Skip to main content

Secondary Seawater Batteries

  • Chapter
  • First Online:
Seawater Batteries

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

A rechargeable seawater battery is a novel cost-efficient and high-density electricity storage system that uses sodium ions and dissolved oxygen from the seawater to convert chemical energy into electricity. In particular, the fact that the active material (Na+) is obtained from a practically unending supply of seawater and that it functions in natural seawater elevates the expectation that this secondary seawater battery will potentially be used in many more applications. However, we must consider that this secondary seawater battery is still in the early stages of its development, and to be used as a commercial battery, it must go through many stages of verification and validation, including but not limited to material research, cell development, and manufacturing process optimization. In this regard, it is noteworthy that recent research on secondary seawater batteries has gone beyond laboratory-level development to commercial-grade production techniques, and that various types of cells and pilot manufacturing processes are being reported. This chapter introduces the background, operation principle, characteristics, research on each component, and the cell development process of secondary seawater batteries. In addition, seawater utilization technologies using electrochemical methods related to seawater batteries are also briefly introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bradshaw AL, Schleicher KE (1980) Electrical conductivity of seawater. IEEE J Ocean Eng 5:50–62. https://doi.org/10.1109/JOE.1980.1145449

    Article  Google Scholar 

  2. Kordesch K, Taucher-Mautner W (2009) History|Primary batteries. Encycl Electrochem Power Sources:555–564. https://doi.org/10.1016/B978-044452745-5.00003-4

  3. C. Daniel, Besenhard JO (2012) Handbook of battery materials, 2nd edn, pp 1–618. (Handb. Batter. Mater.)

    Google Scholar 

  4. Whittingham MS (2012) History, evolution, and future status of energy storage. Proc IEEE 100:1518–1534. https://doi.org/10.1109/JPROC.2012.2190170

    Article  Google Scholar 

  5. Reddy MV, Mauger A, Julien CM, Paolella A, Zaghib K (2020) Brief history of early lithium-battery development. Materials (Basel) 13:1–9. https://doi.org/10.3390/MA13081884

    Article  Google Scholar 

  6. Senthilkumar ST, Go W, Han J, Pham Thi Thuy L, Kishor K, Kim Y, Kim Y (2019) Emergence of rechargeable seawater batteries. J Mater Chem A 7:22803–22825. https://doi.org/10.1039/C9TA08321A

    Article  Google Scholar 

  7. Hwang SM, Park J, Kim Y, Go W, Han J, Kim Y, Kim Y (2019) Rechargeable seawater batteries—from concept to applications. Adv Mater 31:1804936. https://doi.org/10.1002/adma.201804936

    Article  Google Scholar 

  8. Kim JK, Mueller F, Kim H, Bresser D, Park JS, Lim DH, Kim GT, Passerini S, Kim Y (2014) Rechargeable-hybrid-seawater fuel cell. NPG Asia Mater 6. https://doi.org/10.1038/am.2014.106

  9. Kim JK, Lee E, Kim H, Johnson C, Cho J, Kim Y (2015) Rechargeable seawater battery and its electrochemical mechanism. ChemElectroChem 2:328–332. https://doi.org/10.1002/celc.201402344

    Article  Google Scholar 

  10. Kim JK, Lim YJ, Kim H, Cho GB, Kim Y (2015) A hybrid solid electrolyte for flexible solid-state sodium batteries. Energy Environ Sci 8:3589–3596. https://doi.org/10.1039/c5ee01941a

    Article  Google Scholar 

  11. Hwang SM, Kim J, Kim Y, Kim Y (2016) Na-ion storage performance of amorphous Sb2S3 nanoparticles: anode for Na-ion batteries and seawater flow batteries. J Mater Chem A 4:17946–17951. https://doi.org/10.1039/c6ta07838a

    Article  Google Scholar 

  12. Kim JK, Mueller F, Kim H, Jeong S, Park JS, Passerini S, Kim Y (2016) Eco-friendly energy storage system: seawater and ionic liquid electrolyte. Chemsuschem 9:42–49. https://doi.org/10.1002/cssc.201501328

    Article  Google Scholar 

  13. Kim K, Hwang SM, Park J-S, Han J, Kim J, Kim Y (2016) Highly improved voltage efficiency of seawater battery by use of chloride ion capturing electrode. J Power Sources 313:46–50. https://doi.org/10.1016/j.jpowsour.2016.02.060

    Article  Google Scholar 

  14. Kim Y, Kim H, Park S, Seo I, Kim Y (2016) Na ion-conducting ceramic as solid electrolyte for rechargeable seawater batteries. Electrochim Acta 191:1–7. https://doi.org/10.1016/j.electacta.2016.01.054

    Article  Google Scholar 

  15. Han J, Hwang SM, Go W, Senthilkumar ST, Jeon D, Kim Y (2018) Development of coin-type cell and engineering of its compartments for rechargeable seawater batteries. J Power Sources 374:24–30. https://doi.org/10.1016/j.jpowsour.2017.11.022

    Article  Google Scholar 

  16. Cheng F, Liang J, Tao Z, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23:1695–1715. https://doi.org/10.1002/adma.201003587

    Article  Google Scholar 

  17. Park J, Park JS, Senthilkumar ST, Kim Y (2020) Hybridization of cathode electrochemistry in a rechargeable seawater battery: toward performance enhancement. J Power Sources 450:227600. https://doi.org/10.1016/j.jpowsour.2019.227600

  18. Senthilkumar ST, Abirami M, Kim J, Go W, Hwang SM, Kim Y (2017) Sodium-ion hybrid electrolyte battery for sustainable energy storage applications. J Power Sources 341:404–410. https://doi.org/10.1016/j.jpowsour.2016.12.015

    Article  Google Scholar 

  19. Suh DH, Park SK, Nakhanivej P, Kim Y, Hwang SM, Park HS (2017) Hierarchically structured graphene-carbon nanotube-cobalt hybrid electrocatalyst for seawater battery. J Power Sources 372:31–37. https://doi.org/10.1016/j.jpowsour.2017.10.056

    Article  Google Scholar 

  20. Shin KH, Park J, Park SK, Nakhanivej P, Hwang SM, Kim Y, Park HS (2019) Cobalt vanadate nanoparticles as bifunctional oxygen electrocatalysts for rechargeable seawater batteries. J Ind Eng Chem 72:250–254. https://doi.org/10.1016/j.jiec.2018.12.025

    Article  Google Scholar 

  21. Tu NDK, Park SO, Park J, Kim Y, Kwak SK, Kang SJ (2020) Pyridinic-nitrogen-containing carbon cathode: efficient electrocatalyst for seawater batteries. ACS Appl Energy Mater 3:1602–1608. https://doi.org/10.1021/acsaem.9b02087

    Article  Google Scholar 

  22. Han J, Lee S, Youn C, Lee J, Kim Y, Choi T (2020) Hybrid photoelectrochemical-rechargeable seawater battery for efficient solar energy storage systems. Electrochim Acta 332:135443. https://doi.org/10.1016/j.electacta.2019.135443

  23. Lee W, Park J, Park J, Kang SJ, Choi Y, Kim Y (2020) Identifying the mechanism and impact of parasitic reactions occurring in carbonaceous seawater battery cathodes. J Mater Chem A 8:9185–9193. https://doi.org/10.1039/d0ta02913k

    Article  Google Scholar 

  24. d’Amore-Domenech R, Santiago Ó, Leo TJ (2020) Multicriteria analysis of seawater electrolysis technologies for green hydrogen production at sea. Renew Sustain Energy Rev 133. https://doi.org/10.1016/j.rser.2020.110166

  25. Khatun S, Hirani H, Roy P (2020) Seawater electrocatalysis: activity and selectivity. J Mater Chem A:74–86. https://doi.org/10.1039/d0ta08709b

  26. Highgate D, Morton J (2008) Electrolysis of salt water. US Pat App 12(667):441

    Google Scholar 

  27. Stephens IEL, Chorkendorff I (2011) Minimizing the use of platinum in hydrogen-evolving electrodes. Angew Chemie Int Ed 50:1476–1477. https://doi.org/10.1002/anie.201005921

    Article  Google Scholar 

  28. Haider R, Yuan X, Bilal M (2020) Oxygen reduction reaction. In: Methods for electrocatalysis. Springer International Publishing, Cham, pp 375–400

    Google Scholar 

  29. Li X, Zhao L, Yu J, Liu X, Zhang X, Liu H, Zhou W (2020) Water splitting: from electrode to green energy system. Nano-Micro Lett 12. https://doi.org/10.1007/s40820-020-00469-3

  30. Kim Y, Hwang SM, Yu H, Kim Y (2018) High energy density rechargeable metal-free seawater batteries: a phosphorus/carbon composite as a promising anode material. J Mater Chem A 6:3046–3054. https://doi.org/10.1039/c7ta10668h

    Article  Google Scholar 

  31. Kim Y, Kim JK, Vaalma C, Bae GH, Kim GT, Passerini S, Kim Y (2018) Optimized hard carbon derived from starch for rechargeable seawater batteries. Carbon N Y 129:564–571. https://doi.org/10.1016/j.carbon.2017.12.059

    Article  Google Scholar 

  32. Kim DH, Choi H, Hwang DY, Park J, Kim KS, Ahn S, Kim Y, Kwak SK, Yu YJ, Kang SJ (2018) Reliable seawater battery anode: controlled sodium nucleation: via deactivation of the current collector surface. J Mater Chem A 6:19672–19680. https://doi.org/10.1039/c8ta07610c

    Article  Google Scholar 

  33. Chi C, Katsui H, Goto T (2017) Effect of Li addition on the formation of Na-β/βʹʹ-alumina film by laser chemical vapor deposition. Ceram Int 43:1278–1283. https://doi.org/10.1016/j.ceramint.2016.10.077

    Article  Google Scholar 

  34. Goodenough JB (2012) Rechargeable batteries: challenges old and new. J Solid State Electrochem 16:2019–2029. https://doi.org/10.1007/s10008-012-1751-2

    Article  Google Scholar 

  35. Muñoz-Márquez MÁ, Saurel D, Gómez-Cámer JL, Casas-Cabanas M, Castillo-Martínez E, Rojo T (2017) Na-ion batteries for large scale applications: a review on anode materials and solid electrolyte interphase formation. Adv Energy Mater 7:1–31. https://doi.org/10.1002/aenm.201700463

    Article  Google Scholar 

  36. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science (80)334:928–935. https://doi.org/10.1126/science.1212741

  37. Leisegang T, Meutzner F, Zschornak M, Münchgesang W, Schmid R, Nestler T, Eremin RA, Kabanov AA, Blatov VA, Meyer DC (2019) The aluminum-ion battery: a sustainable and seminal concept? Front Chem 7:1–21. https://doi.org/10.3389/fchem.2019.00268

    Article  Google Scholar 

  38. Walter M, Kovalenko MV, Kravchyk KV (2020) Challenges and benefits of post-lithium-ion batteries. New J Chem 44:1677–1683. https://doi.org/10.1039/c9nj05682c

