Skip to main content

Carbon Based Perovskite Composite Catalysts and Their Structural, Morphological and Photocatalytic Performances

  • Chapter
  • First Online:
Carbon Composite Catalysts

Part of the book series: Composites Science and Technology ((CST))

  • 327 Accesses

Abstract

Recently, perovskite materials have shown excellent promise for efficient photodegradation and water splitting processes, on account of their unique crystal structure and electronic properties. The crystal structure of perovskite offers an excellent framework to tune the band gap values to enable visible light absorption and band edge potentials, meeting the requirement of specific photocatalytic features. Nevertheless, fast recombination rate, long-term stability as well as large-scale production still limit their applications especially in light driven processes. Carbon materials, scoping from one-dimensional nanostructures to three-dimensional carbon aerogels, have been successfully utilized in improving structural and optical properties as well as catalytic activities of perovskites. In particular, the recombination rates can be remarkably hindered with the introduction of carbon materials upgrading the catalytic degradation performance. Various perovskite-carbon composites have been discussed, emphasizing their synthesis method, specific improvements on their characteristics related with enhanced activities in the photocatalytic-driven systems. This review provides a broad overview of perovskite coupled with carbonaceous photocatalysts, summarizing developments, and offering useful insights for their future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang H, Zhang Q, Qiu M, Hu B (2021) Synthesis and application of perovskite-based photocatalysts in environmental remediation: a review. J Mol Liq 334:116029. https://doi.org/10.1016/j.molliq.2021.116029

    Article  CAS  Google Scholar 

  2. Shu L, Sunarso J, Hashim SS, Mao J, Zhou W, Liang F (2019) Advanced perovskite anodes for solid oxide fuel cells: a review. Int J Hydrogen Energy 44:31275–31304. https://doi.org/10.1016/j.ijhydene.2019.09.220

    Article  CAS  Google Scholar 

  3. Assirey EAR (2019) Perovskite synthesis, properties and their related biochemical and industrial application. Saudi Pharm J 27:817–829. https://doi.org/10.1016/j.jsps.2019.05.003

    Article  CAS  Google Scholar 

  4. Tasleem S, Tahir M (2020) Recent progress in structural development and band engineering of perovskites materials for photocatalytic solar hydrogen production: a review. Int J Hydrogen Energy 45:19078–19111. https://doi.org/10.1016/j.ijhydene.2020.05.090

    Article  CAS  Google Scholar 

  5. Wang J, Nilsson AM, Barrios D, Vargas WE, Wäckelgård E, Niklasson GA (2019) Light scattering materials for energy-related applications: determination of absorption and scattering coefficients. Mater Today Proc 33:2474–2480. https://doi.org/10.1016/j.matpr.2020.01.339

    Article  CAS  Google Scholar 

  6. Li CQ, Yi SS, Liu Y, Niu ZL, Yue XZ, Liu ZY (2021) In-situ constructing S-scheme/Schottky junction and oxygen vacancy on SrTiO3 to steer charge transfer for boosted photocatalytic H2 evolution. Chem Eng J 417:129231. https://doi.org/10.1016/j.cej.2021.129231

  7. Kong J, Yang T, Rui Z, Ji H (2019) Perovskite-based photocatalysts for organic contaminants removal: current status and future perspectives. Catal Today 327:47–63. https://doi.org/10.1016/j.cattod.2018.06.045

    Article  CAS  Google Scholar 

  8. Kéranguéven G, Ulhaq-Bouillet C, Papaefthimiou V, Royer S, Savinova E (2017) Perovskite-carbon composites synthesized through in situ autocombustion for the oxygen reduction reaction: the carbon effect. Electrochim Acta 245:156–164. https://doi.org/10.1016/j.electacta.2017.05.113

    Article  CAS  Google Scholar 

  9. Xiao P, Xu X, Zhu J, Zhu Y (2020) In situ generation of perovskite oxides and carbon composites: a facile, effective and generalized route to prepare catalysts with improved performance. J Catal 383:88–96. https://doi.org/10.1016/j.jcat.2020.01.007

    Article  CAS  Google Scholar 

  10. Milani A, Bassi AL, Russo V, Tommasini M, Casari C (2019) Linear carbon: from 1D carbyne to 2D hybrid sp-sp2 nanostructures beyond grapheme. In: Handbook of graphene, Vol. 3 Graphene-like 2D materials, p 297

    Google Scholar 

  11. Yang Y, Chiang K, Burke N (2011) Porous carbon-supported catalysts for energy and environmental applications: a short review. Catal Today 178:197–205. https://doi.org/10.1016/j.cattod.2011.08.028

    Article  CAS  Google Scholar 

  12. Mamba G, Gangashe G, Moss L, Hariganesh S, Thakur S, Vadivel S, Mishra AK, Vilakati GD, Muthuraj V, Nkambule TTI (2020) State of the art on the photocatalytic applications of graphene based nanostructures: from elimination of hazardous pollutants to disinfection and fuel generation. J Environ Chem Eng 8:103505. https://doi.org/10.1016/j.jece.2019.103505

    Article  CAS  Google Scholar 

  13. Meng C, Zhao K, Yang M, Liang Y (2021) Hydrothermal preparation of novel rGO-KTaO 3 nanocubes with enhanced visible light photocatalytic activity. Spectrochim Acta Part A Mol Biomol Spectrosc 250:119352. https://doi.org/10.1016/j.saa.2020.119352

  14. Liang J, Jiang Z, Wong PK, Lee C-S (2020) Recent progress on carbon nitride and its hybrid photocatalysts for CO2 reduction. Solar RRL 5:2000478.https://doi.org/10.1002/solr.202000478

  15. Meng F, Zhou Y, Gao L, Li Y, Liu A, Zhang, Fan M, Wei G, Ma T (2021) Environmental risks and strategies for the long-term stability of carbon-based perovskite solar cells. Mater Today Energy 19.https://doi.org/10.1016/j.mtener.2020.100590

  16. Hu R, Chu L, Zhang J, Li X, Huang W (2017) Carbon materials for enhancing charge transport in the advancements of perovskite solar cells. J Power Sources 361:259–275. https://doi.org/10.1016/j.jpowsour.2017.06.051

    Article  CAS  Google Scholar 

  17. Cao S, Yu J (2016) Carbon-based H2-production photocatalytic materials. J Photochem Photobiol C Photochem Rev 27:72–99. https://doi.org/10.1016/j.jphotochemrev.2016.04.002

    Article  CAS  Google Scholar 

  18. Chang CJ, Wang CW, Wei YH, Chen CY (2018) Enhanced photocatalytic H2 production activity of Ag-doped Bi2WO6-graphene based photocatalysts. Int J Hydrogen Energy 43:11345–11354. https://doi.org/10.1016/j.ijhydene.2018.03.091

    Article  CAS  Google Scholar 

  19. Wang X, Liu B, Lu Q, Qu Q (2014) Graphene-based materials: fabrication and application for adsorption in analytical chemistry. J Chromatogr A 1362:1–15. https://doi.org/10.1016/j.chroma.2014.08.023

    Article  CAS  Google Scholar 

  20. Xian T, Yang H, Huo YS (2014) Enhanced photocatalytic activity of CaTiO3-graphene nanocomposites for dye degradation. Phys Scr 89.https://doi.org/10.1088/0031-8949/89/11/115801

  21. Kumar A, Kumar S, Bahuguna A, Kumar A, Sharma V, Krishnan V (2017) Recyclable, bifunctional composites of perovskite type N-CaTiO3 and reduced graphene oxide as an efficient adsorptive photocatalyst for environmental remediation. Mater. Chem. Front. 1:2391–2404. https://doi.org/10.1039/c7qm00362e

    Article  CAS  Google Scholar 

  22. Ramkumar R, Jagan G, Nivedha AK, Krishna Priya S, Selvi A (2021) Amalgamation and characterization of graphene-calcium titanate composite for electrochemical studies. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.11.112

  23. Gao W, Zhang W, Tian B, Zhen W, Wu Y, Zhang X, Lu G (2018) Visible light driven water splitting over CaTiO3/Pr3+-Y2SiO5/RGO catalyst in reactor equipped artificial gill. Appl Catal B Environ 224:553–562. https://doi.org/10.1016/j.apcatb.2017.10.072

    Article  CAS  Google Scholar 

  24. Mohammed J, Abubakar BF, Yerima KU, Hamisu H, Ismail UT, Muhammad A, Zulfatu UF, Abubakar A, Salihu NM, Abubakar MS, Saidu Y, Tchouank Tekou Carol T, Srivastava AK (2018) Biodegradable polymer modified rGO/PANI/CCTO nanocomposites: structural and dielectric properties. Mater Today Proc 5:28462–28469.https://doi.org/10.1016/j.matpr.2018.10.133

  25. Kumar A, Navakoteswara Rao V, Kumar A, Venkatakrishnan Shankar M, Krishnan V (2020) Interplay between mesocrystals of CaTiO3 and edge sulfur atom enriched MoS2 on reduced graphene oxide nanosheets: enhanced photocatalytic performance under sunlight irradiation. ChemPhotoChem 4:427–444. https://doi.org/10.1002/cptc.201900267

    Article  CAS  Google Scholar 

  26. Chen X, Di L, Yang H, Xian T (2019) A magnetically recoverable CaTiO3/reduced graphene oxide/NiFe2O4 nanocomposite for the dye degradation under simulated sunlight irradiation. J Ceram Soc Japan 127:221–231. https://doi.org/10.2109/jcersj2.18168

    Article  CAS  Google Scholar 

  27. Ahmadi M, Seyed Dorraji MS, Rasoulifard MH, Amani-Ghadim AR (2019) The effective role of reduced-graphene oxide in visible light photocatalytic activity of wide band gap SrTiO3 semiconductor. Sep Purif Technol 228:115771. https://doi.org/10.1016/j.seppur.2019.115771

    Article  CAS  Google Scholar 

  28. Mohammadi P, Ghorbani-Shahna F, Bahrami A, Rafati AA, Farhadian M (2020) Plasma-photocatalytic degradation of gaseous toluene using SrTiO3/rGO as an efficient heterojunction for by-products abatement and synergistic effects. J Photochem Photobiol A Chem 394.https://doi.org/10.1016/j.jphotochem.2020.112460

  29. He GL, Zhong YH, Chen MJ, Li X, Fang YP, Xu YH (2016) One-pot hydrothermal synthesis of SrTiO3-reduced graphene oxide composites with enhanced photocatalytic activity for hydrogen production. J Mol Catal A Chem 423:70–76. https://doi.org/10.1016/j.molcata.2016.05.025

    Article  CAS  Google Scholar 

  30. Chang CW, Hu C (2020) Graphene oxide-derived carbon-doped SrTiO3 for highly efficient photocatalytic degradation of organic pollutants under visible light irradiation. Chem Eng J 383:123116. https://doi.org/10.1016/j.cej.2019.123116

    Article  CAS  Google Scholar 

  31. Daulbayev C, Sultanov F, Korobeinyk AV, Yeleuov M, Azat S, Bakbolat B, Umirzakov A, Mansurov Z (2021) Bio-waste-derived few-layered graphene/SrTiO3/PAN as efficient photocatalytic system for water splitting. Appl Surf Sci 549:149176. https://doi.org/10.1016/j.apsusc.2021.149176

    Article  CAS  Google Scholar 

  32. Suzuki TM, Iwase A, Tanaka H, Sato S, Kudo A, Morikawa T (2015) Z-scheme water splitting under visible light irradiation over powdered metal-complex/semiconductor hybrid photocatalysts mediated by reduced graphene oxide. J Mater Chem A 3:13283–13290. https://doi.org/10.1039/c5ta02045j

    Article  CAS  Google Scholar 

  33. Pham TT, Nguyen-Huy C, Shin EW (2016) NiTiO3/reduced graphene oxide materials synthesized by a two-step microwave-assisted method. Mater Lett 184:38–42. https://doi.org/10.1016/j.matlet.2016.07.136

    Article  CAS  Google Scholar 

  34. El-Maghrabi HH, Nada AA, Diab KR, Youssef AM, Hamdy A, Roualdes S, Abd El-Wahab S (2018) Facile fabrication of NiTiO3/graphene nanocomposites for photocatalytic hydrogen generation. J Photochem Photobiol A Chem 365:86–93. https://doi.org/10.1016/j.jphotochem.2018.07.040

    Article  CAS  Google Scholar 

  35. Kang C, Xiao K, Yao Z, Wang Y, Huang D, Zhu L, Liu F, Tian T (2018) Hydrothermal synthesis of graphene-ZnTiO3 nanocomposites with enhanced photocatalytic activities. Res Chem Intermed 44:6621–6636. https://doi.org/10.1007/s11164-018-3512-z

    Article  CAS  Google Scholar 

  36. Mashkouri S, Arsalani N, Hossienzadeh A, Shahryari E, Safavi M (2020) Green synthesis of nanocomposite multilayer graphene-ZnTiO3 at one step under mechanochemical method and investigation of band gap. J Mater Sci Mater Electron 31:4582–4586. https://doi.org/10.1007/s10854-020-03009-2

    Article  CAS  Google Scholar 

  37. Li J, Cui H, Mu D, Liu Y, Guan T, Xia Z, Jiang L, Zuo J, Tan C, You H (2019) Synthesis and characterization of rGO decorated cubic ZnTiO3 rods for solar light-induced photodegradation of rhodamine B. New J Chem 43:3374–3382. https://doi.org/10.1039/C8NJ01971A

    Article  CAS  Google Scholar 

  38. Wu H, Min Y, Zhang Q, Li W, Yuan J, Wu Z, Wang S (2016) Low-temperature synthesis of mesoporous ZnTiO3-graphene composite for the removal of norfloxacin in aqueous solution. RSC Adv 6:103822–103829. https://doi.org/10.1039/c6ra17556b

    Article  CAS  Google Scholar 

  39. Gayathri S, Jayabal P, Kottaisamy M, Ramakrishnan V (2015) Synthesis of the graphene-ZnTiO3 nanocomposite for solar light assisted photodegradation of methylene blue. J Phys D Appl Phys 48:415305. https://doi.org/10.1088/0022-3727/48/41/415305

    Article  CAS  Google Scholar 

  40. Ray SK, Cho J, Hur J (2021) A critical review on strategies for improving efficiency of BaTiO3-based photocatalysts for wastewater treatment. J Environ Manage 290:112679. https://doi.org/10.1016/j.jenvman.2021.112679

    Article  CAS  Google Scholar 

  41. Zhao Y, Zhang X, Liu J, Wang C, Li J, Jin H (2018) Graphene oxide modified nano-sized BaTiO3 as photocatalyst. Ceram Int 44:15929–15934. https://doi.org/10.1016/j.ceramint.2018.06.013

    Article  CAS  Google Scholar 

  42. Rastogi M, Bowen C, Kushwaha HS, Vaish R (2016) First principles insights into improved catalytic performance of BaTiO3-graphene nanocomposites in conjugation with experimental investigations. Mater Sci Semicond Process 51:33–41. https://doi.org/10.1016/j.mssp.2016.04.008

    Article  CAS  Google Scholar 

  43. Mengting Z, Kurniawan TA, Fei S, Ouyang T, Othman MHD, Rezakazemi M, Shirazian S (2019) Applicability of BaTiO3/graphene oxide (GO) composite for enhanced photodegradation of methylene blue (MB) in synthetic wastewater under UV–vis irradiation. Environ Pollut 255.https://doi.org/10.1016/j.envpol.2019.113182

  44. Wang RX, Zhu Q, Wang WS, Fan CM, Xu AW (2015) BaTiO3-graphene nanocomposites: synthesis and visible light photocatalytic activity. New J Chem 39:4407–4413. https://doi.org/10.1039/c4nj02272f

    Article  CAS  Google Scholar 

  45. Jiang S, Zhao R, Ren Z, Chen X, Tian H, Wie X, Li X, Shen G, Han G (2016) A reduced graphene oxide (rGO)-ferroelectrics hybrid nanocomposite as high efficient visible-light-driven photocatalyst. ChemistrySelect 1:6020–6025. https://doi.org/10.1002/slct.201601505

    Article  CAS  Google Scholar 

  46. Zuo Y, Luo J, Cheng M, Zhang K, Dong R (2018) Synthesis, characterization and enhanced electromagnetic properties of BaTiO3/NiFe2O4-decorated reduced graphene oxide nanosheets. J Alloys Compd 744:310–320. https://doi.org/10.1016/j.jallcom.2018.02.071

    Article  CAS  Google Scholar 

  47. Ma Y, Luo H, Guo R, Zhou K, Zhang D (2018) Enhanced performance in multilayer-structured nanocomposites using BaTiO3 and Ba0.8Sr0.2TiO3 decorated graphene hybrids. Ceram Int 44:20871–20876. https://doi.org/10.1016/j.ceramint.2018.08.092

    Article  CAS  Google Scholar 

  48. Dash T, Palei BB, Mohanty N, Mohapatra SS, Mishra RK, Biswal SK, Behera D (2021) Study on microstructural influence of graphene on synthesis of BaTiO3. Mater Today Proc 43:447–450. https://doi.org/10.1016/j.matpr.2020.11.968

    Article  CAS  Google Scholar 

  49. Pant B, Park M, Park SJ (2018) Synthesis, characterization, and photocatalytic performances of electrospun cadmium titanate nanofibers immobilized into the reduced graphene oxide sheets. Mater Lett 228:365–368. https://doi.org/10.1016/j.matlet.2018.06.036

    Article  CAS  Google Scholar 

  50. Alhaddad M, Shawky A, Zaki ZI (2021) Reduced graphene oxide-supported PbTiO3 nanospheres: Improved ceramic photocatalyst toward enriched photooxidation of thiophene by visible light. Mol Catal 499:111301. https://doi.org/10.1016/j.mcat.2020.111301

    Article  CAS  Google Scholar 

  51. Wang C, Shan L, Song D, Xiao Y, Suriyaprakash J (2019) Hydrothermal synthesis of rGO/PbTiO3 photocatalyst and its photocatalytic H2 evolution activity. J Nanomater (2019).https://doi.org/10.1155/2019/4869728

  52. Peng Q, Weng X, Xie W, Ying M, Lin X, Dai Y, Yu Q, Pan H, Liu J, Du M (2020) Photocatalytic reduction for graphene oxide by PbTiO3 with high polarizability and its electrocatalytic application in pyrrole detection. J Colloid Interface Sci 560:502–509. https://doi.org/10.1016/j.jcis.2019.10.022

    Article  CAS  Google Scholar 

  53. Wu CH, Zhang YZ, Li S, Zheng HJ, Wang H, Liu JB, Li KW, Yan H (2011) Synthesis and photocatalytic properties of the graphene-La2Ti2O7 nanocomposites. Chem Eng J 178:468–474. https://doi.org/10.1016/j.cej.2011.10.062

    Article  CAS  Google Scholar 

  54. Sharma SK, Kumar A, Sharma G, Stadler FJ, Naushad M, Ghfar AA, Ahamad T (2020) LaTiO2N/Bi2S3 Z-scheme nano heterostructures modified by rGO with high interfacial contact for rapid photocatalytic degradation of tetracycline. J Mol Liq 311:113300. https://doi.org/10.1016/j.molliq.2020.113300

    Article  CAS  Google Scholar 

  55. Hu J, Ma J, Wang L, Huang H (2014) Synthesis and photocatalytic properties of LaMnO3-graphene nanocomposites. J Alloys Compd 583:539–545. https://doi.org/10.1016/j.jallcom.2013.09.030

    Article  CAS  Google Scholar 

  56. Hu J, Ma J, Wang L, Huang H, Ma L (2014) Preparation, characterization and photocatalytic activity of Co-doped LaMnO3/graphene composites. Powder Technol 254:556–562. https://doi.org/10.1016/j.powtec.2014.01.071

    Article  CAS  Google Scholar 

  57. Lv T, Wu M, Guo M, Liu Q, Jia L (2019) Self-assembly photocatalytic reduction synthesis of graphene-encapusulated LaNiO3 nanoreactor with high efficiency and stability for photocatalytic water splitting to hydrogen. Chem Eng J 356:580–591. https://doi.org/10.1016/j.cej.2018.09.031

    Article  CAS  Google Scholar 

  58. Tasleem S, Tahir M (2020) Current trends in strategies to improve photocatalytic performance of perovskites materials for solar to hydrogen production. Renew Sustain Energy Rev 132:110073. https://doi.org/10.1016/j.rser.2020.110073

    Article  CAS  Google Scholar 

  59. An J, Zhu L, Wang N, Song Z, Yang Z, Du D, Tang H (2013) Photo-Fenton like degradation of tetrabromobisphenol A with grapheneBiFeO3 composite as a catalyst. Chem Eng J 219:225–237. https://doi.org/10.1016/j.cej.2013.01.013

    Article  CAS  Google Scholar 

  60. Li J, Wang Y, Ling H, Qiu Y, Lou J, Hou X, Bag SP, Wang J, Wu H, Chai G (2019) Significant enhancement of the visible light photocatalytic properties in 3D BiFeO3/graphene composites. Nanomaterials 9.https://doi.org/10.3390/nano9010065

  61. Farhadi ARK, Rahemi N, Allahyari S, Tasbihi M (2021) Metal-doped perovskite BiFeO3/rGO nanocomposites towards the degradation of acetaminophen in aqueous phase using plasma-photocatalytic hybrid technology. J Taiwan Inst Chem Eng 120:77–92. https://doi.org/10.1016/j.jtice.2021.03.021

    Article  CAS  Google Scholar 

  62. Vishwakarma AK, Hussain M, Verma SK, Shukla V, Shaz MA, Srivastava ON (2021) Synthesis and characterizations of graphene/Sm doped BiFeO3 composites photoanode for efficient photo-electrochemical water splitting. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2021.02.115

    Article  Google Scholar 

  63. Sun A, Chen H, Song C, Jiang F, Wang X, Fu Y (2013) Magnetic Bi25FeO40-graphene catalyst and its high visible-light photocatalytic performance. RSC Adv 3:4332–4340. https://doi.org/10.1039/c3ra22626c

    Article  CAS  Google Scholar 

  64. Kadi MW, Mohamed RM, Ismail AA (2020) Facile synthesis of mesoporous BiFeO3/graphene nanocomposites as highly photoactive under visible light. Opt Mater 104:109842. https://doi.org/10.1016/j.optmat.2020.109842

    Article  CAS  Google Scholar 

  65. Zou CY, Liu SQ, Shen Z, Zhang Y, Jiang NS, Ji WC (2017) Efficient removal of ammonia with a novel graphene-supported BiFeO3 as a reusable photocatalyst under visible light. Cuihua Xuebao/Chinese J Catal 38:20–28. https://doi.org/10.1016/S1872-2067(17)62752-9

    Article  CAS  Google Scholar 

  66. Li P, Li L, Xu M, Chen Q, He Y (2017) Enhanced photocatalytic property of BiFeO3/N-doped graphene composites and mechanism insight. Appl Surf Sci 396:879–887. https://doi.org/10.1016/j.apsusc.2016.11.052

    Article  CAS  Google Scholar 

  67. Hu X, Wang W, Xie G, Wang H, Tan X, Jin Q, Zhou D, Zhao Y (2019) Ternary assembly of g-C3N4/graphene oxide sheets/BiFeO3 heterojunction with enhanced photoreduction of Cr(VI) under visible-light irradiation. Chemosphere 216:733–741. https://doi.org/10.1016/j.chemosphere.2018.10.181

    Article  CAS  Google Scholar 

  68. Zhou Q, Lin Y, Zhang K, Li M, Tang D (2018) Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device. Biosens Bioelectron 101:146–152. https://doi.org/10.1016/j.bios.2017.10.027

    Article  CAS  Google Scholar 

  69. Bagherzadeh M, Kaveh R (2018) A new SnS2-BiFeO3/reduced graphene oxide photocatalyst with superior photocatalytic capability under visible light irradiation. J Photochem Photobiol A Chem 359:11–22. https://doi.org/10.1016/j.jphotochem.2018.03.031

    Article  CAS  Google Scholar 

  70. Gao X, Wang Y, Wang Q, Wu X, Zhang W, Zong M, Zhang L (2019) Facile synthesis of a novel flower-like BiFeO3 microspheres/graphene with superior electromagnetic wave absorption performances. Ceram Int 45:3325–3332. https://doi.org/10.1016/j.ceramint.2018.10.243

    Article  CAS  Google Scholar 

  71. Kiani M, Kiani AB, Khan SA, ur Rehmana S, Khan QU, Mahmood I, Saleemi AS, Jalil A, Sohail M, Zhu L (2019) Facile synthesis of Gd and Sn co-doped BiFeO3 supported on nitrogen doped graphene for enhanced photocatalytic activity. J Phys Chem Solids 130:222–229.https://doi.org/10.1016/j.jpcs.2019.01.032

  72. Soltani T, Lee BK (2016) Sono-synthesis of nanocrystallized BiFeO3/reduced graphene oxide composites for visible photocatalytic degradation improvement of bisphenol A. Chem Eng J 306:204–213. https://doi.org/10.1016/j.cej.2016.07.051

    Article  CAS  Google Scholar 

  73. Kumar A, Sharma G, Naushad M, Ahamad T, Veses RC, Stadler FJ (2019) Highly visible active Ag2CrO4/Ag/BiFeO3@RGO nano-junction for photoreduction of CO2 and photocatalytic removal of ciprofloxacin and bromate ions: the triggering effect of Ag and RGO. Chem Eng J 370:148–165. https://doi.org/10.1016/j.cej.2019.03.196

    Article  CAS  Google Scholar 

  74. Acharya S, Padhi DK, Parida KM (2020) Visible light driven LaFeO3 nano sphere/RGO composite photocatalysts for efficient water decomposition reaction. Catal Today 353:220–231. https://doi.org/10.1016/j.cattod.2017.01.001

    Article  CAS  Google Scholar 

  75. Abdel-Aal SK, Aly AE, Chanduví HHM, Gil Rebaza AV, Atteia E, Shankar A (2020) Magnetic and optical properties of perovskite-graphene nanocomposites LaFeO3-rGO: experimental and DFT calculations. Chem Phys 538:110874. https://doi.org/10.1016/j.chemphys.2020.110874

    Article  CAS  Google Scholar 

  76. Rezanezhad A, Rezaie E, Ghadimi LS, Hajalilou A, Abouzari-Lotf E, Arsalani N (2020) Outstanding supercapacitor performance of Nd–Mn co-doped perovskite LaFeO3@nitrogen-doped graphene oxide nanocomposites. Electrochim Acta 335:135699. https://doi.org/10.1016/j.electacta.2020.135699

    Article  CAS  Google Scholar 

  77. Jing J, Cao C, Ma S, Li Z, Qu G, Xie B, Jin W, Zhao Y (2021) Enhanced defect oxygen of LaFeO3/GO hybrids in promoting persulfate activation for selective and efficient elimination of bisphenol A in food wastewater. Chem Eng J 407:126890. https://doi.org/10.1016/j.cej.2020.126890

    Article  CAS  Google Scholar 

  78. Mutalib MA, Aziz F, Jamaludin NA, Yahya N, Ismail AF, Mohamed MA, Yusop MZM, Salleh WNW, Jaafar J, Yusof N (2018) Enhancement in photocatalytic degradation of methylene blue by LaFeO3-GO integrated photocatalyst-adsorbents under visible light irradiation. Korean J Chem Eng 35:548–556. https://doi.org/10.1007/s11814-017-0281-0

    Article  CAS  Google Scholar 

  79. Orak C, Yüksel A (2021) Graphene-supported LaFeO3 for photocatalytic hydrogen energy production. Int J Energy Res, 1–17.https://doi.org/10.1002/er.6620

  80. Vijayaraghavan T, Althaf R, Babu P, Parida KM, Vadivel S, Ashok AM (2020) Visible light active LaFeO3 nano perovskite-RGO-NiO composite for efficient H2 evolution by photocatalytic water splitting and textile dye degradation. J Environ Chem Eng 9:104675. https://doi.org/10.1016/j.jece.2020.104675

    Article  CAS  Google Scholar 

  81. Lv T, Wang H, Hong W, Wang P, Jia L (2019) In situ self-assembly synthesis of sandwich-like TiO2/reduced graphene oxide/LaFeO3 Z-scheme ternary heterostructure towards enhanced photocatalytic hydrogen production. Mol Catal 475:110497. https://doi.org/10.1016/j.mcat.2019.110497

    Article  CAS  Google Scholar 

  82. Bajorowicz B, Reszczyńska J, Lisowski W, Klimczuk T, Winiarski M, Słoma M, Zaleska-Medynska A (2015) Perovskite-type KTaO3-reduced graphene oxide hybrid with improved visible light photocatalytic activity. RSC Adv 5:91315–91325. https://doi.org/10.1039/c5ra18124k

    Article  CAS  Google Scholar 

  83. Meng C, Zhao K, Yang M, Liang Y (2021) Hydrothermal preparation of novel rGO-KTaO3 nanocubes with enhanced visible light photocatalytic activity. Spectrochim Acta Part A Mol Biomol Spectrosc 250:119352. https://doi.org/10.1016/j.saa.2020.119352

  84. Yang F, Yan L, Zhang B, He X, Li Y, Tang Y, Ma C, Li Y (2019) Fabrication of ternary NaTaO3/g-C3N4/G heterojunction photocatalyst with enhanced activity for Rhodamine B degradation. J. Alloys Compd 805:802–810

    Google Scholar 

  85. Mukherji A, Seger B, Lu GQ, Wang L (2011) Nitrogen doped Sr2Ta2O7 coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production. ACS Nano 5:3483–3492. https://doi.org/10.1021/nn102469e

    Article  CAS  Google Scholar 

  86. Fu Z, Zhang S, Fu Z (2019) Hydrothermal preparation of NaTaO3/rGO composite photocatalyst to enhance UV photocatalytic activity. Results Phys. 15:102669. https://doi.org/10.1016/j.rinp.2019.102669

    Article  Google Scholar 

  87. Opoku F, Govender KK, van Sittert CGCE, Govender PP (2018) Tuning the electronic structures, work functions, optical property and stability of bifunctional hybrid graphene oxide/V–doped NaNbO3 type–II heterostructures: a promising photocatalyst for H2 production. Carbon NY 136:187–195. https://doi.org/10.1016/j.carbon.2018.04.076

  88. Zhang P, Shen Y, Wu W, Li J, Zhou Z (2018) Enhanced photocatalytic performance of KNbO3(100)/reduced graphene oxide nanocomposites investigated using first-principles calculations: RGO reductivity effect. Appl Surf Sci 434:932–939. https://doi.org/10.1016/j.apsusc.2017.10.239

    Article  CAS  Google Scholar 

  89. Hong Z, Li X, Kang SZ, Qin L, Li G, Mu J (2014) Enhanced photocatalytic activity and stability of the reduced graphene oxide loaded potassium niobate microspheres for hydrogen production from water reduction. Int J Hydrogen Energy 39:12515–12523. https://doi.org/10.1016/j.ijhydene.2014.06.075

    Article  CAS  Google Scholar 

  90. Hong Z, Li X, Kang SZ, Qin L, Li G, Mu J (2015) Modifications of morphology and hydrogen evolution activity for the potassium niobate nanoscrolls by introducing reduced graphene oxide. Int J Hydrogen Energy 40:14297–14304. https://doi.org/10.1016/j.ijhydene.2015.04.102

    Article  CAS  Google Scholar 

  91. Fu Y, Wang X (2011) Magnetically separable ZnFe2O4–graphene catalyst and its high photocatalytic performance under visible light irradiation. Ind Eng Chem Res 50:7210–7218. https://doi.org/10.1021/ie200162a

    Article  CAS  Google Scholar 

  92. Zhu W, Li X (2017) Graphene quantum dots /LaCoO3/attapulgite heterojunction photocatalysts with improved photocatalytic activity. Appl Phys A Mater Sci Process 123:1–10. https://doi.org/10.1007/s00339-017-0907-4

    Article  CAS  Google Scholar 

  93. Ding J, Yan W, Xie W, Sun S, Bao J, Gao C (2014) Highly efficient photocatalytic hydrogen evolution of graphene/YInO3 nanocomposites under visible light irradiation. Nanoscale 6:2299–2306. https://doi.org/10.1039/c3nr05984g

    Article  CAS  Google Scholar 

  94. Nasir MS, Yang G, Ayub I, Wang S, Wang L, Wang X, Yan W, Peng S, Ramakarishna S (2019) Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation. Appl Catal B Environ 257:117855. https://doi.org/10.1016/j.apcatb.2019.117855

    Article  CAS  Google Scholar 

  95. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116:7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075

    Article  CAS  Google Scholar 

  96. Song T, Yu X, Tian N, Huang H (2020) Preparation, structure and application of g-C3N4/BiOX composite photocatalyst. Int J Hyd Energy 46:1857–1878. https://doi.org/10.1016/j.ijhydene.2020.10.136

    Article  CAS  Google Scholar 

  97. Pushkar Kanhere ZC, Nisar J, Tang Y, Pathak B, Ahuja R, Zheng J (2012) Electronic structure, optical properties, and photocatalytic activities of LaFeO3–NaTaO3 solid solution. J Phys Chem C 116:22767–22773. https://doi.org/10.1021/jp307857h

    Article  CAS  Google Scholar 

  98. Wu Y, Wang H, Tu W, Liu Y, Tan YZ, Yuan X, Chew JW (2018) Quasi-polymeric construction of stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p-n heterojunction interfacial effect. J Hazard Mater 347:412–422. https://doi.org/10.1016/j.jhazmat.2018.01.025

    Article  CAS  Google Scholar 

  99. Ismael M, Y. Wu (2019) A facile synthesis method for fabrication of LaFeO3/g-C3N4 nanocomposite as efficient visible-light-driven photocatalyst for photodegradation of RhB and 4-CP. New J Chem, 13783–13793. https://doi.org/10.1039/c9nj03376a

  100. Liang Q, Jin J, Liu C, Xu S, Li Z (2017) Constructing a novel p-n heterojunction photocatalyst LaFeO3/g-C3N4 with enhanced visible-light-driven photocatalytic activity. J Alloys Compd 709:542–548. https://doi.org/10.1016/j.jallcom.2017.03.190

    Article  CAS  Google Scholar 

  101. Ye Y, Yang H, Wang X, Feng W (2018) Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts. Mater Sci Semicond Process 82:14–24. https://doi.org/10.1016/j.mssp.2018.03.033

    Article  CAS  Google Scholar 

  102. Acharya S, Mansingh S, Parida KM (2017) The enhanced photocatalytic activity of g-C3N4-LaFeO3 for the water reduction reaction through a mediator free Z-scheme mechanism. Inorg Chem Front 4:1022–1032. https://doi.org/10.1039/c7qi00115k

    Article  CAS  Google Scholar 

  103. Xu K, Feng J (2017) Superior photocatalytic performance of LaFeO3/g-C3N4 heterojunction nanocomposites under visible light irradiation. RSC Adv 7:45369–45376. https://doi.org/10.1039/c7ra08715b

    Article  CAS  Google Scholar 

  104. Jin L, Zhou X, Ning X, Zhan L, Kong M, Tan K, Li J, Lin Z (2018) Boosting visible light photocatalytic performance of g-C3N4 nanosheets by combining with LaFeO3 nanoparticles. Mater Res Bull 102:353–361. https://doi.org/10.1016/j.materresbull.2018.02.057

    Article  CAS  Google Scholar 

  105. Zhang J, Zhu Z, Jiang J, Li H (2020) Fabrication of a novel AgI/LaFeO3/g-C3N4 dual Z-scheme photocatalyst with enhanced photocatalytic performance. Mater Lett 262:127029. https://doi.org/10.1016/j.matlet.2019.127029

    Article  CAS  Google Scholar 

  106. Gao X, Shang Y, Liu L, Nie W (2019) A plasmonic Z-scheme three-component photocatalyst g-C3N4/Ag/LaFeO3 with enhanced visible-light photocatalytic activities. Opt Mater (Amst) 88:229–237. https://doi.org/10.1016/j.optmat.2018.11.030

    Article  CAS  Google Scholar 

  107. Luo J, Chen J, Guo R, Qiu Y, Li W, Zhou X, Ning X (2019) Rational construction of direct Z-scheme LaMnO3/g-C3N4 hybrid for improved visible-light photocatalytic tetracycline degradation. Sep Purif Technol 211:882–894. https://doi.org/10.1016/j.seppur.2018.10.062

    Article  CAS  Google Scholar 

  108. Luo J, Zhou X, Ning X, Zhan L, Ma L, Xu X, Li S, Sun S (2018) Utilization of LaCoO3 as an efficient co-catalyst to boost the visible light photocatalytic performance of g-C3N4. Sep Purif Technol 201:309–317. https://doi.org/10.1016/j.seppur.2018.03.016

    Article  CAS  Google Scholar 

  109. Ibarra-Rodriguez LI, Huerta-Flores AM, Torres-Martínez LM (2019) Facile synthesis of g-C3N4/LaMO3 (M: Co, Mn, Fe) composites for enhanced visible-light-driven photocatalytic water splitting. Mater Sci Semicond Process 103.https://doi.org/10.1016/j.mssp.2019.104643

  110. Zhou X, Chen Y, Li C, Zhang L, Zhang X, Ning X, Zhan L (2019) Construction of LaNiO3 nanoparticles modi fi ed g-C3N4 nanosheets for enhancing visible light photocatalytic activity towards tetracycline degradation. Sep Purif Technol 211:179–188. https://doi.org/10.1016/j.seppur.2018.09.075

  111. Ye C, Wang R, Wang H, Jiang F (2020) The high photocatalytic efficiency and stability of LaNiO3/g-C3N4 heterojunction nanocomposites for photocatalytic water splitting to hydrogen. BMC Chem 14:1–13. https://doi.org/10.1186/s13065-020-00719-w

    Article  CAS  Google Scholar 

  112. Rakibuddin M, Kim H, Ehtisham Khan M (2018) Graphite-like carbon nitride (C3N4) modified N-doped LaTiO3 nanocomposite for higher visible light photocatalytic and photo-electrochemical performance. Appl Surf Sci 452:400–412. https://doi.org/10.1016/j.apsusc.2018.05.018

    Article  CAS  Google Scholar 

  113. Konstas P, Konstantinuo I, Petrakis D, Albanis T (2018) Synthesis, characterization of g-C3N4/SrTiO3 heterojunctions and photocatalytic activity for organic pollutants degradation. Catalys 8(11):554. https://doi.org/10.3390/catal8110554

    Article  CAS  Google Scholar 

  114. Separationdr C, Hon K, Tan Z, Sim C (2017) Symbiotic interaction of amalgamated photocatalysts with improved day light utilisation. ChemistrySelect 2:84–89. https://doi.org/10.1002/slct.201601490

    Article  CAS  Google Scholar 

  115. Kumar S, Tonda S, Baruah A, Kumar B, Shanker V (2014) Synthesis of novel and stable g-C3N4/N-doped SrTiO3 hybrid nanocomposites with improved photocurrent and photocatalytic activity under visible light irradiation. Dalton Trans 42:16105–16114. https://doi.org/10.1039/c4dt01076k

    Article  Google Scholar 

  116. Xu X, Liu G, Randorn C, Irvine JTS (2011) g-C3N4 coated SrTiO3 as an efficient photocatalyst for H2 production in aqueous solution under visible light irradiation. Int J Hydrogen Energy 36:13501–13507. https://doi.org/10.1016/j.ijhydene.2011.08.052

    Article  CAS  Google Scholar 

  117. Luo Y, Deng B, Pu Y, Liu A, Wang J, Ma K, Gao F (2019) Interfacial coupling effects in g-C3N4/SrTiO3 nanocomposites with enhanced H2 evolution under visible light irradiation. Appl Catal B Environ 247:1–9. https://doi.org/10.1016/j.apcatb.2019.01.089

  118. Kang HW, Lim SN, Song D, Bin Park S (2012) Organic-inorganic composite of g-C3N4 e SrTiO3: Rh photocatalyst for improved H2 evolution under visible light irradiation. Int J Hydrogen Energy 37:11602–11610. https://doi.org/10.1016/j.ijhydene.2012.05.020

    Article  CAS  Google Scholar 

  119. Lee JT, Chen YJ, Su EC, Wey MY (2019) Synthesis of solar-light responsive Pt/g-C3N4/SrTiO3 composite for improved hydrogen production: investigation of Pt/g-C3N4/SrTiO3 synthetic sequences. Int J Hydrogen Energy 44:21413–21423. https://doi.org/10.1016/j.ijhydene.2019.06.178

    Article  CAS  Google Scholar 

  120. Tan CE, Lee JT, Su EC, Wey MY (2020) Facile approach for Z-scheme type Pt/g-C3N4/SrTiO3 heterojunction semiconductor synthesis via low-temperature process for simultaneous dyes degradation and hydrogen production. Int J Hydrogen Energy 45:13330–13339. https://doi.org/10.1016/j.ijhydene.2020.03.034

    Article  CAS  Google Scholar 

  121. Chen X, Tan P, Zhou B, Dong H, Pan J, Xiong X (2015) A green and facile strategy for preparation of novel and stable Cr-doped SrTiO3/g-C3N4 hybrid nanocomposites with enhanced visible light photocatalytic activity. J Alloys Compd 647:456–462. https://doi.org/10.1016/j.jallcom.2015.06.056

    Article  CAS  Google Scholar 

  122. Yang M, Jin X (2016) Improvement of visible light-induced photocatalytic performance by Cr-doped SrTiO3−carbon nitride intercalation compound (CNIC) composite. J Cent South Univ 23:310–316.https://doi.org/10.1007/s11771-016-3075-3

  123. Pan J, Jiang Z, Feng S, Zhao C, Dong Z, Wang B, Wang J, Song C, Zheng Y (2018) The enhanced photocatalytic hydrogen production. Int J Hydrogen Energy 43:19019–19028. https://doi.org/10.1016/j.ijhydene.2018.08.102

    Article  CAS  Google Scholar 

  124. Chen X, He X, Yang X, Wu Z, Li Y (2020) Construction of novel 2D/1D g-C3N4/CaTiO3 heterojunction with face-to-face contact for boosting photodegradation of triphenylmethane dyes under simulated sunlight. J Taiwan Inst Chem Eng 107:98–109. https://doi.org/10.1016/j.jtice.2019.12.002

    Article  CAS  Google Scholar 

  125. Kumar A, Schuerings C, Kumar S, Kumar A, Krishnan V (2018) Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation. Beilstein J Nanotechnol 9:671–685. https://doi.org/10.3762/bjnano.9.62

    Article  CAS  Google Scholar 

  126. Yan Y, Yang H, Yi Z, Li R, Xian T (2020) Design of ternary CaTiO3/g-C3N4/AgBr Z-scheme heterostructured photocatalysts and their application for dye photodegradation. Solid State Sci 100:106102. https://doi.org/10.1016/j.solidstatesciences.2019.106102

    Article  CAS  Google Scholar 

  127. Xian T, Yang H, Di LJ, Dai JF (2015) Enhanced photocatalytic activity of BaTiO3 @ g-C3N4 for the degradation of methyl orange under simulated sunlight irradiation. J Alloys Compd 622:1098–1104. https://doi.org/10.1016/j.jallcom.2014.11.051

    Article  CAS  Google Scholar 

  128. Huang Z, Zeng X, Li K, Gao S, Wang Q, Lu J (2017) Z-Scheme NiTiO3/g-C3N4 heterojunctions with enhanced photoelectrochemical and photocatalytic performances under visible LED light irradiation. ACS Appl Mater Interfaces 9:41120–41125. https://doi.org/10.1021/acsami.7b12386

    Article  CAS  Google Scholar 

  129. Wang H, Yuan X, Wang H, Chen X, Wu Z, Jiang L, Xiong W, Zhang Y, Zeng G (2015) One-step calcination method for synthesis of mesoporous g-C3N4/NiTiO3 heterostructure photocatalyst with improved visible light photoactivity. RSC Adv 5:95643–95648. https://doi.org/10.1039/c5ra18117h

    Article  CAS  Google Scholar 

  130. Ye R, Fang H, Zheng YZ, Li N, Wang Y, Tao X (2016) Fabrication of CoTiO3/g-C3N4 hybrid photocatalysts with enhanced H2 evolution: Z-scheme photocatalytic mechanism insight. ACS Appl Mater Interfaces 8:13879–13889. https://doi.org/10.1021/acsami.6b01850

    Article  CAS  Google Scholar 

  131. Li X, Zhang H, Luo J, Feng Z, Huang J (2017) Hydrothermal synthesized novel nanoporous g-C3N4/MnTiO3 heterojunction with direct Z-scheme mechanism. Electrochim Acta 258:998–1007. https://doi.org/10.1016/j.electacta.2017.11.151

    Article  CAS  Google Scholar 

  132. Wang X, Mao W, Zhang J, Han Y, Quan C, Zhang Q, Yang T (2015) Facile fabrication of highly efficient g-C3N4/BiFeO3 nanocomposites with enhanced visible light photocatalytic activities. J Colloid Interface Sci 448:17–23. https://doi.org/10.1016/j.jcis.2015.01.090

    Article  CAS  Google Scholar 

  133. An J, Zhang G, Zheng R, Wang P (2016) Removing lignin model pollutants with BiFeO3–g-C3N4 compound as an efficient visible-light-heterogeneous Fenton-like catalyst. J Environ Sci 48:218–229. https://doi.org/10.1016/j.jes.2016.01.024

    Article  CAS  Google Scholar 

  134. Deng XZ, Song C, Tong YL, Yuan G, Gao F, Liu DQ, Zhang ST (2018) Enhanced photocatalytic efficiency of C3N4/BiFeO3 heterojunctions: the synergistic effects of band alignment and ferroelectricity. Phys Chem Chem Phys 20:3648–3657. https://doi.org/10.1039/c7cp06274e

    Article  CAS  Google Scholar 

  135. Fan T, Chen C, Tang Z, Ni Y, Lu C (2015) Synthesis and characterization of g-C3N4/BiFeO3 composites with an enhanced visible light photocatalytic activity. Mater Sci Semicond Process 40:439–445. https://doi.org/10.1016/j.mssp.2015.06.054

  136. Sepahvand H, Sharifnia S (2019) Photocatalytic overall water splitting by Z-schemeg-C3N4/BiFeO3 heterojunction. Int J Hydrogen Energy 44:23658–23668. https://doi.org/10.1016/j.ijhydene.2019.07.078

    Article  CAS  Google Scholar 

  137. Wu W, Xu C, Shi X, Zhao J, An X, Ma H, Tian Y (2020) Effective degradation of organic pollutants and reaction mechanism with flower-like AgBiO3/g-C3N4 composite. Colloids Surfaces A 599:24901. https://doi.org/10.1016/j.colsurfa.2020.124901

    Article  CAS  Google Scholar 

  138. Song Z, Lin P, Wang F, Huang G, Chen L, Qiu N (2019) Ag3BiO3/g-C3N4 Nanocomposite as efficient visible-light photocatalyst for degradation of methyl orange. Russ J Phys Chem A 93:1603–1609. https://doi.org/10.1134/S003602441908034X

    Article  CAS  Google Scholar 

  139. Nguyen V, Mousavi M, Ghasemi JB, Van Le Q, Shokouhimehr M, Won H, Mohammadi M (2021) g-C3N4 nanosheet adorned with Ag3BiO3 as a perovskite: an effective photocatalyst for efficient visible-light photocatalytic processes. Mater Sci Semicond Process 125:105651. https://doi.org/10.1016/j.mssp.2020.105651

    Article  CAS  Google Scholar 

  140. Zhang D, Qi J, Ji H, Li S, Chen L, Huang T, Xu C, Chen X, Liu W (2020) Photocatalytic degradation of ofloxacin by perovskite-type NaNbO3 nanorods modified g-C3N4 heterojunction under simulated solar light: theoretical calculation, ofloxacin degradation pathways and toxicity evolution. Chem Eng J 400.https://doi.org/10.1016/j.cej.2020.125918

  141. Shen JY, Cui ZS, Wu ZW, Wang JX, Ning Q, Lu XM (2015) Simple preparation of CuFe2O4/C3N4 composites: characterisation and enhanced photocatalysis. Mater Res Innov 19:187–191. https://doi.org/10.1179/1433075X14Y.0000000240

    Article  CAS  Google Scholar 

  142. Li R, Cai M, Xie Z, Zhang Q, Zeng Y, Liu H, Liu G, Lv W (2019) Construction of heterostructured CuFe2O4/g-C3N4 nanocomposite as an efficient visible light photocatalyst with peroxydisulfate for the organic oxidation. Appl Catal B Environ 244:974–982. https://doi.org/10.1016/j.apcatb.2018.12.043

    Article  CAS  Google Scholar 

  143. Liu Y, Song Y, You Y, Fu X, Wen J, Zheng X (2018) NiFe2O4/g-C3N4 heterojunction composite with enhanced visible-light photocatalytic activity. J Saudi Chem Soc 22:439–448. https://doi.org/10.1016/j.jscs.2017.08.002

    Article  CAS  Google Scholar 

  144. Palanivel B, Ayappan C, Jayaraman V, Chidambaram S, Maheswaran R, Mani A (2019) Inverse spinel NiFe2O4 deposited g-C3N4 nanosheet for enhanced visible light photocatalytic activity. Mater Sci Semicond Process 100:87–97. https://doi.org/10.1016/j.mssp.2019.04.040

    Article  CAS  Google Scholar 

  145. Gebreslassie G, Bharali P, Chandra U, Sergawie A, Boruah PK, Das MR, Alemayehu E (2019) Novel g-C3N4/graphene/NiFe2O4 nanocomposites as magnetically separable visible light driven photocatalysts. J Photochem Photobiol A Chem 382:111960. https://doi.org/10.1016/j.jphotochem.2019.111960

    Article  CAS  Google Scholar 

  146. Hassani A, Eghbali P, Ekicibil A, Metin Ö (2018) Monodisperse cobalt ferrite nanoparticles assembled on mesoporous graphitic carbon nitride (CoFe2O4/mpg-C3N4): a magnetically recoverable nanocomposite for the photocatalytic degradation of organic dyes. J Magn Magn Mater 456:400–412. https://doi.org/10.1016/j.jmmm.2018.02.067

    Article  CAS  Google Scholar 

  147. Guo X, Ai S, Yang D, Zhao L, Ding H (2019) Synergistic photocatalytic and Fenton-like degradation of organic contaminants using peroxymonosulfate activated by CoFe2O4@g-C3N4 composite. Environ Technol (United Kingdom), 1–14.https://doi.org/10.1080/09593330.2019.1697378

  148. Yao Y, Cai Y, Lu F, Qin J, Wei F, Xu C, Wang S (2014) Magnetic ZnFe2O4−C3N4 hybrid for photocatalytic degradation of aqueous organic pollutants by visible light. Ind Eng Chem Res 53(44):17294–17302. https://doi.org/10.1021/ie503437z

    Article  CAS  Google Scholar 

  149. Borthakur S, Saikia L (2019) ZnFe2O4@g-C3N4 nanocomposites: an efficient catalyst for Fenton-like photodegradation of environmentally pollutant Rhodamine B. J Environ Chem Eng 7.https://doi.org/10.1016/j.jece.2019.103035

  150. Palanivel B, Devi Mudisoodum Perumal S, Maiyalagan T, Jayarman V, Ayyappan C, Alagiri M (2019) Rational design of ZnFe2O4/g-C3N4 nanocomposite for enhanced photo-Fenton reaction and supercapacitor performance. Appl Surf Sci 498:143807.https://doi.org/10.1016/j.apsusc.2019.143807

  151. Nguyen V, Delbari SA, Mousavi M, Namini AS, Ghasemi JB, Van Le Q, Asl MS, Mohammadi M, Shokouhimehr M (2021) g-C3N4-nanosheet/ZnCr2O4 S-scheme heterojunction photocatalyst with enhanced visible-light photocatalytic activity for degradation of phenol and tetracycline. Sep Purif Technol, 118511. https://doi.org/10.1016/j.seppur.2021.118511

  152. Lv J, Dai K, Zhang J, Geng L, Liang C, Liu Q, Zhu G, Chen C (2015) Facile synthesis of Z-scheme graphitic-C3N4/Bi2MoO6 nanocomposite for enhanced visible photocatalytic properties. Appl Surf Sci 358:377–384. https://doi.org/10.1016/j.apsusc.2015.06.183

    Article  CAS  Google Scholar 

  153. Thaweesak S, Lyu M, Peerakiatkhajohn P, Butburee T, Luo B, Chen H, Wang L (2017) Two-dimensional g-C3N4/Ca2Nb2TaO10 nanosheet composites for efficient visible light photocatalytic hydrogen evolution. Appl Catal B Environ 202:184–190. https://doi.org/10.1016/j.apcatb.2016.09.022

    Article  CAS  Google Scholar 

  154. Jiang D, Ma W, Yao Y, Xiao P, Wen B, Li D, Chen M (2018) Dion-Jacobson-type perovskite KCa2Ta3O10 nanosheets hybridized with g-C3N4 nanosheets for photocatalytic H2 production. Catal Sci Technol 8:3767–3773. https://doi.org/10.1039/c8cy00930a

    Article  CAS  Google Scholar 

  155. Michálek M, Sedláček J, Parchoviansky M, Michálková M, Galusek D (2014) Mechanical properties and electrical conductivity of alumina/MWCNT and alumina/zirconia/MWCNT composites. Ceram Int 40:1289–1295. https://doi.org/10.1016/j.ceramint.2013.07.008

    Article  CAS  Google Scholar 

  156. Christoforidis KC, Syrgiannis Z, La Parola V, Montini T, Petit C, Stathatos E, Godin R, Durrant JR, Prato M, Fornasiero P (2018) Metal-free dual-phase full organic carbon nanotubes/g-C3N4 heteroarchitectures for photocatalytic hydrogen production. Nano Energy 50:468–478. https://doi.org/10.1016/j.nanoen.2018.05.070

    Article  CAS  Google Scholar 

  157. Sudhaik A, Raizada P, Thakur S, Saini RV, Saini AK, Singh P, Kumar Thakur V, Nguyen VH, Khan AAP, Asiri AM (2020) Synergistic photocatalytic mitigation of imidacloprid pesticide and antibacterial activity using carbon nanotube decorated phosphorus doped graphitic carbon nitride photocatalyst. J Taiwan Inst Chem Eng 113:142–154. https://doi.org/10.1016/j.jtice.2020.08.003

    Article  CAS  Google Scholar 

  158. Xu WL, Niu MS, Yang XY, Xiao J, Yuan HC, Xiong C, Hao XT (2018) Carbon nanotubes as the effective charge transport pathways for planar perovskite photodetector. Org Electron 59:156–163. https://doi.org/10.1016/j.orgel.2018.05.004

    Article  CAS  Google Scholar 

  159. Ding F, Zhao Z, Yang D, Zhao X, Chen Y, Jiang Z (2019) One-pot fabrication of g-C3N4/MWCNTs nanocomposites with superior visible-light photocatalytic performance Ind. Ind Eng Chem Res 58:3679–3687. https://doi.org/10.1021/acs.iecr.8b05293

    Article  CAS  Google Scholar 

  160. Sierra Gallego G, Barrault J, Batiot-Dupeyrat C, Mondragón F (2010) Production of hydrogen and MWCNTs by methane decomposition over catalysts originated from LaNiO3 perovskite. Catal Today 149:365–371. https://doi.org/10.1016/j.cattod.2009.06.004

    Article  CAS  Google Scholar 

  161. Kuras M, Zimmermann Y, Petit C (2008) Reactivity of perovskite-type precursor in MWCNTs synthesis. Catal Today 138:55–61. https://doi.org/10.1016/j.cattod.2008.04.030

    Article  CAS  Google Scholar 

  162. Huang X, Pu Z, Feng M, Tong L, Liu X (2013) BaTiO3@MWCNTs core/shell nanotubes embedded PEN nanocomposite films with high thermal stability and highpermittivity. Mater Lett 96:139–142. https://doi.org/10.1016/j.matlet.2013.01.022

    Article  CAS  Google Scholar 

  163. Huang X, Chen Z, Tong L, Feng M, Pu Z, Liu X (2013) Preparation and microwave absorption properties of BaTiO3@MWCNTs core/shell heterostructure. Mater Lett 111:24–27. https://doi.org/10.1016/j.matlet.2013.08.034

    Article  CAS  Google Scholar 

  164. Sobahi TR, Amin MS (2021) Photocatalytic oxidation of atrazine using BaTiO3-MWCNT nanocomposites under visible light. Ceram Int 47:14366–14374. https://doi.org/10.1016/j.ceramint.2021.02.015

    Article  CAS  Google Scholar 

  165. Opoku F, Govender KK, Catharina Elizabeth van Sittert CG, Govender PP (2018) Hybrid DFT study of MWCNT/Zr-doped SrTiO3 heterostructure: Hydrogen production, electronic properties and charge Carrier mediator role of Zr4+ ion. Int J Hydrogen Energy 43:22253–22264. https://doi.org/10.1016/j.ijhydene.2018.10.072

  166. Lin Y, Wu S, Li X, Wu X, Yang C, Zeng G, Peng Y, Zhou Q, Lu L (2018) Microstructure and performance of Z-scheme photocatalyst of silver phosphate modified by MWCNTs and Cr-doped SrTiO3 for malachite green degradation. Appl Catal B Environ 227:557–570. https://doi.org/10.1016/j.apcatb.2018.01.054

    Article  CAS  Google Scholar 

  167. Ahmadipour M, Hamzah AA, Pang AL, Le Thi A, Chiam SL, Ahmad ZA, Rajitha B, Pung SY (2021) Photodegradation of rhodamine B-dye pollutant using CaCu3Ti4O12-multiwall carbon nanotube nanocomposites. J Environ Chem Eng 9:105185. https://doi.org/10.1016/j.jece.2021.105185

    Article  CAS  Google Scholar 

  168. Mitra A, Mahapatra AS, Mallick A, Chakrabarti PK (2017) Enhanced microwave absorption and magnetic phase transitions of nanoparticles of multiferroic LaFeO3 incorporated in multiwalled carbon nanotubes (MWCNTs). J Magn Magn Mater 435:117–125. https://doi.org/10.1016/j.jmmm.2017.03.066

    Article  CAS  Google Scholar 

  169. Daud A, Warsi MF, Zulfiqar S, Agboola PO, Ur Rehman A, Shakir I (2020) Fabrication of GdFO3-carbon nanotubes nanocomposites for enhanced photocatalytic applications. Ceram Int 46:12884–12890. https://doi.org/10.1016/j.ceramint.2020.01.205

  170. Bag M, Renna LA, Jeong SP, Han X, Cutting CL, Maroudas D, Venkataraman D (2016) Evidence for reduced charge recombination in carbon nanotube/perovskite-based active layers. Chem Phys Lett 662:35–41. https://doi.org/10.1016/j.cplett.2016.09.004

    Article  CAS  Google Scholar 

  171. Chen D, Lu Y, Wu J, Li N, Zheng YZ, Tao X (2019) Perovskite solar cells-TiO2 tandem assembly for photoelectrocatalytic degradation of organic pollutants. J Phys Chem Solids 132:204–212. https://doi.org/10.1016/j.jpcs.2019.03.025

    Article  CAS  Google Scholar 

  172. Demircivi P, Gulen B, Bilgin E, Berek D (2020) Enhanced photocatalytic degradation of tetracycline using hydrothermally synthesized carbon fiber decorated BaTiO3. Mater Chem Phys 241:122236. https://doi.org/10.1016/j.matchemphys.2019.122236

    Article  CAS  Google Scholar 

  173. Xie J, Qingsheng Wua DZ (2012) Electrospinning synthesis of ZnFe2O4_Fe3O4_Ag nanoparticle-loaded mesoporous carbon fibers with magnetic and photocatalytic properties. Carbon 50(3):800–807. https://doi.org/10.1016/j.carbon.2011.09.036

  174. Li X, Rui M, Song J, Shen Z, Zeng H (2015) Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv Funct Mater 25(31):4929–4947. https://doi.org/10.1002/adfm.201501250

    Article  CAS  Google Scholar 

  175. Li X, Shi H, Wang T, Zhang Y, Zuo S, Luo S (2018) Photocatalytic removal of NO by Z-scheme mineral based heterojunction intermediated by carbon quantum dots. Appl Surf Sci 456:835–844. https://doi.org/10.1016/j.apsusc.2018.06.133

    Article  CAS  Google Scholar 

  176. Paszkiewicz-gawron M, Kowalska E, Endo-kimura M, Zwara J, Pancielejko A, Wang K, Lisowski W, Justyna Ł, Zaleska-medynska A, Grabowska-musia E (2021) Stannates, titanates and tantalates modified with carbon and graphene quantum dots for enhancement of visible-light photocatalytic activity. Appl Surf Sci 541:148425. https://doi.org/10.1016/j.apsusc.2020.148425

    Article  CAS  Google Scholar 

  177. Zhang Z, Shu M, Jiang Y, Xu J (2021) Fullerene modified CsPbBr3 perovskite nanocrystals for efficient charge separation and photocatalytic CO2 reduction. Chem Eng J 414:128889. https://doi.org/10.1016/j.cej.2021.128889

    Article  CAS  Google Scholar 

  178. Behera A, Mansingh S, Das KK, Parida K (2019) Synergistic ZnFe2O4-carbon allotropes nanocomposite photocatalyst for norfloxacin degradation and Cr (VI) reduction. J Colloid Interface Sci 544:96–111. https://doi.org/10.1016/j.jcis.2019.02.056

    Article  CAS  Google Scholar 

  179. Wang Y, Wang J, Du B, Wang Y, Xiong Y, Yang Y, Zhang X (2018) Synthesis of hierarchically porous perovskite-carbon aerogel composite catalysts for the rapid degradation of fuchsin basic under microwave irradiation and an insight into probable catalytic mechanism. Appl Surf Sci 439:475–487. https://doi.org/10.1016/j.apsusc.2017.12.196

    Article  CAS  Google Scholar 

  180. Dong S, Xia L, Chen X, Cui L, Zhu W, Lu Z, Sun J, Fan M (2021) Interfacial and electronic band structure optimization for the adsorption and visible-light photocatalytic activity of macroscopic ZnSnO3/graphene aerogel. Compos Part B 215:108765. https://doi.org/10.1016/j.compositesb.2021.108765

    Article  CAS  Google Scholar 

  181. Kumar RD, Thangappan R, Jayavel R (2017) Facile preparation of—with enhanced visible light photocatalytic activity. J Inorg Organomet P 27:892–900. https://doi.org/10.1007/s10904-017-0534-8

  182. Hu J, Liu Y, Men J, Zhang L, Huang H (2016) Ag modi fi ed LaMnO3 nanorods-reduced graphene oxide composite applied in the photocatalytic discoloration of direct green. Solid State Sci 61:239–245. https://doi.org/10.1016/j.solidstatesciences.2016.10.008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Bilgin Simsek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tuna, Ö., Simsek, E.B. (2022). Carbon Based Perovskite Composite Catalysts and Their Structural, Morphological and Photocatalytic Performances. In: Jawaid, M., Khan, A. (eds) Carbon Composite Catalysts. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-19-1750-9_3

Download citation

Publish with us

Policies and ethics