Skip to main content

Mouse as a Preclinical Model for Studying Small Noncoding RNAs Involved in Colorectal Cancer

  • Living reference work entry
  • First Online:
  • 11 Accesses

Abstract

Colorectal cancer (CRC) is the third most diagnosed cancer and occupies the second position in death among other cancer deaths in both sexes due to unmet screening programs and therapeutic strategies. Small noncoding RNAs such as microRNA (miRNA), PIWI-interacting RNA (piRNA), silencing RNA (siRNA), small nucleolar RNA (snoRNA), and tRNA-derived fragments (tRFs) play a critical role in colorectal carcinogenesis, and few of these sncRNAs could be used as a diagnostic, prognostic, predictive, and therapeutic biomarker of CRC. Among these sncRNAs, miRNA is extensively studied in CRC in vitro and in vivo experiment. To accurately elucidate the role of these different sncRNAs in CRC, the mouse model plays a spearheaded role among other animal models. Generally, immunocompromised mice are used to generate different xenograft mice models like cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) models. Genetically engineered mouse models are widely used to create knock-in and knockout transgenic mice for studying oncogene and tumor suppressor genes involved in CRC. Now, Cre-LoxP system and cluster regularly interspaced palindromic sequence (CRISPR)-based genome editing technology have revolutionized the field of mouse cancer models and have had a more immediate impact on the development of more effective systems about different human cancers. In the future, various types of mouse models could be constructed by using this xenograft and genome editing technology which is more suitable and can throw more light on discovering the role of small RNA as a biomarker of CRC.

This is a preview of subscription content, log in via an institution.

References

  • Alshaer W, Zureigat H, Al Karaki A, Al-Kadash A, Gharaibeh L, Ma’mon MH, Aljabali AA, Awidi A (2021) siRNA: mechanism of action, challenges, and therapeutic approaches. Eur J Pharmacol 905:174178

    Article  CAS  PubMed  Google Scholar 

  • Barré-Sinoussi F, Montagutelli X (2015) Animal models are essential to biological research: issues and perspectives. Future Sci OA 1(4): FSO63

    Google Scholar 

  • Bastiaenen VP, Klaver CE, van der Heijden M, Nijman LE, Lecca MC, Tanis PJ, Lenos KJ, Vermeulen L (2020) A mouse model for peritoneal metastases of colorectal origin recapitulates patient heterogeneity. Lab Investig 100(11):1465–1474

    Article  CAS  PubMed  Google Scholar 

  • Benson AB, Venook AP, Cederquist L, Chan E, Chen Y-J, Cooper HS et al (2017) Colon cancer, version 1.2017, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network 15(3):370–398

    Google Scholar 

  • Bürtin F, Mullins CS, Linnebacher M (2020) Mouse models of colorectal cancer: past, present and future perspectives. World J Gastroenterol 26(13):1394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandra PK, Datta A, Mondal D (2020) Development of mouse models for cancer research. In: Animal biotechnology. Academic, Cambridge, pp 77–102

    Chapter  Google Scholar 

  • Chen B, Xia Z, Deng YN, Yang Y, Zhang P, Zhu H, Xu N, Liang S (2019a) Emerging microRNA biomarkers for colorectal cancer diagnosis and prognosis. R Soc Open Biol 9(1):180212

    Article  CAS  Google Scholar 

  • Chen H, Xu Z, Liu D (2019b) Small non-coding RNA and colorectal cancer. J Cell Mol Med 23(5):3050–3057

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng YE, Wang Q, Jiang W, Bian Y (2019) Emerging roles of piRNAs in cancer: challenges and prospects. Aging (Albany NY) 11(21):9932

    Article  CAS  Google Scholar 

  • Cheon DJ, Orsulic S (2011) Mouse models of cancer. Annu Rev Pathol: Mech Dis 6:95–119

    Article  CAS  Google Scholar 

  • Fang X, Yang D, Luo H, Wu S, Dong W, Xiao J, Yuan S, Ni A, Zhang KJ, Liu XY, Chu L (2017) SNORD126 promotes HCC and CRC cell growth by activating the PI3K–AKT pathway through FGFR2. J Mol Cell Biol 9(3):243–255