    Article  Google Scholar 

  39. Wang F, Fan X, Gao T, Sun W, Ma Z, Yang C, Han F, Xu K, Wang C (2017) High-voltage aqueous magnesium ion batteries. ACS Cent Sci 3:1121–1128. https://doi.org/10.1021/acscentsci.7b00361

    Article  Google Scholar 

  40. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614. https://doi.org/10.1039/c6cs00776g

    Article  Google Scholar 

  41. Zhu YH, Yang X, Bao D, Bie XF, Sun T, Wang S, Jiang YS, Zhang XB, Yan JM, Jiang Q (2018) High-energy-density flexible potassium-ion battery based on patterned electrodes. Joule 2:736–746. https://doi.org/10.1016/j.joule.2018.01.010

    Article  Google Scholar 

  42. Bae H, Park JS, Senthilkumar ST, Hwang SM, Kim Y (2019) Hybrid seawater desalination-carbon capture using modified seawater battery system. J Power Sources 410–411:99–105. https://doi.org/10.1016/j.jpowsour.2018.11.009

    Article  Google Scholar 

  43. Mauler L, Duffner F, Zeier Cd WG, Leker J (2021) Battery cost forecasting: a review of methods and results with an outlook to 2050 †. https://doi.org/10.1039/d1ee01530c

  44. Yu J, Li BQ, Zhao CX, Zhang Q (2020) Seawater electrolyte-based metal-air batteries: from strategies to applications. Energy Environ Sci 13:3253–3268. https://doi.org/10.1039/d0ee01617a

    Article  Google Scholar 

  45. Kim Y, Harzandi AM, Lee J, Choi Y, Kim Y (2020) Design of large-scale rectangular cells for rechargeable seawater batteries. Adv Sustain Syst 2000106:1–8. https://doi.org/10.1002/adsu.202000106

    Article  Google Scholar 

  46. Hwang SM, Park JS, Kim Y, Go W, Han J, Kim Y, Kim Y (2019) Rechargeable seawater batteries—from concept to applications. Adv Mater 31

    Google Scholar 

  47. Hsu SH, Miao J, Zhang L, Gao J, Wang H, Tao H, Hung SF, Vasileff A, Qiao SZ, Liu B (2018) An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Adv Mater 30:1–8. https://doi.org/10.1002/adma.201707261

    Article  Google Scholar 

  48. Wang WH, Wang XD (2007) Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery. Electrochim Acta 52:6755–6762. https://doi.org/10.1016/j.electacta.2007.04.121

    Article  Google Scholar 

  49. Park S, Chun SE (2020) Effect of electrolyte anion on electrochemical behavior of nickel hexacyanoferrate electrode in aqueous sodium-ion batteries. J Korean Inst Met Mater 58:896–906. https://doi.org/10.3365/KJMM.2020.58.12.896

    Article  Google Scholar 

  50. Tao L, Wang Q, Dou S, Ma Z, Huo J, Wang S, Dai L (2016) Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem Commun 52:2764–2767. https://doi.org/10.1039/c5cc09173j

    Article  Google Scholar 

  51. Yoo E, Zhou H (2011) Li-air rechargeable battery based on. Am Chem Soc 5:3020–3026

    Google Scholar 

  52. Neburchilov V, Wang H, Martin JJ, Qu W (2010) A review on air cathodes for zinc-air fuel cells. J Power Sources 195:1271–1291. https://doi.org/10.1016/j.jpowsour.2009.08.100

    Article  Google Scholar 

  53. Hwang SM, Go W, Yu H, Kim Y (2017) Hybrid Na-air flow batteries using an acidic catholyte: effect of the catholyte pH on the cell performance. J Mater Chem A 5:11592–11600. https://doi.org/10.1039/c7ta00400a

    Article  Google Scholar 

  54. Makino S, Shinohara Y, Ban T, Shimizu W, Takahashi K, Imanishi N, Sugimoto W (2012) 4 V class aqueous hybrid electrochemical capacitor with battery-like capacity. RSC Adv 2:12144–12147. https://doi.org/10.1039/c2ra22265e

    Article  Google Scholar 

  55. Wang Y, He P, Zhou H (2011) A lithium-air capacitor-battery based on a hybrid electrolyte. Energy Environ Sci 4:4994–4999. https://doi.org/10.1039/c1ee02121d

    Article  Google Scholar 

  56. Wang YG, Xia YY (2005) A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn 2O4 aqueous system. Electrochem Commun 7:1138–1142. https://doi.org/10.1016/j.elecom.2005.08.017

    Article  Google Scholar 

  57. Shimizu W, Makino S, Takahashi K, Imanishi N, Sugimoto W (2013) Development of a 4.2 v aqueous hybrid electrochemical capacitor based on MnO2 positive and protected Li negative electrodes. J Power Sources 241:572–577. https://doi.org/10.1016/j.jpowsour.2013.05.003

    Article  Google Scholar 

  58. Thangavel R, Kaliyappan K, Kang K, Sun X, Lee YS (2016) Going beyond lithium hybrid capacitors: proposing a new high-performing sodium hybrid capacitor system for next-generation hybrid vehicles made with bio-inspired activated carbon. Adv Energy Mater 6:1–9. https://doi.org/10.1002/aenm.201502199

    Article  Google Scholar 

  59. Chou SL, Wang YX, Xu J, Wang JZ, Liu HK, Dou SX (2013) A hybrid electrolyte energy storage device with high energy and long life using lithium anode and MnO2 nanoflake cathode. Electrochem Commun 31:35–38. https://doi.org/10.1016/j.elecom.2013.03.003

    Article  Google Scholar 

  60. Simon P, Gogotsi Y, Dunn B (2014) Where Do Batteries End and Supercapacitors Begin ? Science (80-)343:1210–1211

    Google Scholar 

  61. Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925–5950. https://doi.org/10.1039/c5cs00580a

    Article  Google Scholar 

  62. Guo B, Li Q, Huang X, Wang C (2016) An improved method for power-line reconstruction from point cloud data. Remote Sens 8:1–17. https://doi.org/10.3390/rs8010036

    Article  Google Scholar 

  63. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Surface area and pore texture of catalysts. Catal Today 41:207–219. https://doi.org/10.1016/S0920-5861(98)00050-9

    Article  Google Scholar 

  64. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  Google Scholar 

  65. Cuesta A, Dhamelincourt P, Laureyns J, Martínez-Alonso A, Tascón JMD (1994) Raman microprobe studies on carbon materials. Carbon N Y 32:1523–1532. https://doi.org/10.1016/0008-6223(94)90148-1

    Article  Google Scholar 

  66. Senthilkumar ST, Park SO, Kim J, Hwang SM, Kwak SK, Kim Y (2017) Seawater battery performance enhancement enabled by a defect/edge-rich, oxygen self-doped porous carbon electrocatalyst. J Mater Chem A 5:14174–14181. https://doi.org/10.1039/c7ta03298f

    Article  Google Scholar 

  67. Chen S, Duan J, Jaroniec M, Qiao SZ (2014) Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Adv Mater 26:2925–2930. https://doi.org/10.1002/adma.201305608

    Article  Google Scholar 

  68. Colmenares LC, Wurth A, Jusys Z, Behm RJ (2009) Model study on the stability of carbon support materials under polymer electrolyte fuel cell cathode operation conditions. J Power Sources 190:14–24. https://doi.org/10.1016/j.jpowsour.2009.01.078

    Article  Google Scholar 

  69. Gallagher KG, Fuller TF (2009) Kinetic model of the electrochemical oxidation of graphitic carbon in acidic environments. Phys Chem Chem Phys 11:11557–11567. https://doi.org/10.1039/b915478g

    Article  Google Scholar 

  70. Morse JW, Arvidson RS, Lüttge A (2007) Calcium carbonate formation and dissolution. Chem Rev 107:342–381. https://doi.org/10.1021/cr050358j

    Article  Google Scholar 

  71. Zhang S, Xia W, Yang Q, Valentino Kaneti Y, Xu X, Alshehri SM, Ahamad T, Hossain MSA, Na J, Tang J, Yamauchi Y (2020) Core-shell motif construction: highly graphitic nitrogen-doped porous carbon electrocatalysts using MOF-derived carbon@COF heterostructures as sacrificial templates. Chem Eng J 396:125154. https://doi.org/10.1016/j.cej.2020.125154

  72. Reier T, Oezaslan M, Strasser P (2012) Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal 2:1765–1772. https://doi.org/10.1021/cs3003098

    Article  Google Scholar 

  73. He P, Zhang T, Jiang J, Zhou H (2016) Lithium-air batteries with hybrid electrolytes. J Phys Chem Lett 7:1267–1280. https://doi.org/10.1021/acs.jpclett.6b00080

    Article  Google Scholar 

  74. Shi Q, He Y, Bai X, Wang M, Cullen DA, Lucero M, Zhao X, More KL, Zhou H, Feng Z, Liu Y, Wu G (2020) Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding and high-performance direct methanol fuel cells. Energy Environ Sci 13:3544–3555. https://doi.org/10.1039/d0ee01968b

    Article  Google Scholar 

  75. Shi Q, Zhu C, Du D, Lin Y (2019) Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem Soc Rev 48:3181–3192. https://doi.org/10.1039/c8cs00671g

    Article  Google Scholar 

  76. Sun B, Munroe P, Wang G (2013) Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance. Sci Rep 3:1–7. https://doi.org/10.1038/srep02247

    Article  Google Scholar 

  77. Septiani NLW, Kaneti YV, Fathoni KB, Kani K, Allah AE, Yuliarto B, Nugraha DHK, Alothman ZA, Golberg D, Yamauchi Y (2020) Self-assembly of two-dimensional bimetallic nickel-cobalt phosphate nanoplates into one-dimensional porous chainlike architecture for efficient oxygen evolution reaction. Chem Mater 32:7005–7018. https://doi.org/10.1021/acs.chemmater.0c02385

    Article  Google Scholar 

  78. Kaneti YV, Guo Y, Septiani NLW, Iqbal M, Jiang X, Takei T, Yuliarto B, Alothman ZA, Golberg D, Yamauchi Y (2021) Self-templated fabrication of hierarchical hollow manganese-cobalt phosphide yolk-shell spheres for enhanced oxygen evolution reaction. Chem Eng J 405:126580. https://doi.org/10.1016/j.cej.2020.126580

  79. Hou CC, Zou L, Sun L, Zhang K, Liu Z, Li Y, Li C, Zou R, Yu J, Xu Q (2020) Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew Chemie Int Ed 59:7384–7389. https://doi.org/10.1002/anie.202002665

    Article  Google Scholar 

  80. Jeoung S, Sahgong SH, Kim JH, Hwang SM, Kim Y, Moon HR (2016) Upcycling of nonporous coordination polymers: controllable-conversion toward porosity-tuned N-doped carbons and their electrocatalytic activity in seawater batteries. J Mater Chem A 4:13468–13475. https://doi.org/10.1039/c6ta05102b

