Skip to main content

Waste to Wealth: Types of Raw Materials for Preparation of Biochar and Their Characteristics

  • Chapter
  • First Online:
Engineered Biochar

Abstract

Biochar is carbonaceous material prepared from thermo-chemical conversion of biomass-based raw materials. These include agro-waste, forestry waste, animal manure, sewage sludge, and municipal waste. Different pyrolysis conditions and raw materials alter the properties of biochar such as pH, surface area, porosity, cation exchange capacity, nutrient availability, and water holding capacity. These physico-chemical properties further influence the functional properties of biochar for its different applications. In the present chapter, role of different raw materials used for the preparation of biochar, their effects on the properties, and characterization of biochar are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  PubMed  Google Scholar 

  • Amonette JE, Joseph S (2009) Characteristics of biochar: microchemical properties. Biochar Environ Manage Sci Technol 33

    Google Scholar 

  • Bakshi S, Banik C, Laird DA (2020) Estimating the organic oxygen content of biochar. Sci Rep 10(1):1–12

    Article  CAS  Google Scholar 

  • Batista EM, Shultz J, Matos TT, Fornari MR, Ferreira TM, Szpoganicz B, de Freitas RA, Mangrich AS (2018) Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Sci Rep 8(1):1–9

    Article  Google Scholar 

  • Bhujbal SK, Ghosh P, Vijay VK, Rathour R, Kumar M, Singh L, Kapley A (2022) Biotechnological potential of rumen microbiota for sustainable bioconversion of lignocellulosic waste to biofuels and value-added products. Sci Total Environ 152773

    Google Scholar 

  • Blanco-Canqui H (2016) Growing dedicated energy crops on marginal lands and ecosystem services. Soil Sci Soc Am J 80(4):845–858

    Article  CAS  Google Scholar 

  • Bogusz A, Oleszczuk P, Dobrowolski R (2015) Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water. Biores Technol 196:540–549

    Article  CAS  Google Scholar 

  • Bolan N, Hoang SA, Beiyuan J, Gupta S, Hou D, Karakoti A, Joseph S, Jung S, Kim KH, Kirkham MB, Kua HW (2021) Multifunctional applications of biochar beyond carbon storage. Int Mater Rev 1–51

    Google Scholar 

  • Bolan N, Kumar M, Singh E, Kumar A, Singh L, Kumar S, Keerthanan S, Hoang SA, El-Naggar A, Vithanage M, Sarkar B (2022) Antimony contamination and its risk management in complex environmental settings: a review. Environ Int 158:106908

    Article  CAS  PubMed  Google Scholar 

  • Bolognesi S, Bernardi G, Callegari A, Dondi D, Capodaglio AG (2021) Biochar production from sewage sludge and microalgae mixtures: properties, sustainability and possible role in circular economy. Biomass Convers Biorefinery 11(2):289–299

    Article  CAS  Google Scholar 

  • Briggs C, Breiner JM, Graham RC (2012) Physical and chemical properties of Pinus ponderosa charcoal: implications for soil modification. Soil Sci 177(4):263–268

    Article  CAS  Google Scholar 

  • Campbell RM, Anderson NM, Daugaard DE, Naughton HT (2018) Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty. Appl Energy 230:330–343

    Article  Google Scholar 

  • Conti R, Rombolà AG, Modelli A, Torri C, Fabbri D (2014) Evaluation of the thermal and environmental stability of switchgrass biochars by Py–GC–MS. J Anal Appl Pyrol 110:239–247

    Article  CAS  Google Scholar 

  • Das O, Sarmah AK (2015) The love–hate relationship of pyrolysis biochar and water: a perspective. Sci Total Environ 512:682–685

    Article  PubMed  CAS  Google Scholar 

  • Dieguez-Alonso A, Funke A, Anca-Couce A, Rombolà AG, Ojeda G, Bachmann J, Behrendt F (2018) Towards biochar and hydrochar engineering—influence of process conditions on surface physical and chemical properties, thermal stability, nutrient availability, toxicity and wettability. Energies 11(3):496

    Article  CAS  Google Scholar 

  • Ebrahimzadeh Omran S, Shorafa M, Zolfaghari AA, Soltani Toolarood AA (2020) The effect of biochar on severity of soil water repellency of crude oil-contaminated soil. Environ Sci Pollut Res 27(6):6022–6032

    Article  CAS  Google Scholar 

  • El-Sayed SA, Mostafa ME (2014) Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG). Energy Convers Manage 85:165–172

    Article  Google Scholar 

  • Fan F, Zheng Y, Huang Y, Lu Y, Wang Z, Chen B, Zheng Z (2017) Preparation and characterization of biochars from waste Camellia oleifera shells by different thermochemical processes. Energy Fuels 31(8):8146–8151

    Article  CAS  Google Scholar 

  • Fuke P, Kumar M, Sawarkar AD, Pandey A, Singh L (2021) Role of microbial diversity to influence the growth and environmental remediation capacity of bamboo: a review. Ind Crops Prod 167:113567

    Article  CAS  Google Scholar 

  • Ghorbel L, Rouissi T, Brar SK, López-González D, Ramirez AA, Godbout S (2015) Value-added performance of processed cardboard and farm breeding compost by pyrolysis. Waste Manage 38:164–173

    Article  CAS  Google Scholar 

  • Ghosh S, Scharenbroch BC, Burcham D, Ow LF, Shenbagavalli S, Mahimairaja S (2016) Influence of soil properties on street tree attributes in Singapore. Urban Ecosyst 19(2):949–967

    Article  Google Scholar 

  • Gupta J, Roy D, Thakur IS, Kumar M (2022) Environmental DNA insights in search of novel genes/taxa for production of biofuels and biomaterials. In: Biomass, biofuels, biochemicals. Elsevier, pp 111–135

    Google Scholar 

  • Hossain FM, Kosinkova J, Brown RJ, Ristovski Z, Hankamer B, Stephens E, Rainey TJ (2017) Experimental investigations of physical and chemical properties for microalgae HTL bio-crude using a large batch reactor. Energies 10(4):467

    Article  CAS  Google Scholar 

  • Hu Q, Jung J, Chen D, Leong K, Song S, Li F, Mohan BC, Yao Z, Prabhakar AK, Lin XH, Lim EY (2021) Biochar industry to circular economy. Sci Total Environ 757:143820

    Article  CAS  PubMed  Google Scholar 

  • Huff MD, Marshall S, Saeed HA, Lee JW (2018) Surface oxygenation of biochar through ozonization for dramatically enhancing cation exchange capacity. Biores Bioprocess 5(1):1–9

    Article  Google Scholar 

  • Igalavithana AD, Mandal S, Niazi NK, Vithanage M, Parikh SJ, Mukome FN, Rizwan M, Oleszczuk P, Al-Wabel M, Bolan N, Tsang DC (2017) Advances and future directions of biochar characterization methods and applications. Crit Rev Environ Sci Technol 47(23):2275–2330

    Article  CAS  Google Scholar 

  • Ippolito JA, Spokas KA, Novak JM, Lentz RD, Cantrell KB (2015) Biochar elemental composition and factors influencing nutrient retention. Biochar Environ Manage Sci Technol Implementat 139

    Google Scholar 

  • Jafri N, Wong WY, Doshi V, Yoon LW, Cheah KH (2018) A review on production and characterization of biochars for application in direct carbon fuel cells. Process Saf Environ Prot 118:152–166

    Article  CAS  Google Scholar 

  • Jayawardhana Y, Kumarathilaka P, Herath I, Vithanage M (2016) Municipal solid waste biochar for prevention of pollution from landfill leachate. In: Environmental materials and waste. Academic Press, pp 117–148

    Google Scholar 

  • Junna S, Bingchen W, Gang X, Hongbo S (2014) Effects of wheat straw biochar on carbon mineralization and guidance for large-scale soil quality improvement in the coastal wetland. Ecol Eng 62:43–47

    Article  Google Scholar 

  • Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev 57:1126–1140

    Article  CAS  Google Scholar 

  • Karim AA, Kumar M, Mohapatra S, Panda CR, Singh A (2014) Banana peduncle biochar: characteristics and adsorption of hexavalent chromium from aqueous solution. Methodology 7

    Google Scholar 

  • Kim KH, Kim JY, Cho TS, Choi JW (2012) Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Biores Technol 118:158–162

    Article  CAS  Google Scholar 

  • Koide RT, Nguyen BT, Howard Skinner R, Dell CJ, Adler PR, Drohan PJ, Licht M, Matthews MB, Nettles R, Ricks K, Watkins J (2018) Comparing biochar application methods for switchgrass yield and C sequestration on contrasting marginal lands in Pennsylvania, USA. Bio Energy Res 11(4):784–802

    CAS  Google Scholar 

  • Kotaiah Naik D, Monika K, Prabhakar S, Parthasarathy R, Satyavathi B (2017) Pyrolysis of sorghum bagasse biomass into bio-char and bio-oil products. J Therm Anal Calorim 127(2):1277–1289

    Article  CAS  Google Scholar 

  • Kumar M, Bolan NS, Hoang SA, Sawarkar AD, Jasemizad T, Gao B, Keerthanan S, Padhye LP, Singh L, Kumar S, Vithanage M (2021a) Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: to immobilize, mobilize, or degrade? J Hazard Mater 420:126534

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Dutta S, You S, Luo G, Zhang S, Show PL, Sawarkar AD, Singh L, Tsang DC (2021b) A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge. J Clean Prod 305:127143

    Article  CAS  Google Scholar 

  • Kumar M, Sun Y, Rathour R, Pandey A, Thakur IS, Tsang DC (2020a) Algae as potential feedstock for the production of biofuels and value–added products: opportunities and challenges. Sci Total Environ 716:137116

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Sundaram S, Gnansounou E, Larroche C, Thakur IS (2018) Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: a review. Bioresour Technol 247:1059–1068

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Thakur IS (2018) Municipal secondary sludge as carbon source for production and characterization of biodiesel from oleaginous bacteria. Bioresour Technol Rep 4:106–113

    Article  Google Scholar 

  • Kumar M, Xiong X, Sun Y, Yu IK, Tsang DC, Hou D, Gupta J, Bhaskar T, Pandey A (2020b) Critical review on biochar‐supported catalysts for pollutant degradation and sustainable biorefinery

    Google Scholar 

  • Kumar M, Xiong X, Wan Z, Sun Y, Tsang DC, Gupta J, Gao B, Cao X, Tang J, Ok YS (2020c) Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresour Technol 312:123613

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, You S, Beiyuan J, Luo G, Gupta J, Kumar S, Singh L, Zhang S, Tsang DC (2021c) Lignin valorization by bacterial genus Pseudomonas: state-of-the-art review and prospects. Biores Technol 320:124412

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (eds) (2015) Biochar for environmental management: science, technology and implementation. Routledge

    Google Scholar 

  • Li H, Dong X, da Silva EB, de Oliveira LM, Chen Y, Ma LQ (2017) Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178:466–478

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Zhang FS (2009) Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J Hazard Mater 167(1–3):933–939

    Article  CAS  PubMed  Google Scholar 

  • Lyu H, Gong Y, Gurav R, Tang J (2016) Potential application of biochar for bioremediation of contaminated systems. Biochar Appl Essen Soil Micro Ecol 221

    Google Scholar 

  • Lyu H, Zhang Q, Shen B (2020) Application of biochar and its composites in catalysis. Chemosphere 240:124842

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Zhou B, Budai A, Jeng A, Hao X, Wei D, Zhang Y, Rasse D (2016) Study of biochar properties by scanning electron microscope–energy dispersive X-ray spectroscopy (SEM-EDX). Commun Soil Sci Plant Anal 47(5):593–601

    Article  CAS  Google Scholar 

  • Maddalwar S, Nayak KK, Kumar M, Singh L (2021) Plant microbial fuel cell: opportunities, challenges, and prospects. Bioresour Technol 341:125772

    Article  CAS  PubMed  Google Scholar 

  • Martin JW, Nyadong L, Ducati C, Manley-Harris M, Marshall AG, Kraft M (2019) Nanostructure of gasification charcoal (biochar). Environ Sci Technol 53(7):3538–3546

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Kumar M, Bolan NS, Kapley A, Kumar R, Singh L (2021) Multidimensional approaches of biogas production and up–gradation: Opportunities and challenges. Bioresour Technol 338:125514

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Kumar M, Medhi K, Thakur IS (2020) Biomass energy with carbon capture and storage (BECCS). In: Current developments in biotechnology and bioengineering. Elsevier, pp 399–427

    Google Scholar 

  • Mokrzycki J, Michalak I, Rutkowski P (2021) Biochars obtained from freshwater biomass—green macroalga and hornwort as Cr (III) ions sorbents. Biomass Convers Biorefinery 11(2):301–313

    Article  CAS  Google Scholar 

  • Mukherjee A, Zimmerman AR, Harris W (2011) Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163(3–4):247–255

    Article  CAS  Google Scholar 

  • Pan X, Gu Z, Chen W, Li Q (2020) Preparation of biochar and biochar composites and the application in a Fenton-like process for wastewater decontamination: a review. Sci Total Environ 142104

    Google Scholar 

  • Pandey KK (1999) A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 71(12):1969–1975

    Article  CAS  Google Scholar 

  • Pourret O, Houben D (2018) Characterization of metal binding sites onto biochar using rare earth elements as a fingerprint. Heliyon 4(2):e00543

    Article  PubMed  PubMed Central  Google Scholar 

  • Prabha J, Kumar M, Tripathi R (2021) Opportunities and challenges of utilizing energy crops in phytoremediation of environmental pollutants: a review. Bioremediat for Environ Sustainab 383–396

    Google Scholar 

  • Puettmann M, Sahoo K, Wilson K, Oneil E (2020) Life cycle assessment of biochar produced from forest residues using portable systems. J Clean Prod 250:119564

    Article  CAS  Google Scholar 

  • Quicker P, Weber K (2016) Biokohle. Herstellung, Eigenschaften und Verwendung von Biomassekarbonisaten. Wiesbaden

    Google Scholar 

  • Rajaeifar MA, Hemayati SS, Tabatabaei M, Aghbashlo M, Mahmoudi SB (2019) A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply. Renew Sustain Energy Rev 103:423–442

    Article  Google Scholar 

  • Rajapaksha AU, Chen SS, Tsang DC, Zhang M, Vithanage M, Mandal S, Gao B, Bolan NS, Ok YS (2016) Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148:276–291

    Article  CAS  PubMed  Google Scholar 

  • Ramola S, Belwal T, Li CJ et al (2020b) Improved lead removal from aqueous solution using novel porous bentonite and calcite-biochar composite. Sci Total Enviro 709:136171. https://doi.org/10.1016/j.scitotenv.2019.136171

  • Ramola S, Belwal T, Srivastava RK (2020a) Thermochemical conversion of biomass waste-based biochar for environment remediation. In: Kharissova O, Martínez L, Kharisov B (eds) Handbook of nanomaterials and nanocomposites for energy and environmental applications. Springer, Cham, pp 1–16

    Google Scholar 

  • Ramola S, Belwal T, Li CJ et al (2021a) Preparation and application of novel rice husk biochar-calcite composites for phosphate removal from aqueous medium. J Clean Prod 299:126802. https://doi.org/10.1016/j.jclepro.2021.126802

  • Ramola S, Mishra T, Rana G, Srivastava RK (2014) Characterization and pollutant removal efficiency of biochar derived from baggase, bamboo and tyre. Environ Monit Assess 186(12):9023–9039

    Article  CAS  PubMed  Google Scholar 

  • Ramola S, Rawat N, Shankhwar AK, Srivastava RK (2021b) Fixed bed adsorption of Pb and Cu by ironmodified bamboo, bagasse and tyre biochar. Sustain Chem Pharm 100486. https://doi.org/10.1016/j.scp.2021.100486

  • Roberts DA, Paul NA, Dworjanyn SA, Bird MI, de Nys R (2015) Biochar from commercially cultivated seaweed for soil amelioration. Sci Rep 5(1):1–6

    Article  Google Scholar 

  • Santhosh C, Daneshvar E, Tripathi KM, Baltrėnas P, Kim T, Baltrėnaitė E, Bhatnagar A (2020) Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr (VI) and acid orange 7 dye from aqueous solution. Environ Sci Pollut Res 27(26):32874–32887

    Article  CAS  Google Scholar 

  • Sarkar B, Dissanayake PD, Bolan NS, Dar JY, Kumar M, Haque MN, Mukhopadhyay R, Ramanayaka S, Biswas JK, Tsang DC, Rinklebe J (2021) Challenges and opportunities in sustainable management of microplastics and nanoplastics in the environment. Environ Res 112179

    Google Scholar 

  • Shaaban A, Se SM, Mitan NMM, Dimin MF (2013) Characterization of biochar derived from rubber wood sawdust through slow pyrolysis on surface porosities and functional groups. Procedia Eng 68:365–371

    Article  CAS  Google Scholar 

  • Singh B, Fang Y, Johnston CT (2016) A Fourier-transform infrared study of biochar aging in soils. Soil Sci Soc Am J 80(3):613

    Google Scholar 

  • Thakur IS, Kumar M, Varjani SJ, Wu Y, Gnansounou E, Ravindran S (2018) Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: opportunities and challenges. Biores Technol 256:478–490

    Article  CAS  Google Scholar 

  • Tomczyk A, Sokołowska Z, Boguta P (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Bio 19(1):191e215

    Google Scholar 

  • Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sustain Energy Rev 55:467–481

    Article  CAS  Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327(1):235–246

    Article  CAS  Google Scholar 

  • Voca N, Bilandzija N, Jurisic V, Matin A, Kricka T, Sedak I (2016) Proximate, ultimate, and energy values analysis of plum biomass by-products case study: Croatia’s potential. J Agric Sci Technol 18(6):1655–1666

    Google Scholar 

  • Wang B, Gao B, Fang J (2017) Recent advances in engineered biochar productions and applications. Crit Rev Environ Sci Technol 47(22):2158–2207

    Article  CAS  Google Scholar 

  • Wang T, Liu J, Zhang Y, Zhang H, Chen WY, Norris P, Pan WP (2018) Use of a non-thermal plasma technique to increase the number of chlorine active sites on biochar for improved mercury removal. Chem Eng J 331:536–544

    Article  CAS  Google Scholar 

  • Wathukarage A, Herath I, Iqbal MCM, Vithanage M (2019) Mechanistic understanding of crystal violet dye sorption by woody biochar: implications for wastewater treatment. Environ Geochem Health 41(4):1647–1661

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Liu J, Ling P, Zhang X, Xu K, He L, Wang Y, Su S, Hu S, Xiang J (2020) Raman spectroscopy of biochar from the pyrolysis of three typical Chinese biomasses: a novel method for rapidly evaluating the biochar property. Energy 202:117644

    Article  CAS  Google Scholar 

  • Xu D, Zhao Y, Sun K, Gao B, Wang Z, Jin J, Zhang Z, Wang S, Yan Y, Liu X, Wu F (2014) Cadmium adsorption on plant-and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties. Chemosphere 111:320–326

    Article  CAS  PubMed  Google Scholar 

  • Xie T, Reddy KR, Wang C, Yargicoglu E, Spokas K (2015) Characteristics and applications of biochar for environmental remediation: a review. Crit Rev Environ Sci Technol 45(9):939–969

    Article  CAS  Google Scholar 

  • Yavari S, Malakahmad A, Sapari NB (2015) Biochar efficiency in pesticides sorption as a function of production variables—a review. Environ Sci Pollut Res 22(18):13824–13841

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR (2012) Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89(11):1467–1471

    Article  CAS  PubMed  Google Scholar 

  • Yoon K, Cho DW, Tsang DC, Bolan N, Rinklebe J, Song H (2017) Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water. Biores Technol 246:69–75

    Article  CAS  Google Scholar 

  • Zhou X, Zhou J, Liu Y, Guo J, Ren J, Zhou F (2018) Preparation of iminodiaceticm acid-modified magnetic biochar by carbonization, magnetization and functional modification for Cd(II) removal in water. Fuel 233:469–479

    Article  CAS  Google Scholar 

  • Zhou Y, Kumar M, Sarsaiya S, Sirohi R, Awasthi SK, Sindhu R, Binod P, Pandey A, Bolan NS, Zhang Z, Singh L (2022) Challenges and opportunities in bioremediation of micro-nano plastics: a review. Sci Total Environ 802:149823

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Lei H, Wang L, Yadavalli G, Zhang X, Wei Y, Liu Y, Yan D, Chen S, Ahring B (2015) Biochar of corn stover: Microwave-assisted pyrolysis condition induced changes in surface functional groups and characteristics. J Anal Appl Pyrol 115:149–156

    Article  CAS  Google Scholar 

  • Zhu L, Zhao N, Tong L, Lv Y (2018) Structural and adsorption characteristics of potassium carbonate activated biochar. RSC Adv 8(37):21012–21019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wani I, Ramola S, Garg A, Kushvaha V (2021) Critical review of biochar applications in geo-engineering infrastructure: moving beyond agricultural and environmental perspectives. Biomass Convers. Biorefin. https://doi.org/10.1007/s13399-021-01346-8

Download references

Acknowledgements

The authors are thankful to Director, CSIR-National Environmental Engineering Research Institute, Nagpur, India and all the institutes for providing the necessary facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lal Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, S., Ramola, S., Singh, B., Anerao, P., Singh, L. (2022). Waste to Wealth: Types of Raw Materials for Preparation of Biochar and Their Characteristics. In: Ramola, S., Mohan, D., Masek, O., Méndez, A., Tsubota, T. (eds) Engineered Biochar. Springer, Singapore. https://doi.org/10.1007/978-981-19-2488-0_2

Download citation

Publish with us

Policies and ethics