Skip to main content

Bioactive α-Amylase Inhibitors: Sources, Mechanism of Action, Biochemical Characterization, and Applications

  • Chapter
  • First Online:
Natural Products as Enzyme Inhibitors

Abstract

In the majority of organisms especially plants, biotic stress induces molecular, cellular, and biochemical changes for the expression of defense-related proteins such as proteinaceous inhibitors of digestive enzymes like amylases, proteinases, and lipases. Such bioactive enzyme inhibitory proteins or peptides are the first line of defense of direct response against infesting pest/pathogens. Among all different enzyme inhibitors, α-amylase inhibitors (α-AIs) are prime and attractive candidates for studies and research due to their potential applications. α-AIs display a great diversity in their structure, expression, inhibition specificity, and effectiveness against digestive enzymes from several sources including mammalians, insects, and microbes. Biological applications of α-AIs primarily include their utilization in (a) pest management; (b) microbial pathogen control (antimicrobial activity); (c) human health care management; and (d) food processing industry.

The current book chapter systematically reviews different strategies of purification, biochemical characteristics, biological applications of α-AIs, and bottlenecks in commercial utilization of α-AIs. The challenges in the safe marketable utilization of α-AIs are discussed in detail and alternative approaches and various efficient solutions based on recent advancements in biotechnological research which could be helpful to broaden the scope of α-AIs are also elaborated in detail.

In our opinion, though, there are bottlenecks in commercial utilization (efficient technology development) of α-AIs in various sectors mentioned above; focused research with meaningful utilization of technological advances will help in materializing commercial utilization of bioactive α-AIs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alakolanga AGAW, Kumar NS, Jayasinghe L, Fujimoto Y (2015) Antioxidant property and glucosidase, amylase and lipase inhibiting activities of Flacourtia inermis fruits: characterization of malic acid as an inhibitor of the enzymes. J Food Sci Technol 52(12):8383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali Asgar MD (2013) Anti-diabetic potential of phenolic compounds: a review. Int J Food Prop 16(1):91–103

    Article  CAS  Google Scholar 

  • Ali H, Houghton PJ, Soumyanath A (2006) α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J Ethnopharmacol 107(3):449–455

    Article  PubMed  Google Scholar 

  • Altenbach SB, Vensel WH, Dupont FM (2011) The spectrum of low molecular weight alpha-amylase/protease inhibitor genes expressed in the US bread wheat cultivar Butte 86. BMC Res Notes 4(1):242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves DT, Vasconcelos IM, Oliveira JT, Farias LR, Dias SC, Chiarello MD, Maria-Neto S, Franco OL (2009) Identification of four novel members of Kunitz-like α-amylase inhibitors family from Delonix regia with activity toward Coleopteran insects. Pestic Biochem Physiol 95(3):166–172

    Article  CAS  Google Scholar 

  • Ambekar SS, Patil SC, Giri AP, Kachole MS (1996) Proteinaceous inhibitors of trypsin and of amylases in developing and germinating seeds of pigeon pea (Cajanus cajan). J Sci Food Agric 72(1):57–62

    Article  CAS  Google Scholar 

  • Amrein TM, Bachmann S, Noti A, Biedermann M, Barbosa MF, Biedermann-Brem S, Amadó R (2003) Potential of acrylamide formation, sugars, and free asparagine in potatoes: a comparison of cultivars and farming systems. J Agric Food Chem 51(18):5556–5560

    Article  CAS  PubMed  Google Scholar 

  • Andow DA (2008) The risk of resistance evolution in insects to transgenic insecticidal crops. Collect Biosaf Rev 4:142–199

    Google Scholar 

  • Apostolidis E, Li L, Kang B-H, Lee CM, Seeram NP (2012) Seasonal influence on phenolicmediated antihyperglycemic properties of Canadian sugar and red maple leaves using in vitro assay models. Food Sci Biotechnol 21(3):753–760. https://doi.org/10.1007/s10068-012-0098-x

    Article  CAS  Google Scholar 

  • Arima H, Kondo T, Irie T, Hirayama F, Uekama K, Miyaji T, Inoue Y (1992) Use of water-soluble beta-cyclodextrin derivatives as carriers of anti-inflammatory drug biphenylylacetic acid in rectal delivery. Yakugaku zasshi: J Pharm Soc Jpn 112(1):65–72

    Article  CAS  Google Scholar 

  • Ayvaz H, Rodriguez-Saona LE (2015) Application of handheld and portable spectrometers for screening acrylamide content in commercial potato chips. Food Chem 174:154–162

    Article  CAS  PubMed  Google Scholar 

  • Azad MAK, Bae JH, Kim JS, Lim JK, Song KS, Shin BS, Kim HR (2009) Isolation and characterization of a novel thermostable α-amylase from Korean pine seeds. New Biotechnol 26(3–4):143–149

    Article  CAS  Google Scholar 

  • Barber D, Sanchez-Monge R, García-Olmeda F, Salcedo G, Méndez E (1986) Evolutionary implications of sequential homologies among members of the trypsin/α-amylase inhibitor family (CM-proteins) in wheat and barley. Biochim Biophys Acta Protein Struct Mol Enzymol 873(1):147–151. https://doi.org/10.1016/0167-4838(86)90201-3

    Article  CAS  Google Scholar 

  • Barber D, Sánchez-Monge R, Gómez L, Carpizo J, Armentia A, López-Otín C, Salcedo G (1989) A barley flour inhibitor of insect α-amylase is a major allergen associated with baker’s asthma disease. FEBS Lett 248(1–2):119–122

    Article  CAS  PubMed  Google Scholar 

  • Baysal Z, Uyar F, Doğru M, Alkan H (2008) Production of extracellular alkaline α-amylase by solid state fermentation with a newly isolated Bacillus sp. Prep Biochem Biotechnol 38(2):184–190

    Article  CAS  PubMed  Google Scholar 

  • Berre-Anton V, Bompard-Gilles C, Payan F, Rouge P (1997) Characterization and functional properties of the α-amylase inhibitor (α-AI) from kidney bean (Phaseolus vulgaris) seeds. Biochim Biophys Acta 1343(1):31–40

    Article  PubMed  Google Scholar 

  • Bessesen DH, Faggioni R (1998) Recently identified peptides involved in the regulation of body weight. Semin Oncol 25(2 Suppl 6):28–32

    CAS  PubMed  Google Scholar 

  • Bhagyawant SS, Narvekar DT, Gupta N, Bhadkaria A, Gautam AK, Srivastava N (2019) Chickpea (Cicer arietinum L.) lectin exhibit inhibition of ACE-I, α-amylase and α-glucosidase activity. Protein Pept Lett 26(7):494–501

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj RP, Raju NG, Chandrashekharaiah KS (2018) Purification and characterization of alpha-amylase inhibitor from the seeds of underutilized legume, Mucuna pruriens. J Food Biochem 42(6):e12686

    Article  CAS  Google Scholar 

  • Bhide AJ, Channale SM, Yadav Y, Bhattacharjee K, Pawar PK, Maheshwari VL, Gupta VS, Ramasamy S, Giri AP (2017) Genomic and functional characterization of coleopteran insect-specific α-amylase inhibitor gene from Amaranthus species. Plant Mol Biol 94(3):319–332

    Article  CAS  PubMed  Google Scholar 

  • Bi HL, Xu J, Tan AJ, Huang YP (2016) CRISPR/Cas9-mediated targeted gene mutagenesis in Spodoptera litura. Insect Sci 23(3):469–477

    Article  CAS  PubMed  Google Scholar 

  • Biedermann-Brem S, Noti A, Grob K, Imhof D, Bazzocco D, Pfefferle A (2003) How much reducing sugar may potatoes contain to avoid excessive acrylamide formation during roasting and baking? Eur Food Res Technol 217(5):369–373

    Article  CAS  Google Scholar 

  • Bischoff H (1994) Pharmacology of alpha-glucosidase inhibition. Eur J Clin Investig 24:3–10

    CAS  Google Scholar 

  • Blanco-Labra A, Iturbe-Chinas FA (1981) Purification and characterization of an α-amylase inhibitor from maise (Zea maize). J Food Biochem 5(1):1–7