    Article  Google Scholar 

  81. Yao Y, Huang Z, Xie P, Lacey SD, Jacob RJ, Xie H, Chen F, Nie A, Pu T, Rehwoldt M, Yu D, Zachariah MR, Wang C, Shahbazian-Yassar R, Li J, Hu L (2018) Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science (80-) 359:1489–1494. https://doi.org/10.1126/science.aan5412

  82. Chen F, Yao Y, Nie A, Xu S, Dai J, Hitz E, Li Y, Lu A, Huang Z, Li T, Shahbazian-Yassar R, Hu L (2018) High-temperature atomic mixing toward well-dispersed bimetallic electrocatalysts. Adv Energy Mater 8:1–8. https://doi.org/10.1002/aenm.201800466

    Article  Google Scholar 

  83. Yao Y, Chen F, Nie A, Lacey SD, Jacob RJ, Xu S, Huang Z, Fu K, Dai J, Salamanca-Riba L, Zachariah MR, Shahbazian-Yassar R, Hu L (2017) In situ high temperature synthesis of single-component metallic nanoparticles. ACS Cent Sci 3:294–301. https://doi.org/10.1021/acscentsci.6b00374

    Article  Google Scholar 

  84. Lu F, Zhou M, Zhou Y, Zeng X (2017) First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances. Small 13:1–18. https://doi.org/10.1002/smll.201701931

    Article  Google Scholar 

  85. Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) Synthesis and activities of rutile IrO 2 and RuO 2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3:399–404. https://doi.org/10.1021/jz2016507

    Article  Google Scholar 

  86. Han L, Dong S, Wang E (2016) Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv Mater 28:9266–9291. https://doi.org/10.1002/adma.201602270

    Article  Google Scholar 

  87. van Wyk PH, Gerber WJ, Koch KR (2011) A robust method for speciation, separation and photometric characterization of all [PtCl6-nBrn]2- (n=0-6) and [PtCl4-nBrn]2- (n=0-4) complex anions by means of ion-pairing RP-HPLC coupled to ICP-MS/OES, validated by high resolution 195Pt NMR spectroscopy. Anal Chim Acta 704:154–161. https://doi.org/10.1016/j.aca.2011.07.037

    Article  Google Scholar 

  88. Ryu JH, Park J, Park J, Mun J, Im E, Lee H, Hong SY, An K, Lee G, Kim Y, Jo PS, Kang SJ (2022) Carbothermal shock-induced bifunctional Pt-Co alloy electrocatalysts for high-performance seawater batteries. Energy Storage Mater 45:281–290. https://doi.org/10.1016/j.ensm.2021.11.036

    Article  Google Scholar 

  89. Chen S, Tang L, Feng H, Zhou Y, Zeng G, Lu Y, Yu J, Ren X, Peng B, Liu X (2019) Carbon felt cathodes for electro-Fenton process to remove tetracycline via synergistic adsorption and degradation. Sci Total Environ 670:921–931. https://doi.org/10.1016/j.scitotenv.2019.03.086

    Article  Google Scholar 

  90. Song K, Agyeman DA, Park M, Yang J, Kang YM (2017) High-energy-density metal-oxygen batteries: lithium-oxygen batteries vs sodium-oxygen batteries. Adv Mater 29:1–31. https://doi.org/10.1002/adma.201606572

    Article  Google Scholar 

  91. Vinayan BP, Ramaprabhu S (2013) Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications. Nanoscale 5:5109–5118. https://doi.org/10.1039/c3nr00585b

    Article  Google Scholar 

  92. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction: an in situ XANES and EXAFS investigation. J Electrochem Soc 142:1409–1422. https://doi.org/10.1149/1.2048590

    Article  Google Scholar 

  93. Liu H, Li C, Chen D, Cui P, Ye F, Yang J (2017) Uniformly dispersed platinum-cobalt alloy nanoparticles with stable compositions on carbon substrates for methanol oxidation reaction. Sci Rep 7:1–8. https://doi.org/10.1038/s41598-017-10223-2

    Article  Google Scholar 

  94. Lee DG, Gwon O, Park HS, Kim SH, Yang J, Kwak SK, Kim G, Song HK (2015) Conductivity-dependent completion of oxygen reduction on oxide catalysts. Angew Chemie - Int Ed 54:15730–15733. https://doi.org/10.1002/anie.201508129

    Article  Google Scholar 

  95. Toma FM, Sartorel A, Iurlo M, Carraro M, Parisse P, MacCato C, Rapino S, Gonzalez BR, Amenitsch H, Da Ros T, Casalis L, Goldoni A, Marcaccio M, Scorrano G, Scoles G, Paolucci F, Prato M, Bonchio M (2010) Efficient water oxidation at carbon nanotubeg-polyoxometalate electrocatalytic interfaces. Nat Chem 2:826–831. https://doi.org/10.1038/nchem.761

    Article  Google Scholar 

  96. Miras HN, Yan J, Long DL, Cronin L (2012) Engineering polyoxometalates with emergent properties. Chem Soc Rev 41:7403–7430. https://doi.org/10.1039/c2cs35190k

    Article  Google Scholar 

  97. Lv H, Geletii YV, Zhao C, Vickers JW, Zhu G, Luo Z, Song J, Lian T, Musaev DG, Hill CL (2012) Polyoxometalate water oxidation catalysts and the production of green fuel. Chem Soc Rev 41:7572–7589. https://doi.org/10.1039/c2cs35292c

    Article  Google Scholar 

  98. López X, Carbó JJ, Bo C, Poblet JM (2012) Structure, properties and reactivity of polyoxometalates: a theoretical perspective. Chem Soc Rev 41:7537–7571. https://doi.org/10.1039/c2cs35168d

    Article  Google Scholar 

  99. Lee C, Jeon D, Park J, Lee W, Park J, Kang SJ, Kim Y, Ryu J (2020) Tetraruthenium polyoxometalate as an atom-efficient bifunctional oxygen evolution reaction/oxygen reduction reaction catalyst and its application in seawater batteries. ACS Appl Mater Interfaces 12:32689–32697. https://doi.org/10.1021/acsami.0c07225

    Article  Google Scholar 

  100. Geletii YV, Besson C, Hou Y, Yin Q, Musaev DG, Quiñonero D, Cao R, Hardcastle KI, Proust A, Kögerler P, Hill CL (2009) Structural, physicochemical, and reactivity properties of an all-inorganic, highly active tetraruthenium homogeneous catalyst for water oxidation. J Am Chem Soc 131:17360–17370. https://doi.org/10.1021/ja907277b

    Article  Google Scholar 

  101. Geletii YV, Botar B, Kögerler P, Hillesheim DA, Musaev DG, Hill CL (2008) An all-inorganic, stable, and highly active tetraruthenium homogeneous catalyst for water oxidation. Angew Chemie Int Ed 47:3896–3899. https://doi.org/10.1002/anie.200705652

    Article  Google Scholar 

  102. Topalov AA, Katsounaros I, Auinger M, Cherevko S, Meier JC, Klemm SO, Mayrhofer KJJ (2012) Dissolution of platinum: Limits for the deployment of electrochemical energy conversion? Angew Chemie Int Ed 51:12613–12615. https://doi.org/10.1002/anie.201207256

    Article  Google Scholar 

  103. Topalov AA, Cherevko S, Zeradjanin AR, Meier JC, Katsounaros I, Mayrhofer KJJ (2014) Towards a comprehensive understanding of platinum dissolution in acidic media. Chem Sci 5:631–638. https://doi.org/10.1039/c3sc52411f

    Article  Google Scholar 

  104. Gorlin Y, Jaramillo TF (2010) A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc 132:13612–13614. https://doi.org/10.1021/ja104587v

    Article  Google Scholar 

  105. McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF (2015) Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 137:4347–4357. https://doi.org/10.1021/ja510442p

    Article  Google Scholar 

  106. Ranjbar Sahraie N, Paraknowitsch JP, Göbel C, Thomas A, Strasser P (2014) Noble-metal-free electrocatalysts with enhanced ORR performance by task-specific functionalization of carbon using ionic liquid precursor systems. J Am Chem Soc 136:14486–14497. https://doi.org/10.1021/ja506553r

    Article  Google Scholar 

  107. Sa YJ, Kwon K, Cheon JY, Kleitz F, Joo SH (2013) Ordered mesoporous Co3O4 spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts. J Mater Chem A 1:9992–10001. https://doi.org/10.1039/c3ta11917c

    Article  Google Scholar 

  108. Park HW, Lee DU, Liu Y, Wu J, Nazar LF, Chen Z (2013) Bi-functional N-doped CNT/graphene composite as highly active and durable electrocatalyst for metal air battery applications. J Electrochem Soc 160:A2244–A2250. https://doi.org/10.1149/2.097311jes

    Article  Google Scholar 

  109. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786. https://doi.org/10.1038/nmat3087

    Article  Google Scholar 

  110. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51. https://doi.org/10.1038/nature11115

    Article  Google Scholar 

  111. Zhou W, Sunarso J (2013) Enhancing Bi-functional electrocatalytic activity of perovskite by temperature shock: a case study of LaNiO3-δ. J Phys Chem Lett 4:2982–2988. https://doi.org/10.1021/jz401169n

    Article  Google Scholar 

  112. Wen Z, Ci S, Hou Y, Chen J (2014) Facile one-pot, one-step synthesis of a carbon nanoarchitecture for an advanced multifunctonal electrocatalyst. Angew Chemie 126:6614–6618. https://doi.org/10.1002/ange.201402574

    Article  Google Scholar 

  113. Chen Z, Yu A, Higgins D, Li H, Wang H, Chen Z (2012) Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application. Nano Lett 12:1946–1952. https://doi.org/10.1021/nl2044327

    Article  Google Scholar 

  114. Hardin WG, Slanac DA, Wang X, Dai S, Johnston KP, Stevenson KJ (2013) Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal-air battery electrodes. J Phys Chem Lett 4:1254–1259. https://doi.org/10.1021/jz400595z

    Article  Google Scholar 

  115. Zhao Y, Nakamura R, Kamiya K, Nakanishi S, Hashimoto K (2013) Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat Commun 4:2–8. https://doi.org/10.1038/ncomms3390

    Article  Google Scholar 

  116. Cheon JY, Kim K, Sa YJ, Sahgong SH, Hong Y, Woo J, Yim SD, Jeong HY, Kim Y, Joo SH (2016) Graphitic nanoshell/mesoporous carbon nanohybrids as highly efficient and stable bifunctional oxygen electrocatalysts for rechargeable aqueous Na-air batteries. Adv Energy Mater 6:1–10. https://doi.org/10.1002/aenm.201501794

    Article  Google Scholar 

  117. Colpas GJ, Maroney MJ, Bagyinka C, Kumar M, Willis WS, Suib SL, Baidya N, Mascharak PK (1991) X-ray spectroscopic studies of nickel complexes, with application to the structure of nickel sites in hydrogenases. Inorg Chem 30:920–928. https://doi.org/10.1021/ic00005a010

