9150 (2011)

    Article  CAS  PubMed  Google Scholar 

  61. Draye, M., Chatel, G., Duwald, R.: Ultrasound for drug synthesis: a green approach. Pharmaceuticals 13(2), 23 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  62. Chatel, G., Leclerc, L., Naffrechoux, E., Bas, C., Kardos, N., Goux-Henry, C., Andrioletti, B., Draye, M.: Ultrasonic properties of hydrophobic bis(trifluoromethylsulfonyl)imide-based ionic liquids. J. Chem. Eng. Data 57(12), 3385–3390 (2012)

    Article  CAS  Google Scholar 

  63. Li, J.-T., Zhang, X.-H., Lin, Z.-P.: An improved synthesis of 1,3,5-triaryl-2-pyrazolines in acetic acid aqueous solution under ultrasound irradiation. Beilstein J. Org. Chem. 3(1), 13 (2007)

    PubMed  PubMed Central  Google Scholar 

  64. Shelke, K.F., Sapkal, S.B., Shingare, M.S.: Ultrasound-assisted one-pot synthesis of 2,4,5-triarylimidazole derivatives catalyzed by ceric (IV) ammonium nitrate in aqueous media. Chin. Chem. Lett. 20(3), 283–287 (2009)

    Article  CAS  Google Scholar 

  65. Jiang, Y.-J., Cai, J.-J., Zou, J.-P., Zhang, W.: Gallium (III) triflate-catalyzed [4+2+1] cycloadditions for the synthesis of novel 3,4-disubstituted-1,5-benzodiazepines. Tetrahedron Lett. 51(3), 471–474 (2010)

    Article  CAS  Google Scholar 

  66. Guzen, K.P., Cella, R., Stefani, H.A.: Ultrasound enhanced synthesis of 1,5-benzodiazepinic heterocyclic rings. Tetrahedron Lett. 47(46), 8133–8136 (2006)

    Article  CAS  Google Scholar 

  67. Braibante, M.E.F., Braibante, H.T.S., Da Roza, J.K., Henriques, D.M., de Carvalho Tavares, L.: Synthesis of aminopyrazoles from α-oxoketene O, N-acetals using Montmorillonite K-10/ultrasound. Synthesis 8, 1160–1162 (2003)

    Article  Google Scholar 

  68. Venigalla, L.S., Maddila, S., Jonnalagadda, S.B.: Facile, efficient, catalyst-free, ultrasound-assisted one-pot green synthesis of triazole derivatives. J. Iran. Chem. Soc. 17(7), 1539–1544 (2020)

    Article  CAS  Google Scholar 

  69. Castillo, J.-C., Bravo, N.-F., Tamayo, L.-V., Mestizo, P.-D., Hurtado, J., Macías, M., Portilla, J.: Water-compatible synthesis of 1,2,3-triazoles under ultrasonic conditions by a Cu(I) complex-mediated click reaction. ACS Omega 5(46), 30148–30159 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pereira, C.M.P., Stefani, H.A., Guzen, K.P., Orfao, A.T.G.: Improved synthesis of benzotriazoles and 1-acylbenzotriazoles by ultrasound irradiation. Lett. Org. Chem. 4(1), 43–46 (2007)

    Article  CAS  Google Scholar 

  71. Li, Y., Wang, L.T., Wang, Z., Yuan, S., Wu, S., Wang, S.: Ultrasound-assisted synthesis of novel pyrrole dihydropyrimidinones in lactic acid. ChemistrySelect 1(21), 6855–6858 (2016)

    Article  CAS  Google Scholar 

  72. Liu, J., van Iersel, M.W.: Photosynthetic physiology of blue, green, and red light: light intensity effects and underlying mechanisms. Front Plant Sci. 12, 328 (2021)

    CAS  Google Scholar 

  73. Roth, H.D.: The beginnings of organic photochemistry. Angew. Chemie Int. Ed. Eng. 28(9), 1193–1207 (1989)

    Article  Google Scholar 

  74. Narayanam, J.M.R., Stephenson, C.R.J.: Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40(1), 102–113 (2011)

    Article  CAS  PubMed  Google Scholar 

  75. Cano-Yelo, H., Deronzier, A.: Photocatalysis of the Pschorr reaction by tris-(2,2′-bipyridyl)ruthenium (II) in the phenanthrene series. J. Chem. Soc. Perkin Trans. 2(6), 1093–1098 (1984)

    Article  Google Scholar 

  76. Zhang, J., Chen, J., Zhang, X., Lei, X.: Total syntheses of menisporphine and daurioxoisoporphine C enabled by photoredox-catalyzed direct C–H arylation of isoquinoline with aryldiazonium salt. J. Org. Chem. 79(21), 10682–10688 (2014)

    Article  CAS  PubMed  Google Scholar 

  77. Xue, D., Jia, Z., Zhao, C., Zhang, Y., Wang, C., Xiao, J.: Direct arylation of N-heteroarenes with aryldiazonium salts by photoredox catalysis in water. Chem. Eur. J. 20, 2960–2965 (2014)

    Article  CAS  PubMed  Google Scholar 

  78. Li, Z., Song, H., Guo, R., Zuo, M., Hou, C., Sun, S., He, X., Sun, Z., Chu, W.: Visible-light-induced condensation cyclization to synthesize benzimidazoles using fluorescein as a photocatalyst. Green Chem. 21(13), 3602–3605 (2019)

    Article  CAS  Google Scholar 

  79. Samanta, S., Das, S., Biswas, P.: Photocatalysis by 3,6-disubstituted-s-tetrazine: visible-light driven metal-free green synthesis of 2-substituted benzimidazole and benzothiazole. J. Org. Chem. 78(22), 11184–11193 (2013)

    Article  CAS  PubMed  Google Scholar 

  80. Almeida, J.F., Castedo, L., Fernández, D., Neo, A.G., Romero, V., Tojo, G.: Base-induced photocyclization of 1,2-diaryl-1-tosylethenes. A mechanistically novel approach to phenanthrenes and phenanthrenoids. Org. Lett. 5(26), 4939–4941 (2003)

    Google Scholar 

  81. Liu, Y.-L., Liang, Y., Pi, S.-F., Huang, X.-C., Li, J.-H.: Palladium-catalyzed cocyclotrimerization of allenes with arynes: selective synthesis of phenanthrenes. J. Org. Chem. 74(8), 3199–3202 (2009)

    Article  CAS  PubMed  Google Scholar 

  82. Seganish, W.M., DeShong, P.: Application of aryl siloxane cross-coupling to the synthesis of allocolchicinoids. Org. Lett. 8(18), 3951–3954 (2006)

    Article  CAS  PubMed  Google Scholar 

  83. Xiao, T., Dong, X., Tang, Y., Zhou, L.: Phenanthrene synthesis by Eosin Y-catalyzed, visible light-induced [4+2] benzannulation of biaryldiazonium salts with alkynes. Adv. Synth. Catal. 354(17), 3195–3199 (2012)

    Article  CAS  Google Scholar 

  84. Liang, K., Li, N., Zhang, Y., Li, T., Xia, C.: Transition-metal-free α-arylation of oxindoles via visible-light-promoted electron transfer. Chem. Sci. 10(10), 3049–3053 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mishra, A.K., Parvari, G., Santra, S.K., Bazylevich, A., Dorfman, O., Rahamim, J., Eichen, Y., Szpilman, A.M.: Solar and visible light assisted peptide coupling. Angew. Chemie Int. Ed. 60(22), 12406–12412 (2021)

    Article  CAS  Google Scholar 

  86. Zhang, T., Wang, N.-X., Xing, Y.: Advances in decarboxylative oxidative coupling reaction. J. Org. Chem. 83(15), 7559–7565 (2018)

    Article  CAS  PubMed  Google Scholar 

  87. Gooßen, L.J., Deng, G., Levy, L.M.: Synthesis of biaryls via catalytic decarboxylative coupling. Scienc 313(5787), 662–664 (2006)

    Article  CAS  Google Scholar 

  88. Reischauer, S., Pieber, B.: Emerging concepts in photocatalytic organic synthesis. I Sci. 102209 (2021)

    Google Scholar 

  89. Murarka, S.: N-(acyloxy) phthalimides as redox-active esters in cross-coupling reactions. Adv. Synth. Catal. 360(9), 1735–1753 (2018)

    Article  CAS  Google Scholar 

  90. Fu, M.-C., Shang, R., Zhao, B., Wang, B., Fu, Y.: Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide. Science 363(6434), 1429–1434 (2019)

    Article  CAS  PubMed  Google Scholar 

  91. Li, G.-X., Hu, X., He, G., Chen, G.: Photoredox-mediated minisci-type alkylation of N-heteroarenes with alkanes with high methylene selectivity. ACS Catal. 8(12), 11847–11853 (2018)

    Article  CAS  Google Scholar 

  92. Jin, C., Yan, Z., Sun, B., Yang, J.: Visible-light-induced regioselective alkylation of coumarins via decarboxylative coupling with N-hydroxyphthalimide esters. Org. Lett. 21(7), 2064–2068 (2019)

    Article  CAS  PubMed  Google Scholar 

  93. Jin, Y., Yang, H., Fu, H.: An N-(acetoxy) phthalimide motif as a visible-light pro-photosensitizer in photoredox decarboxylative arylthiation. Chem. Commun. 52(87), 12909–12912 (2016)

    Article  CAS  Google Scholar 

  94. Liu, J., Liu, Q., Yi, H., Qin, C., Bai, R., Qi, X., Lan, Y., Lei, A.: Visible-light-mediated decarboxylation/oxidative amidation of α-keto acids with amines under mild reaction conditions using O2. Angew. Chemie Int. Ed. 53(2), 502–506 (2014)

    Article  CAS  Google Scholar 

  95. Wang, B., Li, P., Miao, T., Zou, L., Wang, L.: Visible-light induced decarboxylative C2-alkylation of benzothiazoles with carboxylic acids under metal-free conditions. Org. Biomol. Chem. 17(1), 115–121 (2019)

    Article  CAS  Google Scholar 

  96. Yan, M., Kawamata, Y., Baran, P.S.: Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117(21), 13230–13319 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Holzhäuser, F.J., Mensah, J.B., Palkovits, R.: (Non-)Kolbe electrolysis in biomass valorization—a discussion of potential applications. Green Chem. 22(2), 286–301 (2020)

    Article  Google Scholar 

  98. Kolbe, H.: Untersuchungen Über Die Elektrolyse Organischer Verbindungen. Justus Liebigs Ann Chem 69(3), 257–294 (1849)

    Article  Google Scholar 

  99. Kurihara, H., Fuchigami, T., Tajima, T.: Kolbe carbon–carbon coupling electrosynthesis using solid-supported bases. J. Org. Chem. 73(17), 6888–6890 (2008)

    Article  CAS  PubMed  Google Scholar 

  100. Dai, J., Huang, Y., Fang, C., Guo, Q., Fu, Y.: Electrochemical synthesis of adiponitrile from the renewable raw material glutamic acid. Chemsuschem 5(4), 617–620 (2012)

    Article  CAS  PubMed  Google Scholar 

  101. Blanco, D.E., Dookhith, A.Z., Modestino, M.A.: Enhancing selectivity and efficiency in the electrochemical synthesis of adiponitrile. React. Chem. Eng. 4(1), 8–16 (2019)

    Article  CAS  Google Scholar 

  102. Zhao, H., Hou, Z., Liu, Z., Zhou, Z., Song, J., Xu, H.: Amidinyl radical formation through anodic N−H bond cleavage and its application in aromatic C−H bond functionalization. Angew. Chemie Int. Ed. 56(2), 587–590 (2017)

    Article  CAS  Google Scholar 

  103. Shono, T., Hamaguchi, H., Matsumura, Y.: Electroorganic chemistry. XX. Anodic oxidation of carbamates. J. Am. Chem. Soc. 97(15), 4264–4268 (1975)

    Google Scholar 

  104. Kärkäs, M.D.: Electrochemical strategies for C–H functionalization and C–N bond formation. Chem. Soc. Rev. 47(15), 5786–5865 (2018)

    Article  PubMed  Google Scholar 

  105. Sommer, F., Kappe, C.O., Cantillo, D.: Chemoselective electrochemical oxidation of secondary alcohols using a recyclable chloride-based medoator. Synlett 33, 166–170 (2022)

    Article  CAS  Google Scholar 

  106. Vedovato, V., Vanbroekhoven, K., Pant, D., Helsen, J.: Elecrtosynthesis of biobased chemicals using carbohydrates as a feedstock. Molecules 25, 3712 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  107. Pan, N., Lee, M.X., Bunel, L., Grimaud, L., Vitale, M.R.: Electrochemical TEMPO-catalyzed oxidative Ugi-type reaction. ACS Org. Inorg. Au 1(1), 18–22 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod K. Tiwari .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, V.K., Kumar, A., Rajkhowa, S., Tripathi, G., Singh, A.K. (2022). Energy-Efficient Process in Organic Synthesis. In: Green Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-2734-8_2

Download citation

Publish with us

Policies and ethics