    Article  CAS  Google Scholar 

  • Blanco-Labra A, Chagolla-Lopez A, Marínez-Gallardo N, Valdes-Rodriguez S (1995) Further characterization of the 12 kDa protease/alpha amylase inhibitor present in maize seeds. J Food Biochem 9(1):27–41

    Article  Google Scholar 

  • Bloch C, Richardson M (1991) A new family of small (5 kDa) protein inhibitors of insect α-amylases from seeds or sorghum (Sorghum bicolor (L) Moench) have sequence homologies with wheat γ-purothionins. FEBS Lett 279(1):101–104

    Article  CAS  PubMed  Google Scholar 

  • Bompard-Gilles C, Rousseau P, Rougé P, Payan F (1996) Substrate mimicry in the active centre of a mammalian α amylase: structural analysis of an enzyme–inhibitor complex. Structure 4(12):1441–1452

    Article  CAS  PubMed  Google Scholar 

  • Bonavides KB, Pelegrini PB, Laumann RA, Grossi-de-Sá MF, JrC B, Melo JA, Franco OL (2007) Molecular identification of four different α-amylase inhibitors from Baru (Dipteryx alata) seeds with activity toward insect enzymes. BMB Rep 40(4):494–500

    Article  CAS  Google Scholar 

  • Bønsager BC, Prætorius-Ibba M, Nielsen PK, Svensson B (2003) Purification and characterization of the β-trefoil fold protein barley α-amylase/subtilisin inhibitor overexpressed in Escherichia coli. Protein Expr Purif 30(2):185–193

    Article  PubMed  CAS  Google Scholar 

  • Bønsager BC, Nielsen PK, Hachem MA, Fukuda K, Prætorius-Ibba M, Svensson B (2005) Mutational analysis of target enzyme recognition of the β-trefoil fold barley α-amylase/subtilisin inhibitor. J Biol Chem 280(15):14855–14864

    Article  PubMed  CAS  Google Scholar 

  • Bowles DJ (1990) Defence related proteins in higher plants. Annu Rev Biochem 59(1):873–907

    Article  CAS  PubMed  Google Scholar 

  • Brain-Isasi S, Álvarez-Lueje A, Higgins TJV (2017) Heterologous expression of an α-amylase inhibitor from common bean (Phaseolus vulgaris) in Kluyveromyces lactis and Saccharomyces cerevisiae. Microb Cell Factories 16(1):110

    Article  CAS  Google Scholar 

  • Bunyatang O, Chirapongsatonkul N, Bangrak P, Henry R, Churngchow N (2016) Molecular cloning and characterization of a novel bi-functional α-amylase/subtilisin inhibitor from Hevea brasiliensis. Plant Physiol Biochem 101:76–87

    Article  CAS  PubMed  Google Scholar 

  • Campos FAP, Richardson M (1983) The complete amino acid sequence of the bifunctional α-amylase/trypsin inhibitor from seeds of ragi (Indian finger millet, Eleusine coracana Gaertn.). FEBS Lett 152(2):300–304

    Article  CAS  Google Scholar 

  • Carlini CR, Grossi-de-Sá MF (2002) Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 40(11):1515–1539

    Article  CAS  PubMed  Google Scholar 

  • Chagolla-Lopez A, Blanco-Labra A, Patthy A, Sánchez R, Pongor S (1994) A novel alpha-amylase inhibitor from amaranth (Amaranthus hypocondriacus) seeds. J Biol Chem 269(38):23675–23680

    Article  CAS  PubMed  Google Scholar 

  • Channale SM, Bhide AJ, Yadav Y, Kashyap G, Pawar PK, Maheshwari VL, Ramasamy S, Giri AP (2016) Characterization of two coleopteran α-amylases and molecular insights into their differential inhibition by synthetic α-amylase inhibitor, acarbose. Insect Biochem Mol Biol 74:1–11

    Article  CAS  PubMed  Google Scholar 

  • Chen MS (2008) Inducible direct plant defense against insect herbivores: a review. Insect Sci 15(2):101–114

    Article  CAS  Google Scholar 

  • Chen X, Xu G, Li X, Li Z, Ying H (2008) Purification of an α-amylase inhibitor in a polyethylene glycol/fructose-1,6-bisphosphate trisodium salt aqueous two-phase system. Process Biochem 43(7):765–768

    Article  CAS  Google Scholar 

  • Cherry HM, Hussain T, Anwar MN (2004) Extracellular glucoamylase from the isolate Aspergillus fumigatus. Pak J Biol Sci 7(11):1988–1992

    Article  Google Scholar 

  • Christou P, Capell T, Kohli A, Gatehouse JA, Gatehouse AM (2006) Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci 11(6):302–308

    Article  CAS  PubMed  Google Scholar 

  • Conconi A, Smerdon MJ, Howe GA, Ryan CA (1996) The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation. Nature 383(6603):826

    Article  CAS  PubMed  Google Scholar 

  • Cuccioloni M, Mozzicafreddo M, Ali I, Bonfili L, Cecarini V, Eleuteri AM, Angeletti M (2016) Interaction between wheat alpha-amylase/trypsin bi-functional inhibitor and mammalian digestive enzymes: kinetic, equilibrium and structural characterization of binding. Food Chem 213:571–578

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Lu T, Wang M, Zou X, Zhang Y, Yang X, Dong Y, Zhou H (2019) Flavonoids from Morus alba L. leaves: optimization of extraction by response surface methodology and comprehensive evaluation of their antioxidant, antimicrobial, and inhibition of α-amylase activities through analytical hierarchy process. Molecules 24(13):2398

    Article  CAS  PubMed Central  Google Scholar 

  • da Silva MC, Del Sarto RP, Lucena WA, Rigden DJ, Teixeira FR, de Andrade BC, Albuquerque ÉV, Grossi-de-Sa MF (2013) Employing in vitro directed molecular evolution for the selection of α-amylase variant inhibitors with activity toward cotton boll weevil enzyme. J Biotechnol 167(4):377–385

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, McDowell JM (2006) Two modes of pathogen recognition by plants. Proc Natl Acad Sci 103(23):8575–8576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell H, Dhingra A (2002) Multigene engineering: dawn of an exciting new era in biotechnology. Curr Opin Biotechnol 13(2):136–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deb P, Talukdar SA, Mohsina K, Sarker PK, Sayem SA (2013) Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. Springerplus 2(1):154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Debnath G, Das P, Saha AK (2019) Green synthesis of silver nanoparticles using mushroom extract of Pleurotus giganteus: characterization, antimicrobial, and α-amylase inhibitory activity. Bionanoscience 9:611–619

    Article  Google Scholar 

  • Deshpande BS, Ambedkar SS, Shewale JG (1988) Biologically active secondary metabolites from Streptomyces. Enzym Microb Technol 10(8):455–473

    Article  CAS  Google Scholar 

  • Dias SC, Franco OL, Magalhaes CP, de Oliveira-Neto OB, Laumann RA, Figueira EL, Melo FR, Grossi-de-Sá MF (2005) Molecular cloning and expression of an α-amylase inhibitor from rye with potential for controlling insect pests. Protein J 24(2):113–123

    Article  CAS  PubMed  Google Scholar 

  • Dixon M (1953) The determination of enzyme inhibitor constants. Biochem J 55(1):170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diz MS, Carvalho AO, Ribeiro SF, Da Cunha M, Beltramini L, Rodrigues R, Gomes VM (2011) Characterisation, immune localisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties. Physiol Plant 142(3):233–246

    Article  CAS  PubMed  Google Scholar 

  • dos Santos LDA, Taveira GB, Ribeiro SDFF, da Silva PL, de Oliveira CA, Rodrigues R, Oliveria AEA, Machado OLT, JdaSa A, Vasconcelos IM, Gomes VM (2017) Purification and characterization of peptides from Capsicum annuum fruits which are α-amylase inhibitors and exhibit high antimicrobial activity against fungi of agronomic importance. Protein Expr Purif 132:97–107

    Article  PubMed  CAS  Google Scholar 

  • Etoundi CB, Kuaté D, Ngondi JL, Oben J (2010) Anti-amylase, anti-lipase and antioxidant effects of aqueous extracts of some Cameroonian spices. J Nat Prod 3:165–171

    Google Scholar 

  • Farias LR, Costa FT, Souza LA, Pelegrini PB, Grossi-de-Sá MF, Neto SM, Bloch C Jr, Laumann RA, Noronha EF, Franco OL (2007) Isolation of a novel Carica papaya α-amylase inhibitor with deleterious activity toward Callosobruchus maculatus. Pest Biochem Phys 87(3):255–260

    Article  CAS  Google Scholar 

  • Feng GH, Richardson M, Chen MS, Kramer KJ, Morgan TD, Reeck GR (1996) α-Amylase inhibitors from wheat: amino acid sequences and patterns of inhibition of insect and human α-amylases. Insect Biochem Mol Biol 26(5):419–426. https://doi.org/10.1016/0965-1748(95)00087-9

    Article  CAS  PubMed  Google Scholar 

  • Figueira ELZ, Hirooka EY, Mendiola-Olaya E, Blanco-Labra A (2003) Phytopathology® 93(8):917–922. https://doi.org/10.1094/PHYTO.2003.93.8.917

  • Finardi-Filho F, Mirkov TE, Chrispeels MJ (1996) A putative precursor protein in the evolution of the bean α-amylase inhibitor. Phytochemistry 43(1):57–62

    Article  CAS  PubMed  Google Scholar 

  • Franco OL, Rigden DJ, Melo FR, Bloch C Jr, Silva CP, Grossi de Sá MF (2000) Activity of wheat α-amylase inhibitors towards bruchid α-amylases and structural explanation of observed specificities. Eur J Biochem 267(8):2166–2173

    Article  CAS  PubMed  Google Scholar 

  • Franco OL, Rigden DJ, Melo FR, Grossi-de-Sá MF (2002) Plant α-amylase inhibitors and their interaction with insect α-amylases: structure, function and potential for crop protection. Eur J Biochem 269(2):397–412

    Article  CAS  PubMed  Google Scholar 

  • Gadge PP, Wagh SK, Shaikh FK, Tak RD, Padul MV, Kachole MS (2015) A bifunctional α-amylase/trypsin inhibitor from pigeon pea seeds: purification, biochemical characterization and its bio-efficacy against Helicoverpa armigera. Pest Biochem Phys 125:17–25

    Article  CAS  Google Scholar 

  • García-Casado G, Sánchez-Monge R, Puente XS, Salcedo G (1996) Divergence in properties of two closely related α-amylase inhibitors of barley. Physiol Plant 98(3):523–528

    Article  Google Scholar 

  • Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146(3):881–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatehouse and Gatehouse (1999) Identifying proteins with insecticidal activity: use of encoding gene to produce insect-resistant transgenic crops. Pest Manag Sci 52(2):165–175

    Article  Google Scholar 

  • Geng P, Qiu F, Zhu Y, Bai G (2008) Four acarviosin-containing oligosaccharides identified from Streptomyces coelicoflavus ZG0656 are potent inhibitors of α-amylase. Carbohydr Res 343(5):882–892

    Article  CAS  PubMed  Google Scholar 

  • Giesbrecht GF, Granger DA, Campbell T, Kaplan B, APrON Study Team (2013) Salivary alpha-amylase during pregnancy: diurnal course and associations with obstetric history, maternal demographics, and mood. Dev Psychobiol 55(2):156–167

    Article  CAS  PubMed  Google Scholar 

  • Giri AP, Kachole MS (1998) Amylase inhibitors of pigeonpea (Cajanus cajan) seeds. Phytochemistry 47(2):197–202

    Article  CAS  PubMed  Google Scholar 

  • Giri AP, Bhide AJ, Gupta VS (2016) Targeting digestive physiology: trends in strategic exploitation of plant defensive proteinaceous inhibitors against insect pests. Genetic engineering of plants—enhancing productivity and product value. Wiley, Chichester

    Google Scholar 

  • Goff DJ, Kull FJ (1995) The inhibition of human salivary α-amylase by type II α-amylase inhibitor from Triticum aestivum is competitive, slow and tight-binding. J Enzym Inhib 9(2):163–170

    Article  CAS  PubMed  Google Scholar 

  • Gomar J, Sodano P, Sy D, Shin DH, Lee JY, Suh SW, Marion D, Vovelle F, Ptak M (1998) Comparison of solution and crystal structures of maize nonspecific lipid transfer protein: a model for a potential in vivo lipid carrier protein. Proteins 31(2):160–171

    Article  CAS  PubMed  Google Scholar 

  • Gomes CE, Barbosa AE, Macedo LL, Pitanga JC, Moura FT, Oliveira AS, Moura RM, Queiroz AFS, Macedo FP, Andrade LBS, Vidal MS, Sales MP (2005) Effect of trypsin inhibitor from Crotalaria pallida seeds on Callosobruchus maculatus (cowpea weevil) and Ceratitis capitata (fruit fly). Plant Physiol Biochem 43(12):1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Gupta LH, Chougale A, Kulkarni M, Sabharwal SG (2013) Characterization of the α-amylase inhibitor from the seeds of Macrotyloma uniflorum and Vigna unguiculata. Int J Pharma Bio Sci 4(2):127, 137

    Google Scholar 

  • Guzman-Partida AM, Jatomea-Fino O, Robles-Burgueno MR, Ortega-Nieblas M, Vazquez-Moreno L (2007) Characterization of α-amylase inhibitor from Palo Fierro seeds. Int J Pharm Bio Sci 45(9):711–715

    CAS  Google Scholar 

  • Hansawasdi C, Kawabata J, Kasai T (2001) Hibiscus acid as an inhibitor of starch digestion in the Caco-2 cell model system. Biosci Biotechnol Biochem 65(9):2087–2089

    Article  CAS  PubMed  Google Scholar 

  • Heibges A, Salamini F, Gebhardt C (2003) Functional comparison of homologous members of three groups of Kunitz-type enzyme inhibitors from potato tubers (Solanum tuberosum L.). Mol Genet Genomics 269(4):535–541

    Article  CAS  PubMed  Google Scholar 

  • Heidari R, Zareae S, Heidarizadeh M (2005) Extraction, purification, and inhibitory effect of alpha-amylase inhibitor from wheat (Triticum aestivum Var. Zarrin). Pak J Nutr 4:101–105

    Article  Google Scholar 

  • Hejgaard J, Jacobsen S, Svendsen IB (1991) Two antifungal thaumatin-like proteins from barley grain. FEBS Lett 291(1):127–131

    Article  CAS  PubMed  Google Scholar 

  • Heo SJ, Hwang JY, Choi JI, Han JS, Kim HJ, Jeon YJ (2009) Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown alga, a potent α-glucosidase and α-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur J Pharmacol 615(1–3):252–256

    Article  CAS  PubMed  Google Scholar 

  • Hey J, Posch A, Cohen A, Liu N, Harbers A (2008) Fractionation of complex protein mixtures by liquid-phase isoelectric focusing. In 2D PAGE: sample preparation and fractionation. Methods Mol Biol 424:225–239

    Article  CAS  PubMed  Google Scholar 

  • Hivrale VK, Chougule NP, Giri AP, Chhabda PJ, Kachole MS (2011) J Sci Food Agric 91(10):1773–1780. https://doi.org/10.1002/jsfa.4380

    Article  CAS  PubMed  Google Scholar 

  • Ho MF, Whitaker JR (1993) Purification and partial characterization of white kidney bean (Phaseolus vulgaris) β-amylase inhibitors from two experimental cultivars. J Food Biochem 17(1):15–33

    Article  CAS  Google Scholar 

  • Hofmann O, Vértesy L, Braunitzer G (1985) The primary structure of α-amylase inhibitor Z-2685 from Streptomyces parvullus FH-1641. Sequence homology between inhibitor and α-amylase. Biol Chem 366(2):1161–1168

    CAS  Google Scholar 

  • Holt PR, Atillasoy E, Lindenbaum J, Ho SB, Lupton JR, McMahon D, Moss SF (1996) Effects of acarbose on fecal nutrients, colonic pH, and short chain fatty acids and rectal proliferative indices. Metabolism 45:1179–1187

    Article  CAS  PubMed  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59(1):41–66. https://doi.org/10.1146/annurev.arplant.59.032607.092825

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Chen Y, Zeng B, Wang Y, James AA, Gurr GM, Yang G, Lin X, Huang Y, You M (2016) CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in the global pest, diamondback moth (Plutella xylostella). Insect Biochem Mol Biol 75:98–106

    Article  CAS  PubMed  Google Scholar 

  • Huesing JE, Shade RE, Chrispeels MJ, Murdock LL (1991) α-amylase inhibitor, not phytohemagglutinin, explains resistance of common bean seeds to cowpea weevil. Plant Physiol 96(3):993–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iimure T, Kihara M, Sato K, Ogushi K (2015) Purification of barley dimeric α-amylase inhibitor-1 (BDAI-1) and avenin-like protein-a (ALP) from beer and their impact on beer foam stability. Food Chem 172:257–264

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Ōmura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21(5):526

    Article  PubMed  Google Scholar 

  • Ishimoto M, Suzuki K, Iwanaga M, Kikuchi F, Kitamura K (1995) Variation of seed α-amylase inhibitors in the common bean. Theor Appl Genet 90(3–4):425–429. https://doi.org/10.1007/BF00221985

    Article  CAS  PubMed  Google Scholar 

  • Ishimoto M, Chrispeels MJ (1996) Protective mechanism of the Mexican Bean Weevil against high levels of [alpha]-amylase inhibitor in the common bean. Plant Physiol 111(2):393–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishimoto M, Kitamura K (1989) Growth inhibitory effects of an α-amylase inhibitor from the kidney bean, Phaseolus vulgaris (L.) on three species of bruchids (Coleoptera: Bruchidae). Appl Entomol Zool 24(3):281–286

    Article  Google Scholar 

  • Iulek J, Franco OL, Silva M, Slivinski CT, Bloch C Jr, Rigden DJ, de Sá MFG (2000) Purification, biochemical characterisation and partial primary structure of a new α-amylase inhibitor from Secale cereale (rye). Int J Biochem Cell Biol 32(11–12):1195–1204

    Article  CAS  PubMed  Google Scholar 

  • Jayaraj S, Suresh S, Kadeppagari R-K (2013) Amylase inhibitors and their biomedical applications. Starch Stärke 65(7–8):535–542. https://doi.org/10.1002/star.201200194

    Article  CAS  Google Scholar 

  • Justino AB, Miranda NC, Franco RR, Martins MM, daSilva NM, Espindola FS (2018) Annona muricata Linn. leaf as a source of antioxidant compounds with in vitro antidiabetic and inhibitory potential against α-amylase, α-glucosidase, lipase, non-enzymatic glycation and lipid peroxidation. Biomed Pharmacother 100:83–92

    Article  CAS  PubMed  Google Scholar 

  • Kader JC (1997) Lipid-transfer proteins: a puzzling family of plant proteins. Trends Plant Sci 2(2):66–70

    Article  Google Scholar 

  • Kadziola A, Søgaard M, Svensson B, Haser R (1998) Molecular structure of a barley α-amylase-inhibitor complex: implications for starch binding and catalysis. J Mol Biol 278(1):205–217

    Article  CAS  PubMed  Google Scholar 

  • Kaloshian I (2004) Gene-for-gene disease resistance: bridging insect pest and pathogen defence. J Chem Ecol 30(12):2419–2438

    Article  CAS  PubMed  Google Scholar 

  • Kamitori S, Kondo S, Okuyama K, Yokota T, Shimura Y, Tonozuka T, Sakano Y (1999) Crystal structure of thermo actinomyces vulgaris R-47 α-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 Å resolution. J Mol Biol 287(5):907–921

    Article  CAS  PubMed  Google Scholar 

  • Kandra L, Gyémánt G, Remenyik J, Hovánszki G, Lipták A (2002) Action pattern and subsite mapping of Bacillus licheniformis α-amylase (BLA) with modified malt oligosaccharide substrates. FEBS Lett 518(1–3):79–82

    Article  CAS  PubMed  Google Scholar 

  • Karthic K, Kirthiram KS, Sadasivam S, Thayumanavan B, Palvannan T (2008) Identification of alpha amylase inhibitors from Syzygiumcumini Linn seeds. Indian J Exp Biol 46(9):677–680

    CAS  PubMed  Google Scholar 

  • Kasahara K, Hayashi K, Arakawa T, Philo JS, Wen J, Hara S, Yamaguchi H (1996) Complete sequence, subunit structure, and complexes with pancreatic α-amylase of an α-amylase inhibitor from Phaseolus vulgaris white kidney beans. J Biochem 120(1):177–183

    Article  CAS  PubMed  Google Scholar 

  • Kasar SS, Marathe KR, Bhide AJ, Herwade AP, Giri AP, Maheshwari VL, Pawar PK (2017) A glycoprotein α-amylase inhibitor from Withania somnifera differentially inhibits various α-amylases and affects the growth and development of Tribolium castaneum. Pest Manag Sci 73(7):1382–1390

    Article  CAS  PubMed  Google Scholar 

  • Kasar SS, Giri AP, Pawar PK, Maheshwari VL (2019) A Protein α-amylase inhibitor from Withania Somnifera and its role in overall quality and nutritional value improvement of potato chips during processing. Food Bioprocess Technol 12(4):636–644

    Article  CAS  Google Scholar 

  • Katsuyama K, Iwata N, Shimazu A (1992) Purification and primary structure of proteinous α-amylase inhibitor from Streptomyces chartreusis. Biosci Biotechnol Biochem 56(12):1949–1954

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Kaur N, Gupta AK (2014) Structural features, substrate specificity, kinetic properties of insect α-amylase and specificity of plant α-amylase inhibitors. Pest Biochem Phys 116:83–93

    Article  CAS  Google Scholar 

  • Khatik GL, Datusalia AK, Ahsan W, Kaur P, Vyas M, Mittal A, Nayak SK (2018) A retrospect study on thiazole derivatives as the potential antidiabetic agents in drug discovery and developments. Curr Drug Discov Technol 15(3):163–177

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Lee SB, Lee HS, Lee SY, Baek JS, Kim D, Moon TW, Robyt JF, Park KH (1999) Comparative study of the inhibition of α-glucosidase, α-amylase, and cyclomaltodextrin glucanosyltransferase by acarbose, isoacarbose, and acarviosine–glucose. Arch Biochem Biophys 371(2):277–283

    Article  CAS  PubMed  Google Scholar 

  • Kim KY, Nam KA, Kurihara H, Kim SM (2008) Potent α-glucosidase inhibitors purified from the red alga. Phytochemistry 69:2820–2825

    Article  CAS  PubMed  Google Scholar 

  • Kim KY, Nguyen TH, Kurihara H, Kim SM (2010) α-glucosidase inhibitory activity of bromophenol purified from the red alga Polyopes lancifolia. J Food Sci 75(5):H145–H150

    CAS  PubMed  Google Scholar 

  • Kim KT, Rioux LE, Turgeon SL (2014) Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry 98:27–33

    Article  CAS  PubMed  Google Scholar 

  • Kluh I, Horn M, Hýblová J, Hubert J, Dolečková-Marešová L, Voburka Z, Kudlikova I, Kocourek F, Mareš M (2005) Inhibitory specificity and insecticidal selectivity of α-amylase inhibitor from Phaseolus vulgaris. Phytochemistry 66(1):31–39

    Article  CAS  PubMed  Google Scholar 

  • Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plant defence. Phytochemistry 2(10):379–384

    Google Scholar 

  • Kokiladevi E, Manickam A, Thayumanavan B (2005) Characterization of alpha-amylase inhibitor in Vigna sublobata. Bot Bull Acad Sin 46(3)

    Google Scholar 

  • Kotkar HM, Sarate PJ, Tamhane VA, Gupta VS, Giri AP (2009) Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants. J Insect Physiol 55(8):663–670

    Article  CAS  PubMed  Google Scholar 

  • Koukiekolo R, Desseaux V, Moreau Y, Marchis-Mouren G, Santimone M (2001) Mechanism of porcine pancreatic α-amylase: inhibition of amylose and maltopentaose hydrolysis by α-, β-and γ-cyclodextrins. Eur J Biochem 268(3):841–848

    Article  CAS  PubMed  Google Scholar 

  • Koundal KR, Rajendran P (2003) Plant insecticidal proteins and their potential for developing transgenics resistant to insect pests. Indian J Biotechnol 2:110–120

    CAS  Google Scholar 

  • Koutroumpa FA, Monsempes C, François MC, De Cian A, Royer C, Concordet JP, Jacquin-Joly E (2016) Heritable genome editing with CRISPR/Cas9 induces anosmia in a crop pest moth. Sci Rep 6:29620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari B, Sharma P, Nath AK (2012) α-Amylase inhibitor in local Himalayan collections of Colocasia: isolation, purification, characterization and selectivity towards α-amylases from various sources. Pest Biochem Phys 103(1):49–55

    Article  CAS  Google Scholar 

  • Lajolo FM, Finardi Filho F (1985) Partial characterization of the amylase inhibitor of black beans (Phaseolus vulgaris), variety Rico 23. J Agric Food Chem 33(1):132–138

    Article  CAS  Google Scholar 

  • Lakshmana Senthil S, Chacko A, Geetharamani D, Suja G, Yesudas R, Kumar TV (2015) Fucoidan a α-amylase inhibitor from Sargassum wightii with relevance to NIDDM. Int J Biol Macromol 81:644–647

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen Y, Xiao C, Chen D, Xiao Y, Mei Z (2014) Rapid screening and identification of α-amylase inhibitors from Garcinia xanthochymus using enzyme-immobilized magnetic nanoparticles coupled with HPLC and MS. J Chromatogr B 960:166–173

    Article  CAS  Google Scholar 

  • Liu S, Li D, Huang B, Chen Y, Lu X, Wang Y (2013) Inhibition of pancreatic lipase, α-glucosidase, α-amylase, and hypolipidemic effects of the total flavonoids from Nelumbo nucifera leaves. J Ethnopharmacol 149(1):263–269

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Cen Y, Liu F, Yu J, Jiang X, Chen X (2015) Analysis of α-amylase inhibitor from corni fructus by coupling magnetic cross-linked enzyme aggregates of α-amylase with HPLC–MS. J Chromatogr B 995:64–69

    Article  CAS  Google Scholar 

  • Luyen NT, Hanh TTH, Binh PT, Dang NH, Van Minh C, Dat NT (2013) Inhibitors of α-glucosidase, α-amylase and lipase from Chrysanthemum morifolium. Phytochem Lett 6(3):322–325

    Article  CAS  Google Scholar 

  • Ma C, Hu L, Kou X, Lv W, Lou Z, Wang H (2017) Rapid screening of potential α-amylase inhibitors from Rhodiola rosea by UPLC-DAD-TOF-MS/MS-based metabolomic method. Phytochem Lett 36:144–149

    CAS  Google Scholar 

  • MacGregor EA, Bazin SL, Ens EW, Lahnstein J, Macri LJ, Shirley NJ, MacGregor AW (2000) Structural models of limit dextrinase inhibitors from barley. J Cereal Sci 31(1):79–90

    Article  CAS  Google Scholar 

  • Maczó A, Cucu T, De Meulenaer B, Gelencsér É (2015) Comparison of the alpha amylase inhibitor-1 from common beans and transgenic pea expressing the bean alpha amylase inhibitor-1 by means of LC–TOF–MS. Int Food Res J 76:86–91

    Article  CAS  Google Scholar 

  • Marshall JJ, Lauda CM (1975) Purification and properties of phaseolamin, an inhibitor of alpha-amylase, from the kidney bean, Phaseolus vulgaris. J Biol Chem 250:8030–8037

    Article  CAS  PubMed  Google Scholar 

  • Marshall MR, Kim J, Wei C (2000) Enzymatic browning in fruits, vegetables and sea foods, vol 41. FAO, Rome, pp 259–312

    Google Scholar 

  • Matsushita H, Takenaka M, Ogawa H (2002) Porcine pancreatic α-amylase shows binding activity toward n-linked oligosaccharides of glycoproteins. J Biol Chem 277(7):4680–4686

    Article  CAS  PubMed  Google Scholar 

  • McEwan R, Madivha RP, Djarova T, Oyedeji OA, Opoku AR (2010) Alpha-amylase inhibitor of amadumbe (Colocasia esculenta): isolation, purification and selectivity toward-amylases from various sources. Afr J Biochem Res 4(9):220–224

    CAS  Google Scholar 

  • Meera C, Meenakumari S, Thirumavalavan M, Pachaiappan R (2017) Isolation and characterization of α-amylase inhibitor from Leucas aspera (Willd) Link: α-amylase assay combined with FPLC chromatography for expedited identification. J Plant Biochem Biotechnol 26(3):346–355

    Article  CAS  Google Scholar 

  • Mehrabadi M, Bandani AR, Saadati F, Mahmudvand M (2011) α-Amylase activity of stored products insects and its inhibition by medicinal plant extracts. J Agric Sci Technol 13(7):1173–1182

    CAS  Google Scholar 

  • Melo FR, Sales MP, Pereira LS, Bloch C Jr, Franco OL, Ary MB (1999) a-Amylase inhibitors from cowpea seeds. Protein Pept Lett 6:385–390

    CAS  Google Scholar 

  • Meng P, Guo Y, Zhang Q, Hou J, Bai F, Geng P, Bai G (2011) A novel amino-oligosaccharide isolated from the culture of Streptomyces strain PW638 is a potent inhibitor of α-amylase. Carbohydr Res 346(13):1898–1902

    Article  CAS  PubMed  Google Scholar 

  • Minney BHP, Gatehouse AM, Dobie P, Dendy J, Cardona C, Gatehouse JA (1990) Biochemical bases of seed resistance to Zabrotes subfasciatus (bean weevil) in Phaseolus vulgaris (common bean); a mechanism for arcelin toxicity. J Insect Physiol 36(10):757–767

    Article  CAS  Google Scholar 

  • Mrva K, Wallwork M, Mares DJ (2006) α-Amylase and programmed cell death in aleurone of ripening wheat grains. J Exp Bot 57(4):877–885

    Article  CAS  PubMed  Google Scholar 

  • Mundy J, Svendsen IB, Hejgaard J (1983) Barley α-amylase/subtilisin inhibitor. I. Isolation and characterization. Carlsberg Res Commun 48(2):81

    Article  CAS  Google Scholar 

  • Mundy J, Hejgaard J, Svendsen I (1984) Characterization of a bifunctional wheat inhibitor of endogenous α-amylase and subtilisin. FEBS Lett 167(2):210–214

    Article  CAS  Google Scholar 

  • Murao S, Goto A, Matsui Y, Ohyama K (1980) New proteinous inhibitor (Haim) of animal α-amylase from Streptomyces griseosporeus YM-25. Agric Biol Chem 44(7):1679–1681

    CAS  Google Scholar 

  • Murao S, Oouchi N, Goto A, Arai M (1983) New proteinaceous α-amylase inhibitor (Paim) from Streptomyces corchorusii. Agric Biol Chem 47(2):453–454

    CAS  Google Scholar 

  • Murao S, Hinode Y, Matsumura E, Numata A, Kawai K, Ohishi H, Shin T (1992) A novel laccase inhibitor, N-hydroxyglycine, produced by Penicillium citrinum YH-31. Biosci Biotechnol Biochem 56(6):987–988

    Article  CAS  PubMed  Google Scholar 

  • Namiki S, Kangouri K, Nagate T, Hara H, Sugita K, Noda K, Tarumoto Y, Omura S (1982) Studies on the α-Glucoside hydrolase inhibitor, adiposin. J Antibiot 35(9):1167–1173

    Article  CAS  Google Scholar 

  • Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Goździcka-Józefiak A (2014) Plant antimicrobial peptides. Folia Microbiol 59(3):181–196

    Article  CAS  Google Scholar 

  • Ngoh YY, Gan CY (2016) Enzyme-assisted extraction and identification of antioxidative and α-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto). Food Chem 190:331–337

    Article  CAS  PubMed  Google Scholar 

  • Nguyen PQ, Wang S, Kumar A, Yap LJ, Luu TT, Lescar J, Tam JP (2014) Discovery and characterization of pseudo cyclic cystine-knot α-amylase inhibitors with high resistance to heat and proteolytic degradation. FEBS J 281(19):4351–4366

    Article  CAS  PubMed  Google Scholar 

  • Nielsen AD, Pusey ML, Fuglsang CC, Westh P (2003) A proposed mechanism for the thermal denaturation of a recombinant Bacillus halmapalus α-amylase—the effect of calcium ions. Biochim Biophys Acta (BBA) – Prot Proteom 1652(1):52–63. https://doi.org/10.1016/j.bbapap.2003.08.002

    Article  CAS  Google Scholar 

  • Nielsen PK, Bønsager BC, Fukuda K, Svensson B (2004) Barley α-amylase/subtilisin inhibitor: structure, biophysics and protein engineering. Biochim Biophys Acta Proteins Proteom 1696(2):157–164

    Article  CAS  Google Scholar 

  • Noreen T, Taha M, Imran S, Chigurupati S, Rahim F, Selvaraj M, Ismail NH, Mohammad JI, Ullah H, Javid MT, Nawas F, Irshad M, Ali M (2017) Synthesis of alpha amylase inhibitors based on privileged indole scaffold. Bioorg Chem 72:248–255

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell MD, FitzGerald O, McGeeney KF (1977) Differential serum amylase determination by use of an inhibitor, and design of a routine procedure. Clin Chem 23(3):560–566

    Article  PubMed  Google Scholar 

  • Obiro WC, Zhang T, Jiang B (2008) The nutraceutical role of the Phaseolus vulgaris α-amylase inhibitor. Br J Nutr 100(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Obiro WC, Zhang T, Jiang B (2008) Br J Nutr 100(1):1–12. https://doi.org/10.1017/S0007114508879135

    Article  CAS  PubMed  Google Scholar 

  • Ohtsubo KI, Richardson M (1992) The amino acid sequence of a 20 kDa bifunctional subtilisin/α-amylase inhibitor from brain of rice (Oryza saliva L.) seeds. FEBS Lett 309(1):68–72

    Article  CAS  PubMed  Google Scholar 

  • Payan F (2004) Structural basis for the inhibition of mammalian and insect α-amylases by plant protein inhibitors. Biochim Biophys Acta Proteins Proteom 1696(2):171–180

    Article  CAS  Google Scholar 

  • Pelegrini PB, Murad AM, Grossi-de-Sá MF, Mello LV, Romeiro LA, Noronha EF, Caldas RA, Franco OL (2006) Structure and enzyme properties of Zabrotes subfasciatus α-amylase. Arch Insect Biochem Physiol 61(2):77–86

    Article  CAS  PubMed  Google Scholar 

  • Pelegrini PB, Murad AM, Silva LP, dosSantos RC, Costa FT, Tagliari PD, Bloch C Jr, Noronha EF, Miller RNG, Franco OL (2008) Identification of a novel storage glycine-rich peptide from guava (Psidium guajava) seeds with activity against Gram-negative bacteria. Peptides 29(8):1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Pereira PJB, Lozanov V, Patthy A, Huber R, Bode W, Pongor S, Strobl S (1999) Specific inhibition of insect α-amylases: yellow meal worm α-amylase in complex with the Amaranth α-amylase inhibitor at 2.0 Å resolution. Structure 7(9):1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Pereira AR, Batista JAN, da Silva MCM, de Oliveira Neto OB, Figueira ELZ, Jiménez AV, Grossi-de-Sa MF (2006) An α-amylase inhibitor gene from Phaseolus coccineus encodes a protein with potential for control of coffee berry borer (Hypothenemus hampei). Phytochemistry 67(18):2009–2016

    Article  CAS  Google Scholar 

  • Petrucci T, Sannia G, Parlamenti R, Silano V (1978) Structural studies of wheat monomeric and dimeric protein inhibitors of α-amylase. Biochem J 173(1):229–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peumans WJ, Van Damme EJ (1995) Lectins as plant defence proteins. Plant Physiol 109(2):347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimentel D (1991) Diversification of biological control strategies in agriculture. J Crop Prot 10(4):243–253

    Article  Google Scholar 

  • Podsedek A, Majewska I, Redzynia M, Sosnowska D, Koziołkiewicz M (2014) In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits. J Agric Food Chem 62(20):4610–4617

    Article  CAS  PubMed  Google Scholar 

  • Poerio E, Caporale C, Carrano L, Pucci P, Buonocore V (1991) Assignment of the five disulfide bridges in an α-amylase inhibitor from wheat kernel by fast-atom-bombardment mass spectrometry and Edman degradation. Eur J Biochem 199(3):595–600

    Article  CAS  PubMed  Google Scholar 

  • Ponnusamy S, Ravindran R, Zinjarde S, Bhargava S, Ravi Kumar A (2011) Evaluation of traditional Indian antidiabetic medicinal plants for human pancreatic amylase inhibitory effect in vitro. Evid Based Complement Alternat Med 2011:515647

    Article  PubMed  Google Scholar 

  • Pueyo JJ, Hunt DC, Chrispeels MJ (1993) Activation of bean (Phaseolus vulgaris) alpha amylase inhibitor requires proteolytic processing of the proprotein. Plant Physiol 101(4):1341–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pusztai A, Grant G, Brown DS, Ewen SWB, Baintner K, Peumans WJ, Van Damme EJM (1995) Lectins binding to the gut wall are growth factors for the pancreas: nutritional implications for transgenic plants. In: Lectins—biomed perspectives. CRC Press, Boca Raton, pp 141–154

    Chapter  Google Scholar 

  • Qian M, Nahoum V, Bonicel J, Bischoff H, Henrissat B, Payan F (2001) Enzyme-catalyzed condensation reaction in a mammalian α-amylase. High-resolution structural analysis of an enzyme inhibitor complex. Biochemistry 40(25):7700–7709

    Article  CAS  PubMed  Google Scholar 

  • Quirce S, Diaz-Perales A (2013) Diagnosis and management of grain-induced asthma. Allergy Asthma Immunol Res 5(6):348–356

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahimzadeh M, Jahanshahi S, Moein S, Moein MR (2014) Evaluation of alpha-amylase inhibition by Urtica dioica and Juglans regia extracts. Iran J Basic Med Sci 17(6):465

    PubMed  PubMed Central  Google Scholar 

  • Rajagopalan G, Krishnan C (2008) α-Amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Bioresour Technol 99(8):3044–3050

    Article  CAS  PubMed  Google Scholar 

  • Rao JUM, Satyanarayana T (2007) Purification and characterization of a hyper thermostable and high maltogenic α-amylase of an extreme thermophile Geobacillus thermoleovorans. Appl Biochem Biotechnol 142(2):179–193

    Article  CAS  Google Scholar 

  • Rao W, Su Y, Yang G, Ma Y, Liu R, Zhang S, Wang S, Fu Y, Kou C, Yu Y, Yu Q (2016) Cross-sectional associations between body mass index and hyper-lipidemia among adults in north eastern China. Int J Environ Res Public Health 13(5):516

    Article  PubMed Central  CAS  Google Scholar 

  • Regente MC, de la Canal L (2000) Purification, characterization and antifungal properties of a lipid transfer protein from sunflower (Helianthus annuus) seeds. Physiol Plant 110:158–163

    Article  CAS  Google Scholar 

  • Roberts DW, St Leger RJ (2004) Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv Appl Microbiol 54(1):1–70

    CAS  PubMed  Google Scholar 

  • Roberts WK, Selitrennikoff CP (1990) Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. Microbiology 136(9):1771–1778

    CAS  Google Scholar 

  • Robertson M, Hill RD (1989) Accumulation of an endogenous alpha-amylase inhibitor in barley during grain development. J Cereal Sci 9(3):237–246

    Article  CAS  Google Scholar 

  • Rocculi P, Galindo FG, Mendoza F, Wadsö L, Romani S, Dalla Rosa M, Sjöholm I (2007) Effects of the application of anti-browning substances on the metabolic activity and sugar composition of fresh-cut potatoes. Postharvest Biol Technol 43(1):151–157

    Article  CAS  Google Scholar 

  • Rockser Y, Wehmeier UF (2009) The gac-gene cluster for the production of acarbose from Streptomyces glaucescens GLA. O—identification, isolation and characterization. J Biotechnol 140(1–2):114–123

    Article  CAS  PubMed  Google Scholar 

  • Rodenburg KW, Varallyay E, Svendsen I, Svensson B (1995) Arg-27, Arg-127 and Arg-155 in the β-trefoil protein barley α-amylase/subtilisin inhibitor are interface residues in the complex with barley α-amylase 2. Biochem J 309:969–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosin O (2008) The economic causes of obesity: a survey. J Econ Surv 22(4):617–647

    Article  Google Scholar 

  • Russo D, Valentão P, Andrade P, Fernandez E, Milella L (2015) Evaluation of antioxidant, antidiabetic and anticholinesterase activities of Smallanthus sonchifolius landraces and correlation with their phytochemical profiles. Int J Mol Sci 16(8):17696–17718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28(1):425–449

    Article  CAS  Google Scholar 

  • Saini R, Saini HS, Dahiya A (2017) Amylases: characteristics and industrial applications. J Pharmacogn Phytochem 6(4):1865–1871

    CAS  Google Scholar 

  • Salcedo G, Quirce S, Diaz-Perales A (2011) Wheat allergens associated with Baker’s asthma. J Investig Allergol Clin Immunol 21(2):81

    CAS  PubMed  Google Scholar 

  • Sales MP, Gerhardt IR, Grossi-de-Sá MF, Xavier-Filho J (2000) Do legume storage proteins play a role in defending seeds against bruchids? Plant Physiol 124(2):515–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santimone M, Koukiekolo R, Moreau Y, Le Berre V, Rougé P, Marchis-Mouren G, Desseaux V (2004) Porcine pancreatic α-amylase inhibition by the kidney bean (Phaseolus vulgaris) inhibitor (α-AI1) and structural changes in the α-amylase inhibitor complex. Biochim Biophys Acta Proteins Proteom 1696(2):181–190

    Article  CAS  Google Scholar 

  • Sasikiran K, Rekha MR, Padmaja G (2004) Purification and partial characterization of proteinase and α-amylase inhibitors from lesser yam (Dioscorea esculenta). Int J Food Prop 7(2):185–199

    Article  CAS  Google Scholar 

  • Saunders RM, Lang JA (1973) α-Amylase inhibitors in Triticum aestivum: purification and physical-chemical properties. Phytochemistry 12(6):1237–1241

    Article  CAS  Google Scholar 

  • Sawada S, Takeda Y, Tashiro M (2002) Primary structures of α-and β-subunits of α-amylase inhibitors from seeds of three cultivars of Phaseolus beans. J Protein Chem 21(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Saxena L, Iyer BK, Ananthanarayan L (2010) Purification of a bifunctional amylase/protease inhibitor from ragi (Eleusine coracana) by chromatography and its use as an affinity ligand. J Chromatogr B 878(19):1549–1554

    Article  CAS  Google Scholar 

  • Schaller A, Ryan CA (1995) The electronic plant gene register. Plant Physiol 108(3):1341–1343

    Article  Google Scholar 

  • Schimoler-O’Rourke R, Richardson M, Selitrennikoff CP (2001) Zeamatin inhibits trypsin and α-amylase activities. Appl Environ Microbiol 67(5):2365–2366

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect-resistant transgenic plants. Trends Biotechnol 16(4):168–175

    Article  CAS  Google Scholar 

  • Schwartz MW, Baskin DG, Kaiyala KJ, Woods SC (1999) Model for the regulation of energy balance and adiposity by the central nervous system. Am J Clin Nutr 69(4):584–596

    Article  CAS  PubMed  Google Scholar 

  • Seetaloo AD, Aumeeruddy MZ, Kannan RR, Mahomoodally MF (2019) Potential of traditionally consumed medicinal herbs, spices, and food plants to inhibit key digestive enzymes geared towards diabetes mellitus management—a systematic review. S Afr J Bot 120:3–24

    Article  CAS  Google Scholar 

  • Segura A, Moreno M, García-Olmedo F (1993) Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of Arabidopsis and spinach. FEBS Lett 332(3):243–246

    Article  CAS  PubMed  Google Scholar 

  • Senthil SL, Kumar TV, Geetharamani D, Maruthupandi T (2013) Screening of seaweeds collected from Southeast Coastal area of India for α-amylase inhibitory activity, antioxidant activity and biocompatibility. Int J Pharm Pharm Sci 5(1):204–244

    Google Scholar 

  • Senthil SL, Kumar TV, Geetharamani D, Suja G, Yesudas R, Chacko A (2015) Fucoidan—an α-amylase inhibitor from Sargassum wightii with relevance to NIDDM. Int J Biol Macromol 81:644–647

    Article  CAS  Google Scholar 

  • Severini C, Baiano A, De Pilli T, Romaniello R, Derossi A (2003) Prevention of enzymatic browning in sliced potatoes by blanching in boiling saline solutions. LWT 36(7):657–665

    Article  CAS  Google Scholar 

  • Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJ, Chrispeels MJ (1994) Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Nat Biotechnol 12(8):793–796

    Article  CAS  Google Scholar 

  • Shamki AW, Ali A, Abdulaziz RS (2012) Purification and characterization of amylase inhibitor extracted from white kidney bean (Phaseolus vulgaris). J Cell Plant Sci 3(1):17–21

    Google Scholar 

  • Sharma KK, Pattabiraman TN (1980) Natural plant enzyme inhibitors: isolation and characterisation of two α-amylase inhibitors from Colocasia antiquorum tubers. J Sci Food Agric 31(10):981–991

    Article  CAS  Google Scholar 

  • Sharma M, Misra RN, Gandham NR, Jadhav SV, Angadi K, Wilson V (2012) Comparison of modified Petroff’s and N-acetyl-l-cysteine-sodium hydroxide methods for sputum decontamination in tertiary care hospital in India. Med J DY Patil Vidyapeeth 5(2):97

    Article  Google Scholar 

  • Sharp H, Hollinshead J, Bartholomew BB, Oben J, Watson A, Nash RJ (2007) Inhibitory effects of Cissus quadrangularis L. derived components on lipase, amylase and α-glucosidase activity in vitro. Nat Prod Commun 2(8):1934578X0700200806

    Google Scholar 

  • Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53(370):947–958

    Article  CAS  PubMed  Google Scholar 

  • Shivaraj B, Sharma KK, Pattabiraman TN (1979) Natural plant enzyme inhibitors: part VII. α-amylase inhibitors and amylases in plant tubers. Indian J Biochem Biophys 16:52–55

    CAS  PubMed  Google Scholar 

  • Shori AB (2015) Screening of antidiabetic and antioxidant activities of medicinal plants. J Integr Med 13(5):297–305. https://doi.org/10.1016/S2095-4964(15)60193-5

    Article  PubMed  Google Scholar 

  • Silva ONO, Mulder KC, Barbosa AA, Otero-Gonzalez AJ, Lopez-Abarrategui C, Rezende TMB, Dias SC, Franco OL (2011) Exploring the pharmacological potential of promiscuous host-defense peptides: from natural screenings to biotechnological applications. Front Microbiol 2:232

    PubMed  PubMed Central  Google Scholar 

  • Singh K, Kayastha AM (2014) Optimal immobilization of α-amylase from wheat (Triticum aestivum) onto DEAE-cellulose using response surface methodology and its characterization. J Mol Catal B Enzym 104:75–81

    Article  CAS  Google Scholar 

  • Singh S, Gupta M, Pandher S, Kaur G, Rathore P, Palli SR (2018) Selection of housekeeping genes and demonstration of RNAi in cotton leafhopper, Amrasca biguttula biguttula (Ishida). PLoS One 13(1):e0191116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siow HL, Gan CY (2017) Optimization study in extracting anti-oxidative and α-amylase inhibitor peptides from cumin seeds (Cuminum Cyminum). J Food Biochem 41(1):e12280

    Article  CAS  Google Scholar 

  • Sivakumar S, Franco OL, Tagliari PD, Bloch C Jr, Mohan M, Thayumanavan B (2005) Screening and purification of a novel trypsin inhibitor from Prosopis juliflora seeds with activity toward pest digestive enzymes. Protein Pept Lett 12(6):561–565

    Article  CAS  PubMed  Google Scholar 

  • Smith CM (1999) Plant resistance to insects. In: Biological and biotechnological control of insects. Lewis, Boca Raton, pp 171–207

    Google Scholar 

  • Smith CM, Boyko EV (2007) The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomol Exp Appl 122(1):1–16

    Article  CAS  Google Scholar 

  • Sokočević A, Han S, Engels JW (2011) Biophysical characterization of α-amylase inhibitor Parvulustat (Z-2685) and comparison with Tendamistat (HOE-467). Biochim Biophys Acta 1814(10):1383–1393

    Article  PubMed  CAS  Google Scholar 

  • Sreerama YN, Sashikala VB, Pratape VM (2012) Phenolic compounds in cowpea and horse gram flours in comparison to chickpea flour: evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia and hypertension. Food Chem 133(1):156–162

    Article  CAS  Google Scholar 

  • Strobl S, Muehlhahn P, Bernstein R, Wiltscheck R, Maskos K, Wunderlich M, Huber R, Glockshuber R, Holak TA (1995) Determination of the three-dimensional structure of the bifunctional. alpha-amylase/trypsin inhibitor from ragi seeds by NMR spectroscopy. Biochemistry 34(26):8281–8293

    Article  CAS  PubMed  Google Scholar 

  • Sudha P, Zinjarde SS, Bhargava SY, Kumar AR (2011) Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complement Altern Med 11(1):5

    Article  Google Scholar 

  • Suetsugu N, Koyama S, Kuge T (1974) Kinetic studies on the hydrolyses of α-, β-, and γ-cyclodextrins by Taka-amylase A. J Biochem 76(1):57–63

    Article  CAS  PubMed  Google Scholar 

  • Sumitani JI, Kawaguchi T, Hattori N, Murao S, Arai M (1993) Molecular cloning and expression of proteinaceous α-amylase inhibitor gene from Streptomyces nitrosporeus in Escherichia coli. Biosci Biotechnol Biochem 57(8):1243–1248

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Lu W, Liu P, Wang H, Huang Y, Zhao Y, Kong Y, Cui Z (2015) Isolation and characterization of a proteinaceous α-amylase inhibitor AAI-CC5 from Streptomyces sp. CC5, and its gene cloning and expression. Antonie Leeuwenhoek 107(2):345–356

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, Du W, Du J, Francis F, Zhao Y, Xia L (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298

    Article  PubMed  PubMed Central  Google Scholar 

  • Svensson B, Fukuda K, Nielsen PK, Bønsager BC (2004) Proteinaceous α-amylase inhibitors. Biochim Biophys Acta Proteins Proteom 1696(2):145–156

    Article  CAS  Google Scholar 

  • Tan Y, Chang SK, Zhang Y (2017) Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chem 214:259–268

    Article  CAS  PubMed  Google Scholar 

  • Tatham AS, Shewry PR (2008) Allergens to wheat and related cereals. Clin Exp Allergy 38(11):1712–1726

    CAS  PubMed  Google Scholar 

  • Terra WR, Ferreira C (1994) Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol B 109(1):1–62

    Article  Google Scholar 

  • Thevissen K, Ghazi A, de Samblanx GW, Brownlee C, Osborn RW, Broekaert WF (1996) Fungal membrane responses induced by plant defensins and thionins. J Biol Chem 271:15018–15025

    Article  CAS  PubMed  Google Scholar 

  • Turcotte GE, Nadeau L, Forest JC, Douville P, Leclerc P, Bergeron J, de Laclos BF (1994) A new rapid immune inhibition pancreatic amylase assay: diagnostic value for pancreatitis. Clin Biochem 27(2):133–139

    Article  CAS  PubMed  Google Scholar 

  • Vértesy L, Tripier D (1985) Isolation and structure elucidation of an α-amylase inhibitor, AI-3688, from Streptomyces aureofaciens. FEBS Lett 185(1):187–190

    Article  PubMed  Google Scholar 

  • Vértesy L, Oeding V, Bender R, Zepf K, Nesemann G (1984) Tendamistat (HOE 467), a tight-binding α-amylase inhibitor from Streptomyces tendae 4158: isolation, biochemical properties. Eur J Biochem 141(3):505–512

    Article  PubMed  Google Scholar 

  • Vigers AJ, Roberts WK, Selitrennikoff CP (1991) A new family of plant antifungal proteins. Mol Plant-Microbe Interact 4(4):315–323

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhou T, Tang X, Wang X, Liang S (2004) Purification and characterization of a novel alpha amylase inhibitor from wild amaranth (Amaranthus paniculatus) weeds. Chin J Biochem Mol Biol 20(4):434–439

    CAS  Google Scholar 

  • Wang HH, Chen CL, Jeng TL, Sung JM (2011) Comparisons of α-amylase inhibitors from seeds of common bean mutants extracted through three phase partitioning. Food Chem 128(4):1066–1071

    Article  CAS  Google Scholar 

  • Wang J, Zhang H, Wang H, Zhao S, Zuo Y, Yang Y, Wu Y (2016) Functional validation of cadherin as a receptor of Bt toxin Cry1Ac in Helicoverpa armigera utilizing the CRISPR/Cas9 system. Insect Biochem Mol Biol 76:11–17

    Article  CAS  PubMed  Google Scholar 

  • Weaver GA, Tangel CT, Krause JA, Parfitt MM, Jenkins PL, Rader JM, Lewis BA, Miller TL, Wolin MJ (1997) Acarbose enhances human colonic butyrate production. J Nutr 127(5):717–723. https://doi.org/10.1093/jn/127.5.717

    Article  CAS  PubMed  Google Scholar 

  • Weselake RJ, MacGregor AW, Hill RD (1985) Endogenous alpha-amylase inhibitor in various cereals. Cereal Chem 62(2):120–123

    CAS  Google Scholar 

  • Whitfield FB, Mottram DS (1992) Volatiles from interactions of Maillard reactions and lipids. Crit Rev Food Sci Nutr 31(1–2):1–58

    Article  CAS  PubMed  Google Scholar 

  • Wijaya R, Neumann GM, Condron R, Hughes AB, Polya GM (2000) Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin. Plant Sci 159(2):243–255

    Article  CAS  PubMed  Google Scholar 

  • Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053

    Article  PubMed  Google Scholar 

  • Wisessing A, Engkagul A, Wongpiyasatid A, Choowongkomon K (2010) Biochemical characterization of the α-amylase inhibitor in mungbeans and its application in inhibiting the growth of Callosobruchus maculatus. J Agric Food Chem 58(4):2131–2137

    Article  CAS  PubMed  Google Scholar 

  • Witkowski C, Harkins J (2009) Using the GELFREE 8100 Fractionation System for molecular weight-based fractionation with liquid phase recovery. J Vis Exp 34:e1842

    Google Scholar 

  • Wolever TM, Chiasson JL (2000) Acarbose raises serum butyrate in human subjects with impaired glucose tolerance. Br J Nutr 84(1):57–61

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Hattori K, Ishimoto M (2001) Purification and characterization of two α-amylase inhibitors from seeds of tepary bean (Phaseolus acutifolius A. Gray). Phytochemistry 58(1):59–66

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H (1993) Isolation and characterization of the subunits of a heat-labile α-amylase inhibitor from Phaseolus vulgaris white kidney bean. Biosci Biotechnol Biochem 57(2):297–302

    Article  CAS  PubMed  Google Scholar 

  • Yokose K, Ogawa K, Suzuki Y, Umeda I, Suhara Y (1983) New α-amylase inhibitor, trestatins. J Antibiot 36(9):1166–1175

    Article  CAS  Google Scholar 

  • Young NM, Watson DC, Yaguchi M, Adar R, Arango R, Rodriguez-Arango E, Sharon N, Blay PK, Thibault P (1995) C-terminal post-translational proteolysis of plant lectins and their recombinant forms expressed in Escherichia coli characterization of “ragged ends” by mass spectrometry. J Biol Chem 270(6):2563–2570

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Liu J, Hou J, Yao Y, Lin Y, Ou Y, Xie C (2014) The potato amylase inhibitor gene SbAI regulates cold-induced sweetening in potato tubers by modulating amylase activity. Plant Biotechnol J 12(7):984–993

    Article  CAS  PubMed  Google Scholar 

  • Zottich U, Da Cunha M, Carvalho AO, Dias GB, Silva NC, Santos IS, do Nacimento VV, Miguel EC, Machado OLT, Gomes VM (2011) Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. Biochim Biophys Acta Gen Subj 1810(4):375–383

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj K. Pawar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kasar, S.S., Maheshwari, V.L., Pawar, P.K. (2022). Bioactive α-Amylase Inhibitors: Sources, Mechanism of Action, Biochemical Characterization, and Applications. In: Maheshwari, V.L., Patil, R.H. (eds) Natural Products as Enzyme Inhibitors. Springer, Singapore. https://doi.org/10.1007/978-981-19-0932-0_3

Download citation

Publish with us

Policies and ethics