    CAS  PubMed  Google Scholar 

  • Fu SK, Lawrance IC (2015) Animal models of IBD-associated CRC and colorectal cancer tumorigenesis. Clin Med Insights: Ther 7:CMT-S18489

    Google Scholar 

  • Fujiya M, Konishi H, Mohamed Kamel MK, Ueno N, Inaba Y, Moriichi K, Tanabe H, Ikuta K, Ohtake T, Kohgo Y (2014) MicroRNA-18a induces apoptosis in colon cancer cells via the autophagolysosomal degradation of oncogenic heterogeneous nuclear ribonucleoprotein A1. Oncogene 33(40):4847–4856

    Article  CAS  PubMed  Google Scholar 

  • Georges LM, de Wever O, Galván JA, Dawson H, Lugli A, Demetter P, Zlobec I (2019) Cell line derived xenograft mouse models are a suitable in vivo model for studying tumor budding in colorectal cancer. Front in Med 6:139

    Google Scholar 

  • Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA (2010) Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16(4):673–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He GY, Hu JL, Zhou L, Zhu XH, Xin SN, Zhang D, Lu G, Liao WT, Ding YQ, Liang L (2016) The FOXD3/miR-214/MED19 axis suppresses tumour growth and metastasis in human colorectal cancer. Br J Cancer 115(11):1367–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heijstek MW, Kranenburg O, Rinkes IB (2005) Mouse models of colorectal cancer and liver metastases. Dig Surg 22(1–2):16–25. https://www.yourgenome.org/facts/why-use-the-mouse-in-research. 21 July 2021

    Article  CAS  PubMed  Google Scholar 

  • Huang C et al (2008) Small interfering RNA therapy in cancer: mechanism, potential targets, and clinical applications. Expert Opin Ther Targets 12(5):637–645

    Article  CAS  PubMed  Google Scholar 

  • Huang Z et al (2010) Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer 127(1):118–126

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Yang H, Cheng X, Wang D, Fu S, Shen W, Zhang Q, Zhang L, Xue Z, Li Y, Da Y (2017) tRF/miR-1280 suppresses stem cell–like cells and metastasis in colorectal cancer. Cancer Res 77(12):3194–3206

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Liang XZ, Deng Y, Liang YB, Zhu X, Liang XY, Luo DZ, Chen G, Fang YY, Lan HH, Zeng JH (2020) Prognostic value of small nucleolar RNAs (snoRNAs) for colon adenocarcinoma based on RNA sequencing data. Pathol Res Pract 216(6):152937

    Article  CAS  PubMed  Google Scholar 

  • Isakova A, Fehlmann T, Keller A, Quake SR (2020) A mouse tissue atlas of small noncoding RNA. Proc Natl Acad Sci 117(41):25634–25645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keam SP, Hutvagner G (2015) tRNA-derived fragments (tRFs): emerging new roles for an ancient RNA in the regulation of gene expression. Life 5(4):1638–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keysar SB, Astling DP, Anderson RT, Vogler BW, Bowles DW, Morton JJ, Paylor JJ, Glogowska MJ, Le PN, Eagles-Soukup JR, Kako SL (2013) A patient tumor transplant model of squamous cell cancer identifies PI3K inhibitors as candidate therapeutics in defined molecular bins. Mol Oncol 7(4):776–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilkenny C, Parsons N, Kadyszewski E, Festing MF, Cuthill IC, Fry D, Hutton J, Altman DG (2009) Survey of the quality of experimental design, statistical analysis and reporting of research using animals. PLoS One 4(11):e7824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuramochi-Miyagawa S, Kimura T, Ijiri TW, Isobe T, Asada N, Fujita Y, Ikawa M, Iwai N, Okabe M, Deng W, Lin H (2004) Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131(4):839–849

    Article  CAS  PubMed  Google Scholar 

  • Kusenda B et al (2006) MicroRNA biogenesis, functionality and cancer relevance. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 150(2):205–215

    Article  CAS  PubMed  Google Scholar 

  • LamprehtTratar U, Horvat S, Cemazar M (2018) Transgenic mouse models in cancer research. Front Oncol 8:268

    Article  Google Scholar 

  • Lee JM, Yoon TJ, Cho YS (2013) Recent developments in nanoparticle-based siRNA delivery for cancer therapy. Biomed Res Int, vol. 2013, Article ID 782041, 10 pages