    Article  Google Scholar 

  118. Avakyan LA, Manukyan AS, Mirzakhanyan AA, Sharoyan EG, Zubavichus YV., Trigub AL, Kolpacheva NA, Bugaev LA (2013) Atomic structure of nickel phthalocyanine probed by X-ray absorption spectroscopy and density functional simulations. Opt Spectrosc (English Transl Opt i Spektrosk 114:347–352. https://doi.org/10.1134/S0030400X1303003X

  119. Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo JC, Pennycook SJ, Dai H (2012) An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat Nanotechnol 7:394–400. https://doi.org/10.1038/nnano.2012.72

    Article  Google Scholar 

  120. Trotochaud L, Young SL, Ranney JK, Boettcher SW (2014) Nickel-Iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J Am Chem Soc 136:6744–6753. https://doi.org/10.1021/ja502379c

    Article  Google Scholar 

  121. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246. https://doi.org/10.1038/nnano.2013.46

    Article  Google Scholar 

  122. Yuan C, Bin WuH, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chemie - Int Ed 53:1488–1504. https://doi.org/10.1002/anie.201303971

    Article  Google Scholar 

  123. Jörissen L (2006) Bifunctional oxygen/air electrodes. J Power Sources 155:23–32. https://doi.org/10.1016/j.jpowsour.2005.07.038

    Article  Google Scholar 

  124. Abirami M, Hwang SM, Yang J, Senthilkumar ST, Kim J, Go WS, Senthilkumar B, Song HK, Kim Y (2016) A metal-organic framework derived porous cobalt manganese oxide bifunctional electrocatalyst for hybrid Na–air/seawater batteries. ACS Appl Mater Interfaces 8:32778–32787. https://doi.org/10.1021/acsami.6b10082

    Article  Google Scholar 

  125. Faculty S, Singh N (2010) Co3O4 and co-based spinel oxides bifunctional oxygen electrodes. Int J Electrochem Sci Int J Electrochem Sci 5:556–577

    Google Scholar 

  126. Serov A, Andersen NI, Roy AJ, Matanovic I, Artyushkova K, Atanassov P (2015) CuCo 2 O 4 ORR/OER Bi-functional catalyst: influence of synthetic approach on performance. J Electrochem Soc 162:F449–F454. https://doi.org/10.1149/2.0921504jes

    Article  Google Scholar 

  127. Wang JZ, Zhu YX, Ma HC, Chen SN, Chao JY, Ruan WD, Wang D, Du FG, Meng YZ (2016) Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. Mater Sci Eng C 62:215–225. https://doi.org/10.1016/j.msec.2016.01.045

    Article  Google Scholar 

  128. Prabu M, Ketpang K, Shanmugam S (2014) Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries. Nanoscale 6:3173–3181. https://doi.org/10.1039/c3nr05835b

    Article  Google Scholar 

  129. Song F, Hu X (2014) Ultrathin cobalt−manganese layered double hydroxide is an. J Am Chem Soc 1–4

    Google Scholar 

  130. Im Y, Kang S, Kwak BS, Park KS, Cho TW, Lee JS, Kang M (2016) Electrochemical performance of three shaped ZnO nanoparticles prepared in LiOH, NaOH and KOH alkaline solutions as anodic materials for Ni/Zn redox batteries. Korean J Chem Eng 33:1447–1455. https://doi.org/10.1007/s11814-015-0280-y

    Article  Google Scholar 

  131. Gund GS, Dubal DP, Jambure SB, Shinde SS, Lokhande CD (2013) Temperature influence on morphological progress of Ni(OH)2 thin films and its subsequent effect on electrochemical supercapacitive properties. J Mater Chem A 1:4793–4803. https://doi.org/10.1039/c3ta00024a

    Article  Google Scholar 

  132. Baldan A (2002) Progress in Ostwald ripening theories and their applications to nickel-base superalloys. Part I: Ostwald ripening theories. J Mater Sci 37:2171–2202

    Article  Google Scholar 

  133. Sambandam B, Soundharrajan V, Mathew V, Song J, Kim S, Jo J, Tung DP, Kim S, Kim J (2016) Metal-organic framework-combustion: a new, cost-effective and one-pot technique to produce a porous Co3V2O8 microsphere anode for high energy lithium ion batteries. J Mater Chem A 4:14605–14613. https://doi.org/10.1039/c6ta05919h

    Article  Google Scholar 

  134. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29. https://doi.org/10.1038/nmat3191

    Article  Google Scholar 

  135. Kim H, Park JS, Sahgong SH, Park S, Kim JK, Kim Y (2014) Metal-free hybrid seawater fuel cell with an ether-based electrolyte. J Mater Chem A 2:19584–19588. https://doi.org/10.1039/c4ta04937c

    Article  Google Scholar 

  136. Long R, Zhou S, Wiley BJ, Xiong Y (2014) Oxidative etching for controlled synthesis of metal nanocrystals: atomic addition and subtraction. Chem Soc Rev 43:6288–6310. https://doi.org/10.1039/c4cs00136b

    Article  Google Scholar 

  137. Ponrouch A, Goñi AR, Palacín MR (2013) High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem Commun 27:85–88. https://doi.org/10.1016/j.elecom.2012.10.038

    Article  Google Scholar 

  138. Yadegari H, Li Y, Banis MN, Li X, Wang B, Sun Q, Li R, Sham TK, Cui X, Sun X (2014) On rechargeability and reaction kinetics of sodium-air batteries. Energy Environ Sci 7:3747–3757. https://doi.org/10.1039/c4ee01654h

    Article  Google Scholar 

  139. Manthiram A, Li L (2015) Hybrid and aqueous lithium-air batteries. Adv Energy Mater 5:1–17. https://doi.org/10.1002/aenm.201401302

    Article  Google Scholar 

  140. Das SK, Lau S, Archer LA (2014) Sodium-oxygen batteries: a new class of metal-air batteries. J Mater Chem A 2:12623–12629. https://doi.org/10.1039/c4ta02176b

    Article  Google Scholar 

  141. Liang F, Hayashi K (2015) A high-energy-density mixed-aprotic-aqueous sodium-air cell with a ceramic separator and a porous carbon electrode. J Electrochem Soc 162:A1215–A1219. https://doi.org/10.1149/2.0421507jes

    Article  Google Scholar 

  142. Kim H, Hong J, Park KY, Kim H, Kim SW, Kang K (2014) Aqueous rechargeable Li and Na ion batteries. Chem Rev 114:11788–11827. https://doi.org/10.1021/cr500232y

    Article  Google Scholar 

  143. Wu X, Cao Y, Ai X, Qian J, Yang H (2013) A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na 2NiFe(CN)6 intercalation chemistry. Electrochem Commun 31:145–148. https://doi.org/10.1016/j.elecom.2013.03.013

    Article  Google Scholar 

  144. You Y, Wu XL, Yin YX, Guo YG (2014) High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ Sci 7:1643–1647. https://doi.org/10.1039/c3ee44004d

    Article  Google Scholar 

  145. You Y, Wu XL, Yin YX, Guo YG (2013) A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. J Mater Chem A 1:14061–14065. https://doi.org/10.1039/c3ta13223d

    Article  Google Scholar 

  146. Yue Y, Binder AJ, Guo B, Zhang Z, Qiao ZA, Tian C, Dai S (2014) Mesoporous prussian blue analogues: template-free synthesis and sodium-ion battery applications. Angew Chemie Int Ed 53:3134–3137. https://doi.org/10.1002/anie.201310679

    Article  Google Scholar 

  147. Lu K, Song B, Zhang J, Ma H (2016) A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc. J Power Sources 321:257–263. https://doi.org/10.1016/j.jpowsour.2016.05.003

    Article  Google Scholar 

  148. Sahgong SH, Senthilkumar ST, Kim K, Hwang SM, Kim Y (2015) Rechargeable aqueous Na-air batteries: highly improved voltage efficiency by use of catalysts. Electrochem Commun 61:53–56. https://doi.org/10.1016/j.elecom.2015.10.004

    Article  Google Scholar 

  149. Song W, Ji X, Pan C, Zhu Y, Chen Q, Banks CE (2013) A Na3V2(PO4)3 cathode material for use in hybrid lithium ion batteries. Phys Chem Chem Phys 15:14357–14363. https://doi.org/10.1039/c3cp52308j

    Article  Google Scholar 

  150. Lee H, Il KY, Park JK, Choi JW (2012) Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries. Chem Commun 48:8416–8418. https://doi.org/10.1039/c2cc33771a

    Article  Google Scholar 

  151. Lu Y, Wang L, Cheng J, Goodenough JB (2012) Prussian blue: a new framework of electrode materials for sodium batteries. Chem Commun 48:6544–6546. https://doi.org/10.1039/c2cc31777j

    Article  Google Scholar 

  152. Yu S, Li Y, Lu Y, Xu B, Wang Q, Yan M, Jiang Y (2015) A promising cathode material of sodium iron-nickel hexacyanoferrate for sodium ion batteries. J Power Sources 275:45–49. https://doi.org/10.1016/j.jpowsour.2014.10.196

    Article  Google Scholar 

  153. Zhang W, Chen W, Zhao X, Dang Q, Li Y, Shen T, Wu F, Tang L, Jiang H, Hu M (2019) An auto-switchable dual-mode seawater energy extraction system enabled by metal-organic frameworks. Angew Chemie Int Ed 58:7431–7434. https://doi.org/10.1002/anie.201901759

    Article  Google Scholar 

  154. Li Y, Dang Q, Shi C, Zhang W, Jing C, Li X, Hu M (2019) A flexible cyanometallate coordination polymer electrode for electrochemical dual-mode seawater energy extraction. J Mater Chem A 7:23084–23090. https://doi.org/10.1039/c9ta07540b

    Article  Google Scholar 

  155. Lou G, Wu Y, Zhu X, Lu Y, Yu S, Yang C, Chen H, Guan C, Li L, Shen Z (2018) Facile activation of commercial carbon felt as a low-cost free-standing electrode for flexible supercapacitors. ACS Appl Mater Interfaces 10:42503–42512. https://doi.org/10.1021/acsami.8b16881

    Article  Google Scholar 

  156. Zhao Z, Wang X, Yao M, Liu L, Niu Z, Chen J (2019) Activated carbon felts with exfoliated graphene nanosheets for flexible all-solid-state supercapacitors. Chinese Chem Lett 30:915–918. https://doi.org/10.1016/j.cclet.2019.03.003

    Article  Google Scholar 

  157. Wang W, Liu W, Zeng Y, Han Y, Yu M, Lu X, Tong Y (2015) A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth. Adv Mater 27:3572–3578. https://doi.org/10.1002/adma.201500707

    Article  Google Scholar 

  158. Wang G, Wang H, Lu X, Ling Y, Yu M, Zhai T, Tong Y, Li Y (2014) Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv Mater 26:2676–2682. https://doi.org/10.1002/adma.201304756

    Article  Google Scholar 

  159. Stassen I, Styles M, Van Assche T, Campagnol N, Fransaer J, Denayer J, Tan JC, Falcaro P, De Vos D, Ameloot R (2015) Electrochemical film deposition of the zirconium metal-organic framework uio-66 and application in a miniaturized sorbent trap. Chem Mater 27:1801–1807. https://doi.org/10.1021/cm504806p

    Article  Google Scholar 

  160. Kaneti YV, Dutta S, Hossain MSA, Shiddiky MJA, Tung KL, Shieh FK, Tsung CK, Wu KCW, Yamauchi Y (2017) Strategies for improving the functionality of zeolitic imidazolate frameworks: tailoring nanoarchitectures for functional applications. Adv Mater 29:1–31. https://doi.org/10.1002/adma.201700213

    Article  Google Scholar 

  161. Grimaud A, May KJ, Carlton CE, Lee YL, Risch M, Hong WT, Zhou J, Shao-Horn Y (2013) Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat Commun 4:1–7. https://doi.org/10.1038/ncomms3439

    Article  Google Scholar 

  162. Song F, Hu X (2014) Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat Commun 5. https://doi.org/10.1038/ncomms5477

  163. Zhou W, Wu XJ, Cao X, Huang X, Tan C, Tian J, Liu H, Wang J, Zhang H (2013) Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ Sci 6:2921–2924. https://doi.org/10.1039/c3ee41572d

    Article  Google Scholar 

  164. Zhang Y, Ouyang B, Xu J, Jia G, Chen S, Rawat RS, Fan HJ (2016) Rapid synthesis of cobalt nitride nanowires: highly efficient and low-cost catalysts for oxygen evolution. Angew Chemie 128:8812–8816. https://doi.org/10.1002/ange.201604372

    Article  Google Scholar 

  165. Wang D, Astruc D (2017) The recent development of efficient Earth-abundant transition-metal nanocatalysts. Chem Soc Rev 46:816–854. https://doi.org/10.1039/c6cs00629a

    Article  Google Scholar 

  166. Palanisamy M, Kim HW, Heo S, Lee E, Kim Y (2017) Insights into the dual-electrode characteristics of layered Na0.5Ni0.25Mn0.75O2 materials for sodium-ion batteries. ACS Appl Mater Interfaces 9:10618–10625. https://doi.org/10.1021/acsami.6b15355

    Article  Google Scholar 

  167. Manikandan P, Kishor K, Han J, Kim Y (2018) Advanced perspective on the synchronized bifunctional activities of P2-type materials to implement an interconnected voltage profile for seawater batteries. J Mater Chem A 6:11012–11021. https://doi.org/10.1039/c8ta02667j

    Article  Google Scholar 

  168. Dorazio SJ, Brückner C (2015) Why is there cyanide in my table salt? Structural chemistry of the anticaking effect of yellow prussiate of soda (Na4[Fe(CN)6]·10H2O). J Chem Educ 92:1121–1124. https://doi.org/10.1021/ed500776b

    Article  Google Scholar 

  169. Senthilkumar ST, Han J, Park J, Min Hwang S, Jeon D, Kim Y (2018) Energy efficient Na-aqueous-catholyte redox flow battery. Energy Storage Mater 12:324–330. https://doi.org/10.1016/j.ensm.2017.10.006

    Article  Google Scholar 

  170. Lin K, Gómez-Bombarelli R, Beh ES, Tong L, Chen Q, Valle A, Aspuru-Guzik A, Aziz MJ, Gordon RG (2016) A redox-flow battery with an alloxazine-based organic electrolyte. Nat Energy 1:1–8. https://doi.org/10.1038/nenergy.2016.102

    Article  Google Scholar 

  171. Wei X, Xia G-G, Kirby B, Thomsen E, Li B, Nie Z, Graff GG, Liu J, Sprenkle V, Wang W (2016) An aqueous redox flow battery based on neutral alkali metal ferri/ferrocyanide and polysulfide electrolytes. J Electrochem Soc 163:A5150–A5153. https://doi.org/10.1149/2.0221601jes

    Article  Google Scholar 

  172. Gong K, Xu F, Grunewald JB, Ma X, Zhao Y, Gu S, Yan Y (2016) All-soluble all-iron aqueous redox-flow battery. ACS Energy Lett 1:89–93. https://doi.org/10.1021/acsenergylett.6b00049

    Article  Google Scholar 

  173. Hwang JY, Ahn WY, Kim HJ, Woo JH, Choi WJ, Park JW, Lee MY (2017) Effects of performing hip abduction and adduction during bridging exercise on trunk and lower extremity muscle activity in healthy individuals. Phys Ther Rehabil Sci 6:14–19. https://doi.org/10.14474/ptrs.2017.6.1.14

  174. Li W, Zhang F, Xiang X, Zhang X (2017) High-efficiency Na-storage performance of a nickel-based ferricyanide cathode in high-concentration electrolytes for aqueous sodium-ion batteries. ChemElectroChem 4:2870–2876. https://doi.org/10.1002/celc.201700776

    Article  Google Scholar 

  175. Wessells CD, Peddada SV, Huggins RA, Cui Y (2011) Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett 11:5421–5425. https://doi.org/10.1021/nl203193q

    Article  Google Scholar 

  176. Senthilkumar ST, Bae H, Han J, Kim Y (2018) Enhancing capacity performance by utilizing the redox chemistry of the electrolyte in a dual-electrolyte sodium-ion battery. Angew Chemie Int Ed 57:5335–5339. https://doi.org/10.1002/anie.201800181

    Article  Google Scholar 

  177. Yu J, Hu YS, Pan F, Zhang Z, Wang Q, Li H, Huang X, Chen L (2017) A class of liquid anode for rechargeable batteries with ultralong cycle life. Nat Commun 8:1–7. https://doi.org/10.1038/ncomms14629

    Article  Google Scholar 

  178. Li N, Weng Z, Wang Y, Li F, Cheng HM, Zhou H (2014) An aqueous dissolved polysulfide cathode for lithium-sulfur batteries. Energy Environ Sci 7:3307–3312. https://doi.org/10.1039/c4ee01717j

    Article  Google Scholar 

  179. Lu Y, Goodenough JB, Kim Y (2011) Aqueous cathode for next-generation alkali-ion batteries. J Am Chem Soc 133:5756–5759. https://doi.org/10.1021/ja201118f

    Article  Google Scholar 

  180. Hwang SM, Park JS, Kim Y, Go W, Han J, Kim Y, Kim Y (2018) Rechargeable seawater batteries—from concept to applications. Adv Mater 31:1804936. https://doi.org/10.1002/adma.201804936

    Article  Google Scholar 

  181. Lee S, Cho IY, Kim D, Park NK, Park J, Kim Y, Kang SJ, Kim Y, Hong SY (2020) Redox-active functional electrolyte for high-performance seawater batteries. ChemSusChem 13:2220–2224. https://doi.org/10.1002/cssc.201903564

  182. Wang LP, Yu L, Wang X, Srinivasan M, Xu ZJ (2015) Recent developments in electrode materials for sodium-ion batteries. J Mater Chem A 3:9353–9378. https://doi.org/10.1039/C4TA06467D

    Article  Google Scholar 

  183. Ponrouch A, Monti D, Boschin A, Steen B, Johansson P, Palacín MR (2015) Non-aqueous electrolytes for sodium-ion batteries. J Mater Chem A 3:22–42. https://doi.org/10.1039/c4ta04428b

    Article  Google Scholar 

  184. Wang G, Huang B, Liu D, Zheng D, Harris J, Xue J, Qu D (2018) Exploring polycyclic aromatic hydrocarbons as an anolyte for nonaqueous redox flow batteries. J Mater Chem A 6:13286–13293. https://doi.org/10.1039/c8ta03221a

    Article  Google Scholar 

  185. Zhao Y, Adair KR, Sun X (2018) Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ Sci 11:2673–2695. https://doi.org/10.1039/C8EE01373J

    Article  Google Scholar 

  186. Kim DH, Choi H, Hwang DY, Park J, Kim KS, Ahn S, Kim Y, Kwak SK, Yu Y-J, Kang SJ (2018) Reliable seawater battery anode: controlled sodium nucleation via deactivation of the current collector surface. J Mater Chem A 6:19672–19680. https://doi.org/10.1039/C8TA07610C

    Article  Google Scholar 

  187. Zhang C, Liu S, Li G, Zhang C, Liu X, Luo J (2018) Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes. Adv Mater 30:1801328. https://doi.org/10.1002/adma.201801328

  188. Tikekar MD, Choudhury S, Tu Z, Archer LA (2016) Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat Energy 1:16114. https://doi.org/10.1038/nenergy.2016.114

    Article  Google Scholar 

  189. Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206. https://doi.org/10.1038/nnano.2017.16

    Article  Google Scholar 

  190. Lau S, Archer LA (2015) Nucleation and growth of lithium peroxide in the Li–O2 battery. Nano Lett 15:5995–6002. https://doi.org/10.1021/acs.nanolett.5b02149

    Article  Google Scholar 

  191. Bai P, Li J, Brushett FR, Bazant MZ (2016) Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ Sci 9:3221–3229. https://doi.org/10.1039/C6EE01674J

    Article  Google Scholar 

  192. Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7:513–537. https://doi.org/10.1039/C3EE40795K

    Article  Google Scholar 

  193. Zhang R, Cheng X-B, Zhao C-Z, Peng H-J, Shi J-L, Huang J-Q, Wang J, Wei F, Zhang Q (2016) Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv Mater 28:2155–2162. https://doi.org/10.1002/adma.201504117

  194. Guo Y, Li H, Zhai T (2017) Reviving lithium-metal anodes for next-generation high-energy batteries. Adv Mater 29:1700007. https://doi.org/10.1002/adma.201700007

  195. Wang H, Wang C, Matios E, Li W (2017) Critical role of ultrathin graphene films with tunable thickness in enabling highly stable sodium metal anodes. Nano Lett 17:6808–6815. https://doi.org/10.1021/acs.nanolett.7b03071

    Article  Google Scholar 

  196. Pei A, Zheng G, Shi F, Li Y, Cui Y (2017) Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett 17:1132–1139. https://doi.org/10.1021/acs.nanolett.6b04755

    Article  Google Scholar 

  197. Jin X, Lei L, Yongji G, Yanbin L, Feifei S, Allen P, Jie S, Rufan Z, Biao K, Ram S, Jake C, Yi C (2021) Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Sci Adv 3:eaao3170. https://doi.org/10.1126/sciadv.aao3170

  198. Go W, Kim MH, Park J, Lim CH, Joo SH, Kim Y, Lee HW (2019) Nanocrevasse-rich carbon fibers for stable lithium and sodium metal anodes. Nano Lett 19:1504–1511. https://doi.org/10.1021/acs.nanolett.8b04106

    Article  Google Scholar 

  199. Zheng G, Lee SW, Liang Z, Lee H-W, Yan K, Yao H, Wang H, Li W, Chu S, Cui Y (2014) Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 9:618–623. https://doi.org/10.1038/nnano.2014.152

    Article  Google Scholar 

  200. Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11:4462–4467. https://doi.org/10.1021/nl2027684

    Article  Google Scholar 

  201. Lin D, Liu Y, Liang Z, Lee H-W, Sun J, Wang H, Yan K, Xie J, Cui Y (2016) Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol 11:626–632. https://doi.org/10.1038/nnano.2016.32

    Article  Google Scholar 

  202. Zhang Y, Luo W, Wang C, Li Y, Chen C, Song J, Dai J, Hitz EM, Xu S, Yang C, Wang Y, Hu L (2017) High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc Natl Acad Sci 114:3584. https://doi.org/10.1073/pnas.1618871114

    Article  Google Scholar 

  203. Zhang C, Huang Z, Lv W, Yun Q, Kang F, Yang Q-H (2017) Carbon enables the practical use of lithium metal in a battery. Carbon N Y 123:744–755. https://doi.org/10.1016/j.carbon.2017.08.027

  204. Liang Z, Lin D, Zhao J, Lu Z, Liu Y, Liu C, Lu Y, Wang H, Yan K, Tao X, Cui Y (2016) Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc Natl Acad Sci 113:2862. https://doi.org/10.1073/pnas.1518188113

    Article  Google Scholar 

  205. Kim KJ, Kim Y-J, Kim J-H, Park M-S (2011) The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries. Mater Chem Phys 131:547–553. https://doi.org/10.1016/j.matchemphys.2011.10.022

  206. Yun JH, Kim J-H, Kim DK, Lee H-W (2018) Suppressing polysulfide dissolution via cohesive forces by interwoven carbon nanofibers for high-areal-capacity lithium–sulfur batteries. Nano Lett 18:475–481. https://doi.org/10.1021/acs.nanolett.7b04425

    Article  Google Scholar 

  207. Dai Z, Zhang B, Shi F, Li M, Zhang Z, Gu Y (2012) Chemical interaction between carbon fibers and surface sizing. J Appl Polym Sci 124:2127–2132. https://doi.org/10.1002/app.35226

  208. Valdés H, Sánchez-Polo M, Rivera-Utrilla J, Zaror CA (2002) Effect of ozone treatment on surface properties of activated carbon. Langmuir 18:2111–2116. https://doi.org/10.1021/la010920a

    Article  Google Scholar 

  209. Sha JJ, Dai JX, Li J, Wei ZQ, Hausherr J-M, Krenkel W (2013) Influence of thermal treatment on thermo-mechanical stability and surface composition of carbon fiber. Appl Surf Sci 274:89–94. https://doi.org/10.1016/j.apsusc.2013.02.102

  210. Liu Y, Lin D, Liang Z, Zhao J, Yan K, Cui Y (2016) Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat Commun 7:10992. https://doi.org/10.1038/ncomms10992

    Article  Google Scholar 

  211. Moriwake H, Kuwabara A, Fisher CAJ, Ikuhara Y (2017) Why is sodium-intercalated graphite unstable? RSC Adv 7:36550–36554. https://doi.org/10.1039/c7ra06777a

    Article  Google Scholar 

  212. Li Z, Bommier C, Sen CZ, Jian Z, Surta TW, Wang X, Xing Z, Neuefeind JC, Stickle WF, Dolgos M, Greaney PA, Ji X (2017) Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping. Adv Energy Mater 7:1–10. https://doi.org/10.1002/aenm.201602894

    Article  Google Scholar 

  213. Youn Y, Gao B, Kamiyama A, Kubota K, Komaba S, Tateyama Y (2021) Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery. npj Comput Mater 7:1–8. https://doi.org/10.1038/s41524-021-00515-7

  214. Alvin S, Yoon D, Chandra C, Cahyadi HS, Park JH, Chang W, Chung KY, Kim J (2019) Revealing sodium ion storage mechanism in hard carbon. Carbon N Y 145:67–81. https://doi.org/10.1016/j.carbon.2018.12.112

    Article  Google Scholar 

  215. Park S, Senthilkumar B, Kim K, Hwang SM, Kim Y (2016) Saltwater as the energy source for low-cost, safe rechargeable batteries. J Mater Chem A 4:7207–7213. https://doi.org/10.1039/c6ta01274d

    Article  Google Scholar 

  216. Lim DH, Dong C, Kim HW, Bae GH, Choo K, Cho GB, Kim Y, Jin B, Kim JK (2021) Redox chemistry of advanced functional material for low-cost and environment-friendly seawater energy storage. Mater Today Energy 21:100805. https://doi.org/10.1016/j.mtener.2021.100805

  217. Su N, Li HB, Zheng HM, Yi SP, Liu XH (2012) Synthesis and characterization of poly(sodium-p-styrenesulfonate)/modified SiO 2 spherical brushes. Express Polym Lett 6:680–686. https://doi.org/10.3144/expresspolymlett.2012.72

    Article  Google Scholar 

  218. Oyama N, Tatsuma T, Sotomura T (1997) Organosulfur polymer batteries with high energy density. J Power Sources 68:135–138. https://doi.org/10.1016/S0378-7753(96)02586-4

    Article  Google Scholar 

  219. Kim J, Park J, Lee J, Lim WG, Jo C, Lee J (2021) Biomass-Derived P, N Self-doped hard carbon as bifunctional oxygen electrocatalyst and anode material for seawater batteries. Adv Funct Mater 31:1–9. https://doi.org/10.1002/adfm.202010882

    Article  Google Scholar 

  220. Liu Q, Li X, Wu Y, Qing M, Tan G, Xiao D (2019) Pine pollen derived porous carbon with efficient capacitive deionization performance. Electrochim Acta 298:360–371. https://doi.org/10.1016/j.electacta.2018.12.072

    Article  Google Scholar 

  221. Wan L, Song P, Liu J, Chen D, Xiao R, Zhang Y, Chen J, Xie M, Du C (2019) Facile synthesis of nitrogen self-doped hierarchical porous carbon derived from pine pollen via MgCO3 activation for high-performance supercapacitors. J Power Sources 438:227013. https://doi.org/10.1016/j.jpowsour.2019.227013

  222. Zhang H, Li X, Zhang D, Zhang L, Kapilashrami M, Sun T, Glans PA, Zhu J, Zhong J, Hu Z, Guo J, Sun X (2016) Comprehensive electronic structure characterization of pristine and nitrogen/phosphorus doped carbon nanocages. Carbon N Y 103:480–487. https://doi.org/10.1016/j.carbon.2016.03.042

    Article  Google Scholar 

  223. Zhang Y, Li X, Dong P, Wu G, Xiao J, Zeng X, Zhang Y, Sun X (2018) Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion batteries. ACS Appl Mater Interfaces 10:42796–42803. https://doi.org/10.1021/acsami.8b13160

    Article  Google Scholar 

  224. Zou G, Wang C, Hou H, Wang C, Qiu X, Ji X (2017) Controllable interlayer spacing of sulfur-doped graphitic carbon nanosheets for fast sodium-ion batteries. Small 13:1–10. https://doi.org/10.1002/smll.201700762

    Article  Google Scholar 

  225. Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao SZ (2013) Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew Chemie 125:3192–3198. https://doi.org/10.1002/ange.201209548

    Article  Google Scholar 

  226. Liang J, Jiao Y, Jaroniec M, Qiao SZ (2012) Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew Chemie Int Ed 51:11496–11500. https://doi.org/10.1002/anie.201206720

    Article  Google Scholar 

  227. Fujimoto H, Tokumitsu K, Mabuchi A, Chinnasamy N, Kasuh T (2010) The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors. J Power Sources 195:7452–7456. https://doi.org/10.1016/j.jpowsour.2010.05.041

    Article  Google Scholar 

  228. Jo C, Mun Y, Lee J, Lim E, Kim S, Lee J (2019) Carbon dioxide to solid carbon at the surface of iron nanoparticle: Hollow nanocarbons for sodium ion battery anode application. J CO2 Util 34:588–595. https://doi.org/10.1016/j.jcou.2019.08.003

  229. Pol VG, Thackeray MM (2011) Spherical carbon particles and carbon nanotubes prepared by autogenic reactions: evaluation as anodes in lithium electrochemical cells. Energy Environ Sci 4:1904–1912. https://doi.org/10.1039/c0ee00256a

    Article  Google Scholar 

  230. Chen C, Wang Z, Zhang B, Miao L, Cai J, Peng L, Huang Y, Jiang J, Huang Y, Zhang L, Xie J (2017) Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater 8:161–168. https://doi.org/10.1016/j.ensm.2017.05.010

    Article  Google Scholar 

  231. Xia JL, Yan D, Guo LP, Dong XL, Li WC, Lu AH (2020) Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage. Adv Mater 32:1–8. https://doi.org/10.1002/adma.202000447

    Article  Google Scholar 

  232. Dahbi M, Kiso M, Kubota K, Horiba T, Chafik T, Hida K, Matsuyama T, Komaba S (2017) Synthesis of hard carbon from argan shells for Na-ion batteries. J Mater Chem A 5:9917–9928. https://doi.org/10.1039/c7ta01394a

    Article  Google Scholar 

  233. Sun N, Liu H, Xu B (2015) Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. J Mater Chem A 3:20560–20566. https://doi.org/10.1039/c5ta05118e

    Article  Google Scholar 

  234. Sun X, Wang C, Gong Y, Gu L, Chen Q, Yu Y (2018) A flexible sulfur-enriched nitrogen doped multichannel hollow carbon nanofibers film for high performance sodium storage. Small 14:1–9. https://doi.org/10.1002/smll.201802218

    Article  Google Scholar 

  235. Li Z, Ma L, Surta TW, Bommier C, Jian Z, Xing Z, Stickle WF, Dolgos M, Amine K, Lu J, Wu T, Ji X (2016) High capacity of hard carbon anode in Na-Ion batteries unlocked by POx doping. ACS Energy Lett 1:395–401. https://doi.org/10.1021/acsenergylett.6b00172

    Article  Google Scholar 

  236. Li Y, Hu YS, Titirici MM, Chen L, Huang X (2016) Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater 6:1–9. https://doi.org/10.1002/aenm.201600659

    Article  Google Scholar 

  237. Darwiche A, Bodenes L, Madec L, Monconduit L, Martinez H (2016) Impact of the salts and solvents on the SEI formation in Sb/Na batteries: an XPS analysis. Electrochim Acta 207:284–292. https://doi.org/10.1016/j.electacta.2016.03.089

    Article  Google Scholar 

  238. Ji L, Gu M, Shao Y, Li X, Engelhard MH, Arey BW, Wang W, Nie Z, Xiao J, Wang C, Zhang JG, Liu J (2014) Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv Mater 26:2901–2908. https://doi.org/10.1002/adma.201304962

    Article  Google Scholar 

  239. Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y (2011) Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl Mater Interfaces 3:4165–4168. https://doi.org/10.1021/am200973k

    Article  Google Scholar 

  240. Walsh FC, Low CTJ (2016) A review of developments in the electrodeposition of tin-copper alloys. Surf Coat Technol 304:246–262. https://doi.org/10.1016/j.surfcoat.2016.06.065

  241. Dirican M, Lu Y, Ge Y, Yildiz O, Zhang X (2015) Carbon-confined SnO2-electrodeposited porous carbon nanofiber composite as high-capacity sodium-ion battery anode material. ACS Appl Mater Interfaces 7:18387–18396. https://doi.org/10.1021/acsami.5b04338

    Article  Google Scholar 

  242. Chevrier VL, Ceder G (2011) Challenges for Na-ion negative electrodes. J Electrochem Soc 158:A1011. https://doi.org/10.1149/1.3607983

    Article  Google Scholar 

  243. Zhu Y, Wen Y, Fan X, Gao T, Han F, Luo C, Liou S-C, Wang C (2015) Red phosphorus–single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano 9:3254–3264. https://doi.org/10.1021/acsnano.5b00376

    Article  Google Scholar 

  244. Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L (2016) Na-ion battery anodes: materials and electrochemistry. Acc Chem Res 49:231–240. https://doi.org/10.1021/acs.accounts.5b00482

    Article  Google Scholar 

  245. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682. https://doi.org/10.1021/cr500192f

    Article  Google Scholar 

  246. Wang JW, Liu XH, Mao SX, Huang JY (2012) Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett 12:5897–5902. https://doi.org/10.1021/nl303305c

    Article  Google Scholar 

  247. Zhu J, Deng D (2015) Amorphous bimetallic Co3Sn2 nanoalloys are better than crystalline counterparts for sodium storage. J Phys Chem C 119:21323–21328. https://doi.org/10.1021/acs.jpcc.5b05232

    Article  Google Scholar 

  248. Seo M-H, Park M, Lee KT, Kim K, Kim J, Cho J (2011) High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ Sci 4:425–428. https://doi.org/10.1039/C0EE00552E

    Article  Google Scholar 

  249. Komaba S, Matsuura Y, Ishikawa T, Yabuuchi N, Murata W, Kuze S (2012) Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochem Commun 21:65–68. https://doi.org/10.1016/j.elecom.2012.05.017

  250. Ellis LD, Hatchard TD, Obrovac MN (2012) Reversible insertion of sodium in tin. J Electrochem Soc 159:A1801–A1805. https://doi.org/10.1149/2.037211jes

    Article  Google Scholar 

  251. Bresser D, Mueller F, Buchholz D, Paillard E, Passerini S (2014) Embedding tin nanoparticles in micron-sized disordered carbon for lithium- and sodium-ion anodes. Electrochim Acta 128:163–171. https://doi.org/10.1016/j.electacta.2013.09.007

  252. Yu DYW, Prikhodchenko PV, Mason CW, Batabyal SK, Gun J, Sladkevich S, Medvedev AG, Lev O (2013) High-capacity antimony sulfide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat Commun 4:2922. https://doi.org/10.1038/ncomms3922

    Article  Google Scholar 

  253. Zhao Y, Manthiram A (2015) Amorphous Sb2S3 embedded in graphite: a high-rate, long-life anode material for sodium-ion batteries. Chem Commun 51:13205–13208. https://doi.org/10.1039/C5CC03825A

    Article  Google Scholar 

  254. Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L (2012) Better cycling performances of bulk Sb in Na-Ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc 134:20805–20811. https://doi.org/10.1021/ja310347x

    Article  Google Scholar 

  255. Kim Y, Park Y, Choi A, Choi N-S, Kim J, Lee J, Ryu JH, Oh SM, Lee KT (2013) An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv Mater 25:3045–3049. https://doi.org/10.1002/adma.201204877

  256. Qian J, Wu X, Cao Y, Ai X, Yang H (2013) High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew Chemie Int Ed 52:4633–4636. https://doi.org/10.1002/anie.201209689

  257. Yabuuchi N, Matsuura Y, Ishikawa T, Kuze S, Son J-Y, Cui Y-T, Oji H, Komaba S (2014) Phosphorus electrodes in sodium cells: Small volume expansion by sodiation and the surface-stabilization mechanism in aprotic solvent. ChemElectroChem 1:580–589. https://doi.org/10.1002/celc.201300149

  258. Song J, Yu Z, Gordin ML, Hu S, Yi R, Tang D, Walter T, Regula M, Choi D, Li X, Manivannan A, Wang D (2014) Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett 14:6329–6335. https://doi.org/10.1021/nl502759z

    Article  Google Scholar 

  259. Kim Y, Varzi A, Mariani A, Kim GT, Kim Y, Passerini S (2021) Redox-mediated red-phosphorous semi-liquid anode enabling metal-free rechargeable Na-seawater batteries with high energy density. Adv Energy Mater 11. https://doi.org/10.1002/aenm.202102061

  260. Xiong S, Diao Y, Hong X, Chen Y, Xie K (2014) Characterization of solid electrolyte interphase on lithium electrodes cycled in ether-based electrolytes for lithium batteries. J Electroanal Chem 719:122–126. https://doi.org/10.1016/j.jelechem.2014.02.014

  261. Ponrouch A, Dedryvère R, Monti D, Demet AE, Ateba Mba JM, Croguennec L, Masquelier C, Johansson P, Palacín MR (2013) Towards high energy density sodium ion batteries through electrolyte optimization. Energy Environ Sci 6:2361–2369. https://doi.org/10.1039/C3EE41379A

    Article  Google Scholar 

  262. Tsubouchi S, Domi Y, Doi T, Ochida M, Nakagawa H, Yamanaka T, Abe T, Ogumi Z (2012) Spectroscopic characterization of surface films formed on edge plane graphite in ethylene carbonate-based electrolytes containing film-forming additives. J Electrochem Soc 159:A1786–A1790. https://doi.org/10.1149/2.028211jes

    Article  Google Scholar 

  263. Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y (1999) On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim Acta 45:67–86. https://doi.org/10.1016/S0013-4686(99)00194-2

  264. Manickam M, Takata M (2003) Effect of cathode binder on capacity retention and cycle life in transition metal phosphate of a rechargeable lithium battery. Electrochim Acta 48:957–963. https://doi.org/10.1016/S0013-4686(02)00808-3

  265. Kim Y, Kim GT, Jeong S, Dou X, Geng C, Kim Y, Passerini S (2019) Large-scale stationary energy storage: seawater batteries with high rate and reversible performance. Energy Storage Mater 16:56–64. https://doi.org/10.1016/j.ensm.2018.04.028

    Article  Google Scholar 

  266. Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K (2017) Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev 117:7190–7239. https://doi.org/10.1021/acs.chemrev.6b00504

    Article  Google Scholar 

  267. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629. https://doi.org/10.1038/nmat2448

    Article  Google Scholar 

  268. MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliott GD, Davis JH, Watanabe M, Simon P, Angell CA (2014) Energy applications of ionic liquids. Energy Environ Sci 7:232–250. https://doi.org/10.1039/C3EE42099J

    Article  Google Scholar 

  269. Eshetu GG, Grugeon S, Kim H, Jeong S, Wu L, Gachot G, Laruelle S, Armand M, Passerini S (2016) Comprehensive insights into the reactivity of electrolytes based on sodium ions. Chemsuschem 9:462–471. https://doi.org/10.1002/cssc.201501605

    Article  Google Scholar 

  270. Moreno M, Simonetti E, Appetecchi GB, Carewska M, Montanino M, Kim G-T, Loeffler N, Passerini S (2016) Ionic liquid electrolytes for safer lithium batteries. J Electrochem Soc 164:A6026–A6031. https://doi.org/10.1149/2.0051701jes

    Article  Google Scholar 

  271. Peled E (1979) The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J Electrochem Soc 126:2047–2051. https://doi.org/10.1149/1.2128859

    Article  Google Scholar 

  272. Montanino M, Moreno M, Carewska M, Maresca G, Simonetti E, Lo Presti R, Alessandrini F, Appetecchi GB (2014) Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems. J Power Sources 269:608–615. https://doi.org/10.1016/j.jpowsour.2014.07.027

  273. Kim G-T, Kennedy T, Brandon M, Geaney H, Ryan KM, Passerini S, Appetecchi GB (2017) Behavior of germanium and silicon nanowire anodes with ionic liquid electrolytes. ACS Nano 11:5933–5943. https://doi.org/10.1021/acsnano.7b01705

    Article  Google Scholar 

  274. Xie J, Cheng X-F, Cao X, He J-H, Guo W, Li D-S, Xu ZJ, Huang Y, Lu J-M, Zhang Q (2019) Nanostructured metal–organic conjugated coordination polymers with ligand tailoring for superior rechargeable energy storage. Small 15:1903188. https://doi.org/10.1002/smll.201903188

  275. Xiong W, Huang W, Zhang M, Hu P, Cui H, Zhang Q (2019) Pillar[5]quinone–carbon nanocomposites as high-capacity cathodes for sodium-ion batteries. Chem Mater 31:8069–8075. https://doi.org/10.1021/acs.chemmater.9b02601

    Article  Google Scholar 

  276. Zhan X, Chen Z, Zhang Q (2017) Recent progress in two-dimensional COFs for energy-related applications. J Mater Chem A 5:14463–14479. https://doi.org/10.1039/C7TA02105D

    Article  Google Scholar 

  277. Xie J, Wang Z, Xu ZJ, Zhang Q (2018) Toward a high-performance all-plastic full battery with a single organic polymer as both cathode and anode. Adv Energy Mater 8:1703509. https://doi.org/10.1002/aenm.201703509

  278. Lee Y, Lee J, Kim H, Kang K, Choi NS (2016) Highly stable linear carbonate-containing electrolytes with fluoroethylene carbonate for high-performance cathodes in sodium-ion batteries. J Power Sources 320:49–58. https://doi.org/10.1016/j.jpowsour.2016.04.070

    Article  Google Scholar 

  279. Mattsson MS, Niklasson GA (1999) Isothermal transient ionic current as a characterization technique for ion transport in Ta2O5. J Appl Phys 85:8199–8204. https://doi.org/10.1063/1.370694

    Article  Google Scholar 

  280. Frenning G, Strømme M (2001) Theoretical derivation of the isothermal transient ionic current in an ion conductor: migration, diffusion, and space-charge effects. J Appl Phys 90:5570–5575. https://doi.org/10.1063/1.1412585

    Article  Google Scholar 

  281. Braga MH, Grundish NS, Murchison AJ, Goodenough JB (2017) Alternative strategy for a safe rechargeable battery. Energy Environ Sci 10:331–336. https://doi.org/10.1039/C6EE02888H

    Article  Google Scholar 

  282. Lee B, Paek E, Mitlin D, Lee SW (2019) Sodium metal anodes: emerging solutions to dendrite growth. Chem Rev 119:5416–5460. https://doi.org/10.1021/acs.chemrev.8b00642

    Article  Google Scholar 

  283. Chen X, Shen X, Li B, Peng HJ, Cheng XB, Li BQ, Zhang XQ, Huang JQ, Zhang Q (2018) Ion–solvent complexes promote gas evolution from electrolytes on a sodium metal anode. Angew Chemie Int Ed 57:734–737. https://doi.org/10.1002/anie.201711552

    Article  Google Scholar 

  284. Kim Y, Jung J, Yu H, Kim GT, Jeong D, Bresser D, Kang SJ, Kim Y, Passerini S (2020) Sodium biphenyl as anolyte for sodium–seawater batteries. Adv Funct Mater 30:2001249. https://doi.org/10.1002/adfm.202001249

    Article  Google Scholar 

  285. Wang Y, Yu X, Xu S, Bai J, Xiao R, Hu Y-S, Li H, Yang X-Q, Chen L, Huang X (2013) A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat Commun 4:2365. https://doi.org/10.1038/ncomms3365

    Article  Google Scholar 

  286. Liang F, Qiu X, Zhang Q, Kang Y, Koo A, Hayashi K, Chen K, Xue D, Hui KN, Yadegari H, Sun X (2018) A liquid anode for rechargeable sodium-air batteries with low voltage gap and high safety. Nano Energy 49:574–579. https://doi.org/10.1016/j.nanoen.2018.04.074

    Article  Google Scholar 

  287. Senthilkumar ST, Go W, Han J, Pham Thi Thuy L, Kishor K, Kim Y, Kim Y (2019) Emergence of rechargeable seawater batteries. J Mater Chem A 7(40):22803–22825

    Google Scholar 

  288. Zhao C, Liu L, Qi X, Lu Y, Wu F, Zhao J, Yu Y, Hu YS, Chen L (2018) Solid-state sodium batteries. Adv Energy Mater 8(17):14–16

    Article  Google Scholar 

  289. Zheng B, Zhu J, Wang H, Feng M, Umeshbabu E, Li Y, Wu QH, Yang Y (2018) Stabilizing Li10SnP2S12/Li interface via an in situ formed solid electrolyte interphase layer. ACS Appl Mater Interfaces 10(30):25473–25482

    Article  Google Scholar 

  290. http://www.ionotec.com/pdfs/NaKbetaceramics.pdf

  291. Chi C, Katsui H, Goto T (2017) Effect of Li addition on the formation of Na-β/βʹʹ-alumina film by laser chemical vapor deposition. Ceram Int 43(1):1278–1283

    Article  Google Scholar 

  292. Lu X, Xia G, Lemmon JP, Yang Z (2010) Advanced materials for sodium-beta alumina batteries: status, challenges and perspectives. J Power Sources 195(9):2431–2442

    Article  Google Scholar 

  293. Virkar A, Gj T, Gordon R (1974) Hot-pressing of LI2O-stabilized beta’’-alumina

    Google Scholar 

  294. Whalen TJ, Tennenhouse G (1974) Relation of properties to microstructure in a beta’’-alumina ceramic

    Google Scholar 

  295. Cook RF, Shaw TM, Duncombe PR (1987) Fracture properties of polycrystalline YBa2Cu3OX. Adv Ceram Mater 2(3 B):606–614

    Google Scholar 

  296. Wen Z, Cao J, Gu Z, Xu X, Zhang F, Lin Z (2008) Research on sodium sulfur battery for energy storage. Solid State Ionics 179(27–32):1697–1701

    Article  Google Scholar 

  297. Hong HYP (1976) Crystal structures and crystal chemistry in the system Na1+xZr2SixP3-xO12. Mater Res Bull 11(2):173–182

    Article  Google Scholar 

  298. Go W, Kim J, Pyo J, Wolfenstine JB, Kim Y (2021) Investigation on the structure and properties of Na3.1Zr1.55Si2.3P0.7O11as a solid electrolyte and its application in a seawater battery. ACS Appl Mater Interfaces 13(44), 52727–52735

    Google Scholar 

  299. Tietz F (2017) Phase relations of NASICON materials and compilation of the quaternary phase diagram Na2O-P2O5-SiO2-ZrO2. AIMS Mater Sci 4(6):1305–1318

    Article  Google Scholar 

  300. Jung JI, Kim D, Kim H, Jo YN, Park JS, Kim Y (2017) Progressive assessment on the decomposition reaction of Na superionic conducting ceramics. ACS Appl Mater Interfaces 9(1):304–310

    Article  Google Scholar 

  301. Wi TU, Lee C, Rahman MF, Go W, Kim SH, Hwang DY, Kwak SK, Kim Y, Lee HW (2021) Chemical stability and degradation mechanism of solid electrolytes/aqueous media at a steady state for long-lasting sodium batteries. Chem Mater 33(1):126–135

    Article  Google Scholar 

  302. Naqash S, Ma Q, Tietz F, Guillon O (2017) Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid state reaction. Solid State Ionics 302:83–91

    Article  Google Scholar 

  303. Bayard ML, Barna GG (1978) A complex impedance analysis of the ionic conductivity of Na1+xZr2SixP3-xO12 ceramics. J Electroanal Chem 91(2):201–209

    Article  Google Scholar 

  304. Wang W, Li D, Zhao J (1992) Solid phase synthesis and characterization of Na3Zr2-yNb0.8ySi2PO12 system. Solid State Ion 51(1–2):97–100

    Google Scholar 

  305. Bohnke O, Ronchetti S, Mazza D (1999) Conductivity measurements on nasicon and nasicon-modified materials. Solid State Ion 122(1–4):127–136

    Article  Google Scholar 

  306. Lee JS, Chang CM, Lee YI, Lee JH, Hong SH (2004) Spark Plasma Sintering (SPS) of NASICON ceramics. J Am Ceram Soc 87(2):305–307

    Article  Google Scholar 

  307. Noi K, Suzuki K, Tanibata N, Hayashi A, Tatsumisago M (2018) Liquid-phase sintering of highly Na+ ion conducting Na3Zr2Si2PO12 ceramics using Na3BO3 additive. J Am Ceram Soc 101(3):1255–1265

    Article  Google Scholar 

  308. Oh JAS, He L, Plewa A, Morita M, Zhao Y, Sakamoto T, Song X, Zhai W, Zeng K, Lu L (2019) Composite NASICON (Na3Zr2Si2PO12) solid-state electrolyte with enhanced Na+ ionic conductivity: effect of liquid phase sintering. ACS Appl Mater Interfaces 11(43):40125–40133

    Article  Google Scholar 

  309. Kim Y, Jo H, Allen JL, Choe H, Wolfenstine J, Sakamoto J (2016) The effect of relative density on the mechanical properties of hot-pressed cubic Li 7 la 3 Zr 2 O 12. J Am Ceram Soc 99(4):1367–1374

    Article  Google Scholar 

  310. https://www.ceramics.net/ceramic-materials-solutions/aluminas/std-alumina

  311. Pertti A (1996) Mechanical and physical properties of engineering alumina ceramics

    Google Scholar 

  312. Morrell R (1987) High-alumina Ceramics

    Google Scholar 

  313. (1992). Handbook of industrial materials. Oxford, UK, Elsevier Advanced Technology.

    Google Scholar 

  314. https://global.kyocera.com/prdct/fc/list/material/zirconia/zirconia.html

  315. Mcentire BJ, Bartlett RA, Miller GR, Gordon RS (1983) Effect of decomposition on the densification and properties of Nasicon ceramic electrolytes J Am Ceram Soc 66(10):738–742

    Google Scholar 

  316. Gordon RS, Miller GR, McEntire BJ, Beck ED, Rasmussen JR (1981) Fabrication and characterization of Nasicon electrolytes. Solid State Ion 3–4(C): 243–248

    Google Scholar 

  317. Ceramatec (1980) Fabrication and characterization of nasicon ceramic electrolytes

    Google Scholar 

  318. Senthilkumar ST, Park SO, Kim J, Hwang SM, Kwak SK, Kim Y (2017) Seawater battery performance enhancement enabled by a defect/edge-rich, oxygen self-doped porous carbon electrocatalyst. J Mater Chem A 5. https://doi.org/10.1039/c7ta03298f

  319. Nie Y, Li L, Wei Z (2015) Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 44:2168–2201. https://doi.org/10.1039/c4cs00484a

    Article  Google Scholar 

  320. Ma Y, Wang Y, Cong J, Sun Y (2019) Magnetic-field tuning of hydrogen bond order-disorder transition in metal-organic frameworks. Phys Rev Lett 122:255701. https://doi.org/10.1103/PhysRevLett.122.255701

  321. García-Osorio DA, Jaimes R, Vazquez-Arenas J, Lara RH, Alvarez-Ramirez J (2017) The kinetic parameters of the Oxygen Evolution Reaction (OER) calculated on inactive anodes via eis transfer functions: • OH formation. J Electrochem Soc 164:E3321–E3328. https://doi.org/10.1149/2.0321711jes

    Article  Google Scholar 

  322. Lee S, Cho IY, Kim D, Park NK, Park J, Kim Y, Kang SJ, Kim Y, Hong SY (2020) Redox-active functional electrolyte for high-performance seawater batteries. Chemsuschem 13:2220–2224. https://doi.org/10.1002/cssc.201903564

    Article  Google Scholar 

  323. Jung SC, Jung DS, Choi JW, Han YK (2014) Atom-level understanding of the sodiation process in silicon anode material. J Phys Chem Lett 5:1283–1288. https://doi.org/10.1021/jz5002743

    Article  Google Scholar 

  324. Wang J, Eng C, Chen-Wiegart YCK, Wang J (2015) Probing three-dimensional sodiation-desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography. Nat Commun 6. https://doi.org/10.1038/ncomms8496

  325. Lei Z, Zhang C, Li J, Fan G, Lin Z (2015) Preheating method of lithium-ion batteries in an electric vehicle. J Mod Power Syst Clean Energy 3:289–296. https://doi.org/10.1007/s40565-015-0115-1

    Article  Google Scholar 

  326. Wu X, Chen GY, Zhang W, Liu X, Xu H (2017) A plant-transpiration-process-inspired strategy for highly efficient solar evaporation. Adv Sustain Syst 1:1700046. https://doi.org/10.1002/adsu.201700046

    Article  Google Scholar 

  327. Ma R, Lin G, Zhou Y, Liu Q, Zhang T, Shan G, Yang M, Wang J (2019) A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. npj Comput Mater 5. https://doi.org/10.1038/s41524-019-0210-3

  328. Kim, Y., Shin, K., Jung, Y., Lee, W. G., & Kim, Y. (2022). Development of Prismatic Cells for Rechargeable Seawater Batteries. Advanced Sustainable Systems, 2100484. https://doi.org/10.1002/adsu.202100484

  329. Dongyeop, Kim Jeong-Sun, Park Wang-Geun, Lee Yunseok, Choi Youngsik, Kim (2022) Development of Rechargeable Seawater Battery Module. J Electrochem Soc 169(4):040508. https://doi.org/10.1149/1945-7111/ac6142

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, Y., Lee, Wg. (2022). Secondary Seawater Batteries. In: Seawater Batteries. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-0797-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0797-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0796-8

  • Online ISBN: 978-981-19-0797-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics