Skip to main content

Quest for Alternatives to Antibiotics: An Urgent Need of the Twenty-First Century

  • Chapter
  • First Online:
  • 847 Accesses

Abstract

Antibiotics have saved uncountable lives from many infectious diseases caused by bacteria. But their inappropriate and indiscriminate use has given enough clues to some pathogenic bacteria to evolve as resistant microbial populations. Hence, there is a pressing need to develop new and innovative antibacterial agents with diverse chemical structures and mechanisms. Novel approaches ranging from naturally sourced to chemically synthesised compounds, nanomaterials and even symbiotic bacteria or their beneficial by-products are being investigated as potential alternatives to curb the menace of resistance development. Naturally sourced alternatives like phytochemicals, enzyme-based composites, antibodies, phage therapy, use of vaccine etc. have potential to reduce the load of antibiotic treatment. Chemical modification of antibiotics like semisynthetic modifications of vancomycin also has given the alternative routes to bypass resistance. Additionally, metal complexes, cationic amphiphiles and organic frameworks are also promising antibacterial entities which are synthetically designed in the chemical laboratories as alternative approaches. Polymeric biocides, dendrimeric entities and carbon-based and metal-based nanoparticles (NPs) also have been developed with potential antibacterial applications. Interestingly, the use of probiotics, prebiotics and synbiotics is being explored as alternatives to antibiotics because of their implications on enhancing mucosal immunity, thereby lessening the need of using antibiotics. There is ample scope to review the recent developments in these areas of research and postulate the future directives to overcome the crisis of drug resistance and implement effective antibacterial treatment. This chapter aims to present a cumulative introductory note for these promising alternative approaches and encourage the required scientific temperament to usher in the next-generation therapeutics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ARGs:

Antibiotic resistance genes

MDR:

Multidrug resistant

AMR:

Antimicrobial resistance

WHO:

World Health Organisation

TB:

Tuberculosis

CRE:

Carbapenem-resistant Enterobacteriaceae

FLs:

Flavonoids

EOs:

Essential oils

MICs:

Minimum inhibitory concentrations

AgNPs:

Silver nanoparticles

QS:

Quorum sensing

QQ:

Quorum quenching

QSIs:

QS inhibitors

AMPs:

Antimicrobial peptides

SAR:

Structure–activity relationship

CNMs:

Carbon-based nanomaterials

ROS:

Reactive oxygen species

PDT:

Photodynamic therapy

FDA:

Food and Drug Administration

AAD:

Antibiotic-associated diarrhoea

FOS :

Fructo-oligosaccharides

GOS :

Galacto-oligosaccharides

XOS:

Xylo-oligosaccharides

WGS:

Whole genome sequencing

AV:

Antivirulence

References

  • Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM (2011) Phage treatment of human infections. Bacteriophage 1(2):66–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Adhikari MD, Goswami S, Panda BR, Chattopadhyay A, Ramesh A (2013) Membrane-directed high bactericidal activity of (gold nanoparticle)–polythiophene composite for niche applications against pathogenic bacteria. Adv Healthc Mater 2(4):599–606

    Article  CAS  PubMed  Google Scholar 

  • Alibi S, Selma WB, Ramos-Vivas J, Smach MA, Touati R, Boukadida J, Navas J, Mansour HB (2020) Anti-oxidant, antibacterial, anti-biofilm, and anti-quorum sensing activities of four essential oils against multidrug-resistant bacterial clinical isolates. Curr Res Transl Med 68(2):59–66

    Article  PubMed  Google Scholar 

  • Al-Mohammed NN, Alias Y, Abdullah Z (2015) Bis-imidazolium and benzimidazolium based gemini-type ionic liquids structure: synthesis and antibacterial evaluation. RSC Adv 5:92602–92617

    Article  CAS  Google Scholar 

  • Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioeng Transl Med 1(1):10–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Azizi-Lalabadi M, Hashemi H, Feng J, Jafari SM (2020) Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Adv Colloid Interf Sci 28:102250

    Article  CAS  Google Scholar 

  • Bak H, Rathkjen PH, Adam M (2009) Strategy to reduce antibiotic use in Danish nurseries and finishing units. In: Safe pork conference proceedings, Quebec, Canada

    Google Scholar 

  • Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR (2018) Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans”. Front Microbiol 9:1441

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbieri R, Coppo E, Marchese A, Daglia M, Sobarzo-Sánchez E, Nabavi SF, Nabavi SM (2017) Phytochemicals for human disease: an update on plant-derived compounds antibacterial activity. Microbiol Res 196:44–68

    Article  CAS  PubMed  Google Scholar 

  • Bayir S, Barras A, Boukherroub R, Szunerits S, Raehm L, Richeter S, Durand JO (2018) Mesoporous silica nanoparticles in recent photodynamic therapy applications. Photochem Photobiol Sci 17(11):1651–1674

    Article  CAS  PubMed  Google Scholar 

  • Bekmukhametova A, Ruprai H, Hook JM, Mawad D, Houang J, Lauto A (2020) Photodynamic therapy with nanoparticles to combat microbial infection and resistance. Nanoscale 12(41):21034–21059

    Article  CAS  PubMed  Google Scholar 

  • Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A (2012) Probiotic mechanisms of action. Ann Nutr Metab 61(2):160–174. https://doi.org/10.1159/000342079

    Article  CAS  PubMed  Google Scholar 

  • Bikard D, Barrangou R (2017) Using CRISPR-Cas systems as antimicrobials. Curr Opin Microbiol 37:155–160

    Article  CAS  PubMed  Google Scholar 

  • Bouyahya A, Dakka N, Et-Touys A, Abrini J, Bakri Y (2017) Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pac J Trop Med 10(8):729–743

    Article  CAS  PubMed  Google Scholar 

  • Bowler P, Murphy C, Wolcott R (2020) Biofilm exacerbates antibiotic resistance: is this a current oversight in antimicrobial stewardship? Antimicrob Resist Infect Control 9(1):1–5

    Article  Google Scholar 

  • Burrowes B, Harper DR, Anderson J, McConville M, Enright MC (2011) Bacteriophage therapy: potential uses in the control of antibiotic-resistant pathogens. Expert Rev Anti-Infect Ther 9(9):775–785

    Article  PubMed  Google Scholar 

  • Cairns J, Ruokolainen L, Hultman J, Tamminen M, Virta M (2018) Ecology determines how low antibiotic concentration impacts community composition and horizontal transfer of resistance genes. Commun Biol 1:1–37

    Article  CAS  Google Scholar 

  • Cao C, Luo A, Wu P, Weng D, Zheng H, Wang S (2017) Efficacy and safety of morinidazole in pelvic inflammatory disease: results of a multicenter, double-blind, randomized trial. Eur J Clin Microbiol Infect Dis 36:1225–1230

    Article  CAS  PubMed  Google Scholar 

  • Carabajal MA, Asquith CR, Laitinen T, Tizzard GJ, Yim L, Rial A, Chabalgoity JA, Zuercher WJ, GarcíaVéscovi E (2019) Quinazoline-based antivirulence compounds selectively target Salmonella PhoP/PhoQ signal transduction system. Antimicrob Agents Chemother 64(1):e01744

    Article  PubMed  PubMed Central  Google Scholar 

  • Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ (2008) The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 6(1):17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celandroni F, Vecchione A, Cara A, Mazzantini D, Lupetti A, Ghelardi E (2019) Identification of Bacillus species: implication on the quality of probiotic formulations. PLoS One 14(5):e0217021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanishvili N (2012) Phage therapy--history from Twort and d’Herelle through Soviet experience to current approaches. Adv Virus Res 83:3–40

    Article  CAS  PubMed  Google Scholar 

  • Chapman CMC, Gibson GR, Rowland I (2011) Health benefits of probiotics: are mixtures more effective than single strains? Eur J Nutr 50(1):1–17. https://doi.org/10.1007/s00394-010-0166-z

    Article  CAS  PubMed  Google Scholar 

  • Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ, Martens JH, Rao NA, Aghajanirefah A, Manjeri GR (2014) mTOR-and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345:6204

    Article  CAS  Google Scholar 

  • Chouhan S, Sharma K, Guleria S (2017) Antimicrobial activity of some essential oils—present status and future perspectives. Medicine 4(3):58

    Google Scholar 

  • Colilla M, Vallet-Regí M (2020) Targeted stimuli-responsive mesoporous silica nanoparticles for bacterial infection treatment. Int J Mol Sci 21(22):8605

    Article  CAS  PubMed Central  Google Scholar 

  • Damte D, Gebru E, Lee SJ, Suh JW, Park SC (2013) Evaluation of anti-quorum sensing activity of 97 indigenous plant extracts from Korea through bioreporter bacterial strains Chromobacterium violaceum and Pseudomonas aeruginosa. J Microb Biochem Technol 5(2):42–46

    Article  Google Scholar 

  • Damu GLV, Wang Q, Zhang H, Zhang Y, Lv J, Zhou C (2013) A series of naphthalimide azoles: design, synthesis and bioactive evaluation as potential antimicrobial agents. Sci China Chem 56:952–969

    Article  CAS  Google Scholar 

  • de Castro JA, Guno MJV, Perez MO (2019) Bacillus clausii as adjunctive treatment for acute community-acquired diarrhea among Filipino children: a large-scale, multicenter, open-label study (CODDLE). Trop Dis Travel Med Vaccines 5:14

    Article  PubMed  PubMed Central  Google Scholar 

  • de Kraker ME, Stewardson AJ, Harbarth S (2016) Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med 13(11):e1002184

    Article  PubMed  PubMed Central  Google Scholar 

  • de Melo Pereira GV, de Oliveira Coelho B, Magalhães Júnior AI, Thomaz-Soccol V, Soccol CR (2018) How to select a probiotic? A review and update of methods and criteria. Biotechnol Adv 36(8):2060–2076. https://doi.org/10.1016/j.biotechadv.2018.09.003

    Article  PubMed  Google Scholar 

  • De Vecchi E, Nicola L, Zanini S, Drago L (2008) In vitro screening of probiotic characteristics of some Italian products. J Chemother 20:341–347

    Article  PubMed  Google Scholar 

  • Dedrick RM, Guerrero-Bustamante CA, Garlena RA et al (2019) Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 25:730–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • d’Hérelle F (1917) Sur un microbe invisible antagoniste des bacilles dysentérique. Acad Sci Paris 165:373–375

    Google Scholar 

  • DiGiandomenico A, Sellman BR (2015) Antibacterial monoclonal antibodies: the next generation? Curr Opin Microbiol 27:78–85

    Article  CAS  PubMed  Google Scholar 

  • Domenech M, Sempere J, de Miguel S, Yuste J (2018) Combination of antibodies and antibiotics as a promising strategy against multidrug-resistant pathogens of the respiratory tract. Front Immunol 9:2700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong H, Xiang H, Mu D, Wang D, Wang T (2019) Exploiting a conjugative CRISPR/Cas9 system to eliminate plasmid harboring mcr-1 gene from Escherichia coli. Int J Antimicrob Agents 53(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Doron S, Snydman DR (2015) Risk and safety of probiotics. Clin Infect Dis 60(suppl_2):S129–S134. https://doi.org/10.1093/cid/civ085

    Article  PubMed  PubMed Central  Google Scholar 

  • Drago L, Rodighiero V, Celeste T, Rovetto L, De Vecchi E (2010) Microbiological evaluation of commercial probiotic products available in the USA in 2009. J Chemother 22:373–377

    Article  CAS  PubMed  Google Scholar 

  • Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem 6:PMC.S14459. https://doi.org/10.4137/PMC.S14459

    Article  Google Scholar 

  • Founou LL, Founou RC, Essack SY (2016) Antibiotic resistance in the food chain: a developing country-perspective. Front Microbiol 7:1881

    Article  PubMed  PubMed Central  Google Scholar 

  • Furfaro LL, Payne MS, Chang BJ (2018) Bacteriophage therapy: clinical trials and regulatory hurdles. Front Cell Infect Microbiol 8:376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galloway WR, Bender A, Welch M, Spring DR (2009) The discovery of antibacterial agents using diversity-oriented synthesis. Chem Commun 18:2446–2462

    Article  CAS  Google Scholar 

  • Gao Y, Chen Y, Cao Y, Mo A, Peng Q (2021) Potentials of nanotechnology in treatment of methicillin-resistant Staphylococcus aureus. Eur J Med Chem 213:113056

    Article  CAS  PubMed  Google Scholar 

  • Gharpure S, Akash A, Ankamwar B (2020) A review on antimicrobial properties of metal nanoparticles. J Nanosci Nanotechnol 20(6):3303–3339

    Article  PubMed  CAS  Google Scholar 

  • Gholizadeh P, Aghazadeh M, Asgharzadeh M, Kafil H (2017) Suppressing the CRISPR/Cas adaptive immune system in bacterial infections. Eur J Clin Microbiol Infect Dis 36(11):2043–2051

    Article  CAS  PubMed  Google Scholar 

  • Ghosh R, Tiwary BK, Kumar A, Chakraborty R (2014) Guava leaf extract inhibits quorum-sensing and Chromobacterium violaceum induced lysis of human hepatoma cells: whole transcriptome analysis reveals differential gene expression. PLoS One 9(9):e107703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghosh C, Sarkar P, Issa R, Haldar J (2019) Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol 27(4):323–338

    Article  CAS  PubMed  Google Scholar 

  • Goswami S, Adhikari MD, Kar C, Thiyagarajan D, Das G, Ramesh A (2013) Synthetic amphiphiles as therapeutic antibacterials: lessons on bactericidal efficacy and cytotoxicity and potential application as an adjuvant in antimicrobial chemotherapy. J Mater Chem B 1(20):2612–2623

    Article  CAS  PubMed  Google Scholar 

  • Grema HA, Geidam YA, Gadzama GB, Ameh JA, Suleiman A (2015) Methicillin resistant Staphylococcus aureus (MRSA): a review. Adv Anim Vet Sci 3(2):79–98

    Article  Google Scholar 

  • Guachalla LM, Hartl K, Varga C, Stulik L, Mirkina I, Malafa S, Nagy E, Nagy G, Szijártó V (2017) Multiple modes of action of a monoclonal antibody against multidrug-resistant Escherichia coli sequence type 131-H 30. Antimicrob Agents Chemother 61(11):e01428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta P, Chhibber S, Harjai K (2015) Efficacy of purified lactonase and ciprofloxacin in preventing systemic spread of Pseudomonas aeruginosa in murine burn wound model. Burns 41(1):153–162

    Article  PubMed  Google Scholar 

  • Gupta A, Mumtaz S, Li CH, Hussain I, Rotello VM (2019) Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev 48(2):415–427

    Article  PubMed  PubMed Central  Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511

    Article  CAS  PubMed  Google Scholar 

  • Harish K, Varghese T (2006) Probiotics in humans–evidence based review. Calicut Med J 4(4):e3

    Google Scholar 

  • Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112(9):1300–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV (2005) Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J Am Chem Soc 127:210–216

    Article  CAS  PubMed  Google Scholar 

  • Hochma E, Yarmolinsky L, Khalfin B, Nisnevitch M, Ben-Shabat S, Nakonechny F (2021) Antimicrobial effect of phytochemicals from edible plants. Processes 9(11):2089

    Article  CAS  Google Scholar 

  • Hoelzer K, Bielke L, Blake DP, Cox E, Cutting SM, Devriendt B, Erlacher-Vindel E, Goossens E, Karaca K, Lemiere S, Metzner M, Raicek M, Collell Suriñach M, Wong NM, Gay C, Van Immerseel F (2018) Vaccines as alternatives to antibiotics for food producing animals. Part 1: challenges and needs. Vet Res 49(1):64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ivanova K, Ivanova A, Ramon E, Hoyo J, Sanchez-Gomez S, Tzanov T (2020) Antibody-enabled antimicrobial nanocapsules for selective elimination of Staphylococcus aureus. ACS Appl Mater Interfaces 12(32):35918–35927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jault P, Leclerc T, Jennes S, Pirnay JP, Que YA, Resch G, Rousseau AF, Ravat F, Carsin H, Le Floch R, Schaal JV (2019) Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis 19(1):35–45

    Article  PubMed  Google Scholar 

  • Jevons MP (1961) “Celbenin”-resistant staphylococci. Br Med J 1(5219):124

    Article  PubMed Central  Google Scholar 

  • Jiang Q, Chen J, Yang C, Yin Y, Yao K (2019) Quorum sensing: a prospective therapeutic target for bacterial diseases. Biomed Res Int 2019:2015978

    Article  PubMed  PubMed Central  Google Scholar 

  • Joule JA, Mills K (2007) Heterocyclic chemistry at a glance. Blackwell Publishing, Oxford, UK. ISBN-13: 978-1405139182, p 160

    Google Scholar 

  • Kennedy DA, Read AF (2017) Why does drug resistance readily evolve but vaccine resistance does not? Proc R Soc B 284:20162562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kerantzas CA, Jacobs WR Jr (2017) Origins of combination therapy for tuberculosis: lessons for future antimicrobial development and application. MBio 8(2):e01586–e01516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesavelu D, Rohit A, Karunasagar I, Karunasagar I (2020) Composition and laboratory correlation of commercial probiotics in India. Cureus 12:e11334

    PubMed  PubMed Central  Google Scholar 

  • Khalil N, Ashour M, Fikry S, Singab AN, Salama O (2018) Chemical composition and antimicrobial activity of the essential oils of selected Apiaceous fruits. Future J Pharm Sci 4(1):88–92

    Article  Google Scholar 

  • Khameneh B, Iranshahy M, Soheili V, Bazzaz BS (2019) Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob Resist Infect Control 8(1):1–28

    Article  Google Scholar 

  • Kim JS, Cho DH, Park M et al (2016) CRISPR/Cas9-mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum β-lactamases. J Microbiol Biotechnol 26(2):394–401

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Zhu W, Hendricks GL, Van Tyne D, Steele AD, Keohane CE, Fricke N, Conery AL, Shen S, Pan W, Lee K (2018) A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature 556(7699):103–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kollef MH, Betthauser KD (2021) Monoclonal antibodies as antibacterial therapies: thinking outside of the box. Lancet Infect Dis 21(9):1201–1202

    Article  PubMed  Google Scholar 

  • Kumar VP, Chauhan NS, Padh H, Rajani M (2006) Search for antibacterial and antifungal agents from selected Indian medicinal plants. J Ethnopharmacol 107(2):182–188

    Article  PubMed  Google Scholar 

  • Kutateladze M, Adamia R (2008) Phage therapy experience at the Eliava Institute. Med Mal Infect 38:426–430

    Article  CAS  PubMed  Google Scholar 

  • Kutter E, Vos D, Gvasalia G et al (2012) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11(1):69–86

    Article  Google Scholar 

  • Lahiri D, Nag M, Ghosh A et al (2021) Biofilm and antimicrobial resistance. In: Ray RR, Nag M, Lahiri D (eds) Biofilm-mediated diseases: causes and controls. Springer, Singapore

    Google Scholar 

  • Larsson DG, Flach CF (2021) Antibiotic resistance in the environment. Nat Rev Microbiol 4:1–3

    Google Scholar 

  • Lee NY, Ko WC, Hsueh PR (2019) Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front Pharmacol 10:1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis K (2013) Platforms for antibiotic discovery. Nat Rev Drug Discov 12(5):371–387

    Article  CAS  PubMed  Google Scholar 

  • Ma F, Xu S, Tang Z, Li Z, Zhang L (2021) Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosafety Health 3(1):32–38

    Article  Google Scholar 

  • Manohar P, Loh B, Leptihn S (2020) Will the overuse of antibiotics during the coronavirus pandemic accelerate antimicrobial resistance of bacteria? Inf Microb Dis 2(3):87–88

    Article  CAS  Google Scholar 

  • Markowiak P, Śliżewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9(9):1021

    Article  PubMed Central  CAS  Google Scholar 

  • Martínez SR, Ibarra LE, Ponzio RA, Forcone MV, Wendel AB, Chesta CA, Spesia MB, Palacios RE (2020) Photodynamic inactivation of ESKAPE group bacterial pathogens in planktonic and biofilm cultures using metallated porphyrin-doped conjugated polymer nanoparticles. ACS Inf Dis 6(8):2202–2213

    Article  CAS  Google Scholar 

  • Mba IE, Nweze EI (2021) Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol 37(6):1–30

    Article  Google Scholar 

  • Meeusen EN, Walker J, Peters A, Pastoret PP, Jungersen G (2007) Current status of veterinary vaccines. Clin Microbiol Rev 20(3):489–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meletis G (2016) Carbapenem resistance: overview of the problem and future perspectives. Therap Adv Inf Dis 3(1):15–21

    CAS  Google Scholar 

  • Meth-Cohn O (1993) The synthesis of pyridines, quinolines and other related systems by the Vilsmeier and the reverse Vilsmeier method. Heterocycles 35:539–557

    Article  CAS  Google Scholar 

  • Metras BN, Holle MJ, Parker VJ, Miller MJ, Swanson KS (2021) Commercial kefir products assessed for label accuracy of microbial composition and density. JDS Commun 2(3):87–91. https://doi.org/10.3168/jdsc.2020-0056

    Article  Google Scholar 

  • Micoli F, Bagnoli F, Rappuoli R, Serruto D (2021) The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol 19(5):287–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mocan T, Matea CT, Pop T, Mosteanu O, Buzoianu AD, Suciu S, Puia C, Zdrehus C, Iancu C, Mocan L (2017) Carbon nanotubes as anti-bacterial agents. Cell Mol Life Sci 74(19):3467–3479

    Article  CAS  PubMed  Google Scholar 

  • Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spect 4(2):4

    Article  CAS  Google Scholar 

  • Musk DJ Jr, Hergenrother PJ (2006) Chemical countermeasures for the control of bacterial biofilms: effective compounds and promising targets. Curr Med Chem 13(18):2163–2177

    Article  CAS  PubMed  Google Scholar 

  • Mutwiri G, Gerdts V, Littel D, Hurk S, Auray G, Eng N, Garlapati S, Babiuk LA, Potter A (2011) Combination adjuvants: the next generation of adjuvants? Expert Rev Vaccines 10(1):95–107

    Article  CAS  PubMed  Google Scholar 

  • Naskar A, Kim KS (2019) Nanomaterials as delivery vehicles and components of new strategies to combat bacterial infections: advantages and limitations. Microorganisms 7(9):356

    Article  CAS  PubMed Central  Google Scholar 

  • Natan M, Banin E (2017) From nano to micro: using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol Rev 41(3):302–322

    Article  CAS  PubMed  Google Scholar 

  • Nicholas AK (2018) A complementary medicine approach to augmenting antibiotic therapy: current practices in the use of probiotics during antibiotic therapy. Int J Complement Altern Med 11(2). https://doi.org/10.15406/ijcam.2018.11.00368

  • Okkeh M, Bloise N, Restivo E, De Vita L, Pallavicini P, Visai L (2021) Gold nanoparticles: can they be the next magic bullet for multidrug-resistant bacteria? Nano 11(2):312

    CAS  Google Scholar 

  • Oleksiewicz MB, Nagy G, Nagy E (2012) Anti-bacterial monoclonal antibodies: back to the future? Arch Biochem Biophys 526(2):124–131

    Article  CAS  PubMed  Google Scholar 

  • Pagadala R, Uppalaiah K, Kamatala CR, Meshram JS (2015) Synthesis and antimicrobial studies of novel imidazole containing bisazetidinones and bisthiazolidinone derivatives. J Heterocyclic Chem 52:403–410

    Article  CAS  Google Scholar 

  • Panda SK, Das R, Lavigne R, Luyten W (2020) Indian medicinal plant extracts to control multidrug-resistant S. aureus, including in biofilms. S Afr J Bot 128:283–291

    Article  CAS  Google Scholar 

  • Pandey KR, Naik SR, Vakil BV (2015) Probiotics prebiotics and synbiotics – a review. J Food Sci Technol 52(12):7577–7587. https://doi.org/10.1007/s13197-015-1921-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z (2019) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37(1):177–192

    Article  CAS  PubMed  Google Scholar 

  • Patra AK (2012) An overview of antimicrobial properties of different classes of phytochemicals. Diet Phytochem Microb 2012:1–32

    Google Scholar 

  • Patrone V, Molinari P, Morelli L (2016) Microbiological and molecular characterization of commercially available probiotics containing Bacillus clausii from India and Pakistan. Int J Food Microbiol 237:92–97

    Article  CAS  PubMed  Google Scholar 

  • Pelfrene E, Botgros R, Cavaleri M (2021) Antimicrobial multidrug resistance in the era of COVID-19: a forgotten plight? Antimicrob Resist Infect Control 10(1):1–6

    Article  Google Scholar 

  • Peterson E, Kaur P (2018) Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front Microbiol 9:2928

    Article  PubMed  PubMed Central  Google Scholar 

  • Prado MR, Blandón LM, Vandenberghe LPS, Rodrigues C, Castro GR, Thomaz-Soccol V, Soccol CR (2015) Milk kefir: composition microbial cultures biological activities and related products. Front Microbiol 6:1177. https://doi.org/10.3389/fmicb.2015.01177

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasher P, Singh M, Mudila H (2018) Silver nanoparticles as antimicrobial therapeutics: current perspectives and future challenges. 3. Biotech 8(10):1–23

    Google Scholar 

  • Prestinaci F, Pezzotti P, Pantosti A (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathog Global Health 109(7):309–318

    Article  Google Scholar 

  • Principi N, Silvestri E, Esposito S (2019) Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front Pharmacol 10:513

    Article  PubMed  PubMed Central  Google Scholar 

  • Pursey E, Sunderhauf D, Gaze WH, Westra ER, van Houte S (2018) CRISPR-Cas antimicrobials: challenges and future prospects. PLoS Pathog 14(6):e1006990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puvača N, Milenković J, Galonja Coghill T, Bursić V, Petrović A, Tanasković S, Pelić M, Ljubojević Pelić D, Miljković T (2021) Antimicrobial activity of selected essential oils against selected pathogenic bacteria: in vitro study. Antibiotics 10(5):546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rehman ZU, Leiknes T (2018) Quorum-quenching bacteria isolated from Red Sea sediments reduce biofilm formation by Pseudomonas aeruginosa. Front Microbiol 9:1354

    Article  PubMed  PubMed Central  Google Scholar 

  • Reid G, Gadir AA, Dhir R (2019) Probiotics: reiterating what they are and what they are not. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.00424

  • Rémy B, Mion S, Plener L, Elias M, Chabrière E, Daudé D (2018) Interference in bacterial quorum sensing: a biopharmaceutical perspective. Front Pharmacol 9:203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ribeiro da Cunha B, Fonseca LP, Calado CR (2019) Antibiotic discovery: where have we come from, where do we go? Antibiotics 8(2):45

    Article  PubMed Central  CAS  Google Scholar 

  • Rios AC, Moutinho CG, Pinto FC, Del Fiol FS, Jozala A, Chaud MV, Vila MM, Teixeira JA, Balcão VM (2016) Alternatives to overcoming bacterial resistances: state-of-the-art. Microbiol Res 191:51–80

    Article  CAS  PubMed  Google Scholar 

  • Roach DR, Debarbieux L (2017) Phage therapy: awakening a sleeping giant. Emerg Top Life Sci 1(1):93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousham EK, Unicomb L, Islam MA (2018) Human, animal and environmental contributors to antibiotic resistance in low-resource settings: integrating behavioural, epidemiological and One Health approaches. Proc R Soc B Biol Sci 285(1876):20180332

    Article  CAS  Google Scholar 

  • Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A (2016) Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21(7):836

    Article  PubMed Central  CAS  Google Scholar 

  • Sakr MM, Elkhatib WF, Aboshanab KM, Mantawy EM, Yassien MA, Hassouna NA (2021) In vivo evaluation of a recombinant N-acylhomoserine lactonase formulated in a hydrogel using a murine model infected with MDR Pseudomonas aeruginosa clinical isolate, CCASUP2. AMB Express 11(1):109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • San Millan A (2018) Evolution of plasmid-mediated antibiotic resistance in the clinical context. Trends Microbiol 26(12):978–985

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, Cano A, Espina M, Ettcheto M, Camins A, Silva AM (2020) Metal-based nanoparticles as antimicrobial agents: an overview. Nano 10(2):292

    Google Scholar 

  • Saylor C, Dadachova E, Casadevall A (2009) Monoclonal antibody-based therapies for microbial diseases. Vaccine 27:38–46

    Article  CAS  Google Scholar 

  • Scazzocchio F, Mondì L, Ammendolia MG, Goldoni P, Comanducci A, Marazzato M, Conte MP, Rinaldi F, Crestoni ME, Fraschetti C, Longhi C (2017) Coriander (Coriandrum sativum) essential oil: effect on multidrug resistant uropathogenic Escherichia coli. Nat Prod Commun 12(4):1934578X1701200438

    CAS  Google Scholar 

  • Sengupta S, Chattopadhyay MK, Grossart HP (2013) The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol 4:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Shabbir MA, Shabbir MZ, Wu Q, Mahmood S, Sajid A, Maan MK, Ahmed S, Naveed U, Hao H, Yuan Z (2019) CRISPR-cas system: biological function in microbes and its use to treat antimicrobial resistant pathogens. Ann Clin Microbiol Antimicrob 18(1):1–9

    Article  CAS  Google Scholar 

  • Silva DR, de Cássia Orlandi Sardi J, de Souza Pitangui N, Roque SM, da Silva ACB, Rosalen PL (2020) Probiotics as an alternative antimicrobial therapy: current reality and future directions. J Funct Foods 73:104080. https://doi.org/10.1016/j.jff.2020.104080

    Article  CAS  Google Scholar 

  • Singh AP, Biswas A, Shukla A, Maiti P (2019) Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther 4(1):1–21

    CAS  Google Scholar 

  • Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15(1):1–20

    Article  CAS  Google Scholar 

  • Soccol CR, Machado MR (2015) Current developments in probiotics. J Microbial Biochem Technol 07(01). https://doi.org/10.4172/1948-5948.1000175

  • Solomon SL, Oliver KB (2014) Antibiotic resistance threats in the United States: stepping back from the brink. Am Fam Physician 89(12):938–941

    PubMed  Google Scholar 

  • Spirescu VA, Chircov C, Grumezescu AM, Andronescu E (2021) Polymeric nanoparticles for antimicrobial therapies: an up-to-date overview. Polymers 13(5):724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strathdee S, Patterson T (2019) The perfect predator. Hachette Books, Paris

    Google Scholar 

  • Streicher LM (2021) Exploring the future of infectious disease treatment in a post-antibiotic era: a comparative review of alternative therapeutics. J Glob Antimicrob Resist 24:285–295

    Article  CAS  PubMed  Google Scholar 

  • Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, Ouellette M, Outterson K, Patel J, Cavaleri M, Cox EM, Houchens CR, Grayson ML, Hansen P, Singh N, Theuretzbacher U, Magrini N (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18(3):318–327

    Article  PubMed  Google Scholar 

  • Tang R, Yu H, Qi M, Yuan X, Ruan Z, Hu C, Xiao M, Xue Y, Yao Y, Liu Q (2022) Biotransformation of citrus fruits phenolic profiles by mixed probiotics in vitro anaerobic fermentation. LWT 160:113087. https://doi.org/10.1016/j.lwt.2022.113087

    Article  CAS  Google Scholar 

  • Tiwary BK, Pradhan K, Nanda AK, Chakraborty R (2015) Implication of quinazoline-4 (3H)-ones in medicinal chemistry: a brief review. J Chem Biol Ther 1:2572–0406

    Google Scholar 

  • Tiwary BK, Ghosh R, Moktan S, Ranjan VK, Dey P, Choudhury D, Dutta S, Deb D, Das AP, Chakraborty R (2017) Prospective bacterial quorum sensing inhibitors from Indian medicinal plant extracts. Lett Appl Microbiol 65(1):2–10

    Article  CAS  PubMed  Google Scholar 

  • Twort FW (1915) An investigation on the nature of ultra-microscopic viruses. Lancet 189:1241–1243

    Article  Google Scholar 

  • Uday SP, Thiyagarajan D, Goswami S, Adhikari MD, Das G, Ramesh A (2014) Amphiphile-mediated enhanced antibiotic efficacy and development of a payload nanocarrier for effective killing of pathogenic bacteria. J Mater Chem B 2(35):5818–5827

    Article  CAS  PubMed  Google Scholar 

  • Uruén C, Chopo-Escuin G, Tommassen J, Mainar-Jaime RC, Arenas J (2021) Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics 10(1):3

    Article  CAS  Google Scholar 

  • Vanhee LM, Goemé F, Nelis HJ, Coenye T (2010) Quality control of fifteen probiotic products containing Saccharomyces boulardii. J Appl Microbiol 109:1745–1752

    CAS  PubMed  Google Scholar 

  • Vecchione A, Celandroni F, Mazzantini D, Senesi S, Lupetti A, Ghelardi E (2018) Compositional quality and potential gastrointestinal behavior of probiotic products commercialized in Italy. Front Med 5. https://doi.org/10.3389/fmed.2018.00059

  • Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Therap 40(4):277

    Google Scholar 

  • Ventola CL (2017) Progress in nanomedicine: approved and investigational nanodrugs. Pharm Therap 42(12):742

    Google Scholar 

  • Venugopalan V, Shriner KA, Annie W-B (2010) Regulatory oversight and safety of probiotic use. Emerg Infect Dis 16(11):1661–1665. https://doi.org/10.3201/eid1611.100574

    Article  PubMed  PubMed Central  Google Scholar 

  • Vudumula U, Adhikari MD, Ojha B, Goswami S, Das G, Ramesh A (2012) Tuning the bactericidal repertoire and potency of quinoline-based amphiphiles for enhanced killing of pathogenic bacteria. RSC Adv 2(9):3864–3871

    Article  CAS  Google Scholar 

  • Wang P, He D, Li B et al (2019) Eliminating mcr-1-harbouring plasmids in clinical isolates using the CRISPR/Cas9 system. J Antimicrob Chemother 74:2559–2565

    Article  CAS  PubMed  Google Scholar 

  • Webb P, Coates J, Frongillo EA, Rogers BL, Swindale A, Bilinsky P (2006) Measuring household food insecurity: why it’s so important and yet so difficult to do. J Nutr 136(5):1404–1408

    Article  Google Scholar 

  • Wen SQ, Jeyakkumar P, Avula SR, Zhang L, Zhou CH (2016) Discovery of novel berberine imidazoles as safe antimicrobial agents by down regulating ROS generation. Bioorg Med Chem Lett 26(12):2768–2773

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2017) Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. World Health Organization, Geneva

    Google Scholar 

  • Xin Q, Shah H, Nawaz A, Xie W, Akram MZ, Batool A, Tian L, Jan SU, Boddula R, Guo B, Liu Q (2019) Antibacterial carbon-based nanomaterials. Adv Mater 31(45):1804838

    Article  CAS  Google Scholar 

  • Yeon KM, You J, Adhikari MD, Hong SG, Lee I, Kim HS, Kim LN, Nam J, Kwon SJ, Kim MI, Sajomsang W (2019) Enzyme-immobilized chitosan nanoparticles as environmentally friendly and highly effective antimicrobial agents. Biomacromolecules 20(7):2477–2485

    Article  CAS  PubMed  Google Scholar 

  • Yeung PSM, Sanders ME, Kitts CL, Cano R, Tong PS (2002) Species-specific identification of commercial probiotic strains. J Dairy Sci 85(5):1039–1051. https://doi.org/10.3168/jds.S0022-0302(02)74164-7

    Article  CAS  PubMed  Google Scholar 

  • Zawistowska-Rojek A, Zareba T, Mrówka A, Tyski S (2016) Assessment of the microbiological status of probiotic products. Pol J Microbiol 65:97–104

    Article  PubMed  Google Scholar 

  • Zhang H, Cheng Q-X, Liu A-M, Zhao G (2017) A novel and efficient method for bacteria genome editing employing both CRISPR/Cas9 and an antibiotic resistance cassette. Front Microbiol 8:812

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Subires Bhattacharya, Vice Chancellor, University of North Bengal, Darjeeling, India, for his inspiration and extending infrastructural support. We also express our sincere thanks to the Registrar (Officiating), Prof. Pranab Ghosh, University of North Bengal, for his valuable suggestions. We would also like to extend our sincere thanks to Dr. Lalit P. Tirkey, Principal, North Bengal St. Xavier’s College (NBSXC), Rajganj, Jalpaiguri, for extending infrastructural support and valuable suggestions.

Conflict of Interest

The authors declare no competing conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deb Adhikari, M., Saha, T., Tiwary, B.K. (2022). Quest for Alternatives to Antibiotics: An Urgent Need of the Twenty-First Century. In: Saha, T., Deb Adhikari, M., Tiwary, B.K. (eds) Alternatives to Antibiotics. Springer, Singapore. https://doi.org/10.1007/978-981-19-1854-4_1

Download citation

Publish with us

Policies and ethics