    Google Scholar 

  • Li Z, Zheng W, Wang H, Cheng Y, Fang Y, Wu F, Sun G, Sun G, Lv C, Hui B (2021) Application of animal models in cancer research: recent progress and future prospects. Cancer Manag Res 13:2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Ridzon D, Wong L, Chen C (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8(1):1–20

    Article  CAS  Google Scholar 

  • Liang J, Wen J, Huang Z, Chen XP, Zhang BX, Chu L (2019) Small nucleolar RNAs: insight into their function in cancer. Front Oncol 9:587

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Dou M, Song X, Dong Y, Liu S, Liu H, Tao J, Li W, Yin X, Xu W (2019) The emerging role of the piRNA/piwi complex in cancer. Mol Cancer 18(1):1–5

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Urrutia E, Coronel-Hernández J, García-Castillo V, Contreras-Romero C, Martínez-Gutierrez A, Estrada-Galicia D, Terrazas LI, López-Camarillo C, Maldonado-Martínez H, Jacobo-Herrera N, Pérez-Plasencia C (2017) MiR-26a downregulates retinoblastoma in colorectal cancer. Tumor Biol 39(4):1010428317695945

    Article  CAS  Google Scholar 

  • Mai D, Ding P, Tan L, Zhang J, Pan Z, Bai R, Li C, Li M, Zhou Y, Tan W, Zhou Z (2018) PIWI-interacting RNA-54265 is oncogenic and a potential therapeutic target in colorectal adenocarcinoma. Theranostics 8(19):5213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mai D, Zheng Y, Guo H, Ding P, Bai R, Li M, Ye Y, Zhang J, Huang X, Liu D, Sui Q (2020) Serum piRNA-54265 is a new biomarker for early detection and clinical surveillance of human colorectal cancer. Theranostics 10(19):8468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T (2015) Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nat Med 21(3):256–262

    Article  CAS  PubMed  Google Scholar 

  • McCall MN, Kim MS, Adil M, Patil AH, Lu Y, Mitchell CJ, Leal-Rojas P, Xu J, Kumar M, Dawson VL, Dawson TM (2017) Toward the human cellular microRNAome. Genome Res 27(10):1769–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okugawa Y, Toiyama Y, Toden S, Mitoma H, Nagasaka T, Tanaka K, Inoue Y, Kusunoki M, Boland CR, Goel A (2017) Clinical significance of SNORA42 as an oncogene and a prognostic biomarker in colorectal cancer. Gut 66(1):107–117

    Article  CAS  PubMed  Google Scholar 

  • Oliveira RC, Abrantes AM, Tralhão JG, Botelho MF (2020) The role of mouse models in colorectal cancer research–the need and the importance of the orthotopic models. Anim Model Exp Med 3(1):1–8

    Article  Google Scholar 

  • Pal AS, Kasinski AL (2017) Animal models to study microRNA function. Adv Cancer Res 135:53–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan B, Wei X, Xu X (2022) Patient-derived xenograft models in hepatopancreatobiliary cancer. Cancer Cell Int 22(1):1–8

    Article  CAS  Google Scholar 

  • Pompili L, Porru M, Caruso C, Biroccio A, Leonetti C (2016) Patient-derived xenografts: a relevant preclinical model for drug development. J Exp Clin Cancer Res 35(1):1–8

    Article  Google Scholar 

  • Qu A, Wang W, Yang Y, Zhang X, Dong Y, Zheng G, Wu Q, Zou M, Du L, Wang Y, Wang C (2019) A serum piRNA signature as promising non-invasive diagnostic and prognostic biomarkers for colorectal cancer. Cancer Manag Res 11:3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson NB, Krieger K, Khan FM, Huffman W, Chang M, Naik A, Yongle R, Hameed I, Krieger K, Girardi LN, Gaudino M (2019) The current state of animal models in research: a review. Int J Surg 72:9–13

    Article  PubMed  Google Scholar 

  • Rosenberg DW, Giardina C, Tanaka T (2009) Mouse models for the study of colon carcinogenesis. Carcinogenesis 30(2):183–196

    Article  CAS  PubMed  Google Scholar 

  • Sadoughi F, Mirhashemi SM, Asemi Z (2021) Epigenetic roles of PIWI proteins and piRNAs in colorectal cancer. Cancer Cell Int 21(1):1–1

    Article  CAS  Google Scholar 

  • Schee K et al (2013) Deep sequencing the microRNA transcriptome in colorectal cancer. PLoS One 8(6):e66165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72(1):7–33

    Article  PubMed  Google Scholar 

  • Song JJ, Li W (2019) MiR-10b suppresses the growth and metastasis of colorectal cancer cell by targeting FGF13. Eur Rev Med Pharmacol Sci 23(2):576–587

    PubMed  Google Scholar 

  • Sun X, Lin F, Sun W, Zhu W, Fang D, Luo L, Li S, Zhang W, Jiang L (2021) Exosome-transmitted miRNA-335-5p promotes colorectal cancer invasion and metastasis by facilitating EMT via targeting RASA1. Mol Ther Nucleic Acids 24:164–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda H, Kataoka S, Nakayama M, Ali MA, Oshima H, Yamamoto D, Park JW, Takegami Y, An T, Jenkins NA, Copeland NG (2019) CRISPR-Cas9–mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proc Natl Acad Sci 116(31):15635–15644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian H, Lyu Y, Yang YG, Hu Z (2020) Humanized rodent models for cancer research. Front Oncol 10:1696

    Article  PubMed  PubMed Central  Google Scholar 

  • Valeri N, Braconi C, Gasparini P, Murgia C, Lampis A, Paulus-Hock V, Hart JR, Ueno L, Grivennikov SI, Lovat F, Paone A (2014) MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell 25(4):469–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira LM, Jorge NA, de Sousa JB, Setubal JC, Stadler PF, Walter ME (2021) Competing endogenous RNA in colorectal cancer: an analysis for colon, rectum, and rectosigmoid junction. Front Oncol 11: 681579. p.1670

    Google Scholar 

  • Vychytilova-Faltejskova P et al (2016) Serum-based microRNA signatures in early diagnosis and prognosis prediction of colon cancer. Carcinogenesis 37(10):941–950

    Article  CAS  PubMed  Google Scholar 

  • Walrath JC, Hawes JJ, van Dyke T, Reilly KM (2010) Genetically engineered mouse models in cancer research. Adv Cancer Res 106:113–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Zhang P, Ma Y, Yang J, Moyer MP, Shi C, Peng J, Qin H (2012) NIRF is frequently upregulated in colorectal cancer and its oncogenicity can be suppressed by let-7a microRNA. Cancer Lett 314(2):223–231

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tang Q, Li M, Jiang S, Wang X (2014) MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA. Biochem Biophys Res Commun 444(2):199–204

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wei Z, Wu K, Dai W, Zhang C, Peng J et al (2018) Long noncoding RNA B3GALT5-AS1 suppresses colon cancer liver metastasis via repressing microRNA-203. Aging (Albany NY); 10(12):3662–3682

    Google Scholar 

  • Weng W, Liu N, Toiyama Y, Kusunoki M, Nagasaka T, Fujiwara T, Wei Q, Qin H, Lin H, Ma Y, Goel A (2018) Novel evidence for a PIWI-interacting RNA (piRNA) as an oncogenic mediator of disease progression, and a potential prognostic biomarker in colorectal cancer. Mol Cancer 17(1):1–2

    Article  CAS  Google Scholar 

  • Wu Y, Song Y, Xiong Y, Wang X, Xu K, Han B, Bai Y, Li L, Zhang Y, Zhou L (2017) MicroRNA-21 (Mir-21) promotes cell growth and invasion by repressing tumor suppressor PTEN in colorectal cancer. Cell Physiol Biochem 43(3):945–958

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Yang X, Jiang G, Zhang H, Ge L, Chen F, Li J, Liu H, Wang H (2021) 5’tRF-GlyGCC: a tRNA-derived small RNA as a novel biomarker for colorectal cancer diagnosis. Genome Med 13(1):1–2

    Article  CAS  Google Scholar 

  • Xi Y, Xu P (2021) Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol 14(10):101174

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Zhao J, Liang Y, Chen M, Luo Y, Cui X, Jiang B, Peng L, Wang X (2019) MicroRNA-10b controls the metastasis and proliferation of colorectal cancer cells by regulating Krüppel-like factor 4. Artif Cells Nanomed Biotechnol 47(1):1722–1729

    Article  CAS  PubMed  Google Scholar 

  • Xiong WC, Han N, Ping GF, Zheng PF, Feng HL, Qin L, He P (2018) microRNA-9 functions as a tumor suppressor in colorectal cancer by targeting CXCR4. Int J Clin Exp Pathol 11(2):526

    PubMed  PubMed Central  Google Scholar 

  • Xiong W, Wang X, Cai X, Liu Y, Li C, Liu Q, Qin J, Li Y (2019) Identification of tRNA-derived fragments in colon cancer by comprehensive small RNA sequencing. Oncol Rep 42(2):735–744

    CAS  PubMed  Google Scholar 

  • Yang MH, Yu J, Chen N, Wang XY, Liu XY, Wang S, Ding YQ (2013) Elevated microRNA-31 expression regulates colorectal cancer progression by repressing its target gene SATB2. PLoS One 8(12):e85353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang T, Guo Q, Li D, Bai G, Sun H, Wang W (2020) MicroRNA-802 suppresses tumorigenesis of colorectal cancer via regulating UBN2. Cancer Manag Res 12:11219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, Wu X, Wu D, Wu P, Ni C, Zhang Z, Chen Z, Qiu F, Xu J, Huang J (2013) miRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. PLoS One 8(4):e60687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yee NS, Ignatenko N, Finnberg N, Lee N, Stairs D (2015) Animal models of cancer biology. Cancer Growth Metastasis 8:CGM-S37907

    Google Scholar 

  • Yin J, Jiang XY, Qi W, Ji CG, Xie XL, Zhang DX, Cui ZJ, Wang CK, Bai Y, Wang J, Jiang HQ (2017) piR-823 contributes to colorectal tumorigenesis by enhancing the transcriptional activity of HSF 1. Cancer Sci 108(9):1746–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Lu B, Zhang J, Ding J, Liu P, Lu Y (2020) tRNA-derived RNA fragments in cancer: current status and future perspectives. J Hematol Oncol 13(1):1–4

    Article  CAS  Google Scholar 

  • Zhang C (2009) Novel functions for small RNA molecules. Curr Opin Mol Ther 11(6):641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Moore L, Ji P (2011) Mouse models for cancer research. Chin J Cancer 30(3):149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XF, Tu R, Li K, Ye P, Cui X (2017) Tumor suppressor PTPRJ is a target of miR-155 in colorectal cancer. J Cell Biochem 118(10):3391–3400

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Tao Y, Hua Q, Cai J, Ye X, Li H (2020) SNORA71A promotes colorectal cancer cell proliferation, migration, and invasion. Biomed Res Int 2020, vol. 2020, Article ID 8284576, 11 pages

    Google Scholar 

  • Zhou M, Hu L, Zhang Z, Wu N, Sun J, Su J (2018) Recurrence-associated long non-coding RNA signature for determining the risk of recurrence in patients with colon cancer. Mol Ther Nucleic Acids: 7;12:518–29

    Google Scholar 

  • Zhu H, Dougherty U, Robinson V, Mustafi R, Pekow J, Kupfer S, Li YC, Hart J, Goss K, Fichera A, Joseph L (2011) EGFR signals downregulate tumor suppressors miR-143 and miR-145 in western diet–promoted murine colon cancer: role of G1 regulators. Mol Cancer Res 9(7):960–975

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Chettinad Hospital & Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, Tamil Nadu, India-603103 for providing support to complete this chapter.

The authors are also thankful to the Department of Biotechnology, Ministry of Science & Technology, Government of India, for providing support to Mr. Subhamay Adhikary (DBT-JRF, fellowship ID- DBT/2021-22/CARE/1592) for completing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Adhikary, S., Jahnavi, T., Keerthana Mol, J., Asha Ananthi, A., Gokulakannan, M., Pathak, S. (2022). Mouse as a Preclinical Model for Studying Small Noncoding RNAs Involved in Colorectal Cancer. In: Pathak, S., Banerjee, A., Bisgin, A. (eds) Handbook of Animal Models and its Uses in Cancer Research. Springer, Singapore. https://doi.org/10.1007/978-981-19-1282-5_48-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1282-5_48-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1282-5

  • Online ISBN: 978-981-19-1282-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics