Skip to main content

MicroRNAs and Cancer Signaling Pathways

  • Chapter
  • First Online:
Role of MicroRNAs in Cancers
  • 267 Accesses

Abstract

Cancer is a condition where cells have gained the capability, generally due to genetic abnormalities in certain genes, of uncontrolled divisions and growth. This complex disease is dysregulated at many levels in different pathways. These pathways are closely linked with different stages of cancer. Cancer pathways comprises a series of actions between molecules in a cell that leads to a product or a change in a cell that can trigger the assembly of new molecules or turn genes on and off or spur a cell to change. Finding the genes, proteins, and other molecules involved in a pathway can offer clues on what goes wrong when a disease strikes. MiRNAs, the regulating molecules, are downregulated or upregulated in different cancers and pathways for the control and transition of cancer into various stages. MiRNAs are involved in transcriptional and translational repression as well as cleavage of mRNAs. This subtle involvement of miRNAs in cancer along with different pathways renders this disease challenging to comprehend. Understanding of the role of miRNA helps uncover novel therapeutic target to treat cancer by helping to know the causes of treatment failure. Identifying the molecular basis of cancer signifies a major breakthrough in the history of medicine, affecting the discipline from pattern recognition and beneficial approaches based on molecular mechanisms. The focus of this chapter is on exemplifying mechanistically how the miRNA pathway is involved, or affected by, cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An F, Liu Y, Hu Y (2017) miR-21 inhibition of LATS1 promotes proliferation and metastasis of renal cancer cells and tumor stem cell phenotype. Oncol Lett 14(4):4684–4688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berindan-Neagoe I, Calin GA (2014) Molecular pathways: microRNAs, cancer cells, and microenvironment. Clin Cancer Res 20(24):6247–6253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bierie B, Moses HL (2006) TGFβ: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6(7):506–520

    Article  CAS  PubMed  Google Scholar 

  • Blahna MT, Hata A (2012) Smad-mediated regulation of microRNA biosynthesis. FEBS Lett 586(14):1906–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boggiano JC, Vanderzalm PJ, Fehon RG (2011) Tao-1 phosphorylates Hippo/MST kinases to regulate the Hippo-Salvador-Warts tumor suppressor pathway. Dev Cell 21(5):888–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boone DN, Qi Y, Li Z, Hann SR (2011) Egr1 mediates p53-independent c-Myc–induced apoptosis via a noncanonical ARF-dependent transcriptional mechanism. Proc Natl Acad Sci U S A 108(2):632–637

    Article  CAS  PubMed  Google Scholar 

  • Bos JL (1989) Ras oncogenes in human cancer: a review. Cancer Res 49(17):4682–4689

    CAS  PubMed  Google Scholar 

  • Boucher MJ, Morisset J, Vachon PH, Reed JC, Lainé J, Rivard N (2000) MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-XL, and Mcl-1 and promotes survival of human pancreatic cancer cells. J Cell Biochem 79(3):355–369

    Article  CAS  PubMed  Google Scholar 

  • Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G, Firat E, Wellner U, Dimmler A, Faller G, Schubert J (2011) The ZEB1/miR-200 feedback loop controls notch signalling in cancer cells. EMBO J 30(4):770–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butz H, Rácz K, Hunyady L, Patócs A (2012) Crosstalk between TGF-β signaling and the microRNA machinery. Trends Pharmacol Sci 33(7):382–393

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, Taccioli C, Zanesi N, Garzon R, Aqeilan RI (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A 105(13):5166–5171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75(1):50–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaulk SG, Lattanzi VJ, Hiemer SE, Fahlman RP, Varelas X (2014) The Hippo pathway effectors TAZ/YAP regulate dicer expression and microRNA biogenesis through Let-7. J Biol Chem 289(4):1886–1891

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Ten Dijke P (2016) Immunoregulation by members of the TGFβ superfamily. Nat Rev Immunol 16(12):723–740

    Article  CAS  PubMed  Google Scholar 

  • Chen H-Z, Tsai S-Y, Leone G (2009a) Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer 9(11):785–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Li D, Killary AM, Sen S, Amos CI, Evans DB, Abbruzzese JL, Frazier ML (2009b) Polymorphisms of p16, p27, p73, and MDM2 modulate response and survival of pancreatic cancer patients treated with preoperative chemoradiation. Ann Surg Oncol 16(2):431–439

    Article  PubMed  Google Scholar 

  • Chen Z, Chen LY, Dai HY, Wang P, Gao S, Wang K (2012) miR-301a promotes pancreatic cancer cell proliferation by directly inhibiting bim expression. J Cell Biochem 113(10):3229–3235

    Article  CAS  PubMed  Google Scholar 

  • Chen Y-F, Wei Y-Y, Yang C-C, Liu C-J, Yeh L-Y, Chou C-H, Chang K-W, Lin S-C (2019) miR-125b suppresses oral oncogenicity by targeting the anti-oxidative gene PRXL2A. Redox Biol 22:101140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu T-H, Yang C-C, Liu C-J, Lui M-T, Lin S-C, Chang K-W (2013) miR-211 promotes the progression of head and neck carcinomas by targeting TGFβRII. Cancer Lett 337(1):115–124

    Article  CAS  PubMed  Google Scholar 

  • Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, Shuai K (1997) Specific inhibition of Stat3 signal transduction by PIAS3. Science 278(5344):1803–1805

    Article  CAS  PubMed  Google Scholar 

  • Collisson EA, Trejo CL, Silva JM, Gu S, Korkola JE, Heiser LM, Charles R-P, Rabinovich BA, Hann B, Dankort D (2012) A central role for RAF→ MEK→ ERK signaling in the genesis of pancreatic ductal adenocarcinoma. Cancer Discov 2(8):685–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppedè F, Lopomo A, Spisni R, Migliore L (2014) Genetic and epigenetic biomarkers for diagnosis, prognosis and treatment of colorectal cancer. World J Gastroenterol 20(4):943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A (2010) Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 39(3):373–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De La OJ-P, Murtaugh LC (2009) Notch and Kras in pancreatic cancer: at the crossroads of mutation, differentiation and signaling. Cell Cycle 8(12):1860–1864

    Article  Google Scholar 

  • Diosdado B, Van De Wiel M, Droste JTS, Mongera S, Postma C, Meijerink W, Carvalho B, Meijer G (2009) MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. Br J Cancer 101(4):707–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dogar AM, Towbin H, Hall J (2011) Suppression of latent transforming growth factor (TGF)-β1 restores growth inhibitory TGF-β signaling through microRNAs. J Biol Chem 286(18):16447–16458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dogar AM, Semplicio G, Guennewig B, Hall J (2014) Multiple microRNAs derived from chemically synthesized precursors regulate thrombospondin 1 expression. Nucleic Acid Therap 24(2):149–159

    Article  CAS  Google Scholar 

  • Dosch JS, Di Magliano MP, Simeone DM (2010) Pancreatic cancer and hedgehog pathway signaling: new insights. Pancreatology 10(2–3):151–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards CA, Mungall AJ, Matthews L, Ryder E, Gray DJ, Pask AJ, Shaw G, Graves JA, Rogers J, the SAVOIR Consortium (2008) The evolution of the DLK1-DIO3 imprinted domain in mammals. PLoS Biol 6(6):e135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elston R, Inman GJ (2012) Crosstalk between p53 and TGF-β signalling. J Signal Transduct 2012:294097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z, Zhang C, Wu R, Hu W (2011) Tumor suppressor p53 meets microRNAs. J Mol Cell Biol 3(1):44–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng B, Dong TT, Wang LL, Zhou HM, Zhao HC, Dong F, Zheng MH (2012) Colorectal cancer migration and invasion initiated by microRNA-106a. PLoS One 7(8):e43452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferro R, Falasca M (2014) Emerging role of the KRAS-PDK1 axis in pancreatic cancer. World J Gastroenterol 20(31):10752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry LC, Mönkemüller K, Malfertheiner P (2008) Molecular markers of pancreatic cancer: development and clinical relevance. Langenbecks Arch Surg 393(6):883–890

    Article  PubMed  Google Scholar 

  • Garofalo M, Di Leva G, Romano G, Nuovo G, Suh S-S, Ngankeu A, Taccioli C, Pichiorri F, Alder H, Secchiero P (2009) miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16(6):498–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garraway LA, Lander ES (2013) Lessons from the cancer genome. Cell 153(1):17–37

    Article  CAS  PubMed  Google Scholar 

  • Georges SA, Biery MC, Kim S-y, Schelter JM, Guo J, Chang AN, Jackson AL, Carleton MO, Linsley PS, Cleary MA (2008) Coordinated regulation of cell cycle transcripts by p53-inducible microRNAs, miR-192 and miR-215. Cancer Res 68(24):10105–10112

    Article  CAS  PubMed  Google Scholar 

  • Geraldo MV, Yamashita AS, Kimura ET (2012) MicroRNA miR-146b-5p regulates signal transduction of TGF-β by repressing SMAD4 in thyroid cancer. Oncogene 31(15):1910–1922

    Article  CAS  PubMed  Google Scholar 

  • Gewinner C, Wang ZC, Richardson A, Teruya-Feldstein J, Etemadmoghadam D, Bowtell D, Barretina J, Lin WM, Rameh L, Salmena L (2009) Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 16(2):115–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gironella M, Seux M, Xie M-J, Cano C, Tomasini R, Gommeaux J, Garcia S, Nowak J, Yeung ML, Jeang K-T (2007) Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci U S A 104(41):16170–16175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Zhang Y, Zhang L, Huang F, Li J, Wang S (2016) MicroRNAs, TGF-β signaling, and the inflammatory microenvironment in cancer. Tumor Biol 37(1):115–125

    Article  CAS  Google Scholar 

  • Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL (2020) ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med 19(3):1997–2007

    PubMed  PubMed Central  Google Scholar 

  • Häger M, Pedersen CC, Larsen MT, Andersen MK, Hother C, Grønbæk K, Jarmer H, Borregaard N, Cowland JB (2011) MicroRNA-130a–mediated down-regulation of Smad4 contributes to reduced sensitivity to TGF-β1 stimulation in granulocytic precursors. Blood 118(25):6649–6659

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hartmaier RJ, Albacker LA, Chmielecki J, Bailey M, He J, Goldberg ME, Ramkissoon S, Suh J, Elvin JA, Chiacchia S (2017) High-throughput genomic profiling of adult solid tumors reveals novel insights into cancer pathogenesis. Cancer Res 77(9):2464–2475

    Article  CAS  PubMed  Google Scholar 

  • Hata A, Davis BN (2009) Control of microRNA biogenesis by TGFβ signaling pathway—a novel role of Smads in the nucleus. Cytokine Growth Factor Rev 20(5–6):517–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haupt Y, Bath M, Harris A, Adams J (1993) bmi-1 transgene induces lymphomas and collaborates with myc in tumorigenesis. Oncogene 8(11):3161–3164

    CAS  PubMed  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He C, Chen Z-Y, Li Y, Yang Z-Q, Zeng F, Cui Y, He Y, Chen J-B, Chen H-Q (2019) miR-10b suppresses cell invasion and metastasis through targeting HOXA3 regulated by FAK/YAP signaling pathway in clear-cell renal cell carcinoma. BMC Nephrol 20(1):1–10

    Article  Google Scholar 

  • Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA, Cordon-Cardo C, Cleveland JL, Tansey WP, Lowe SW (2005) Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436(7052):807–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou W, Tian Q, Steuerwald NM, Schrum LW, Bonkovsky HL (2012) The let-7 microRNA enhances heme oxygenase-1 by suppressing Bach1 and attenuates oxidant injury in human hepatocytes. Biochim Biophys Acta 1819(11–12):1113–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua K, Jin J, Zhao J, Song J, Song H, Li D, Maskey N, Zhao B, Wu C, Xu H (2016) miR-135b, upregulated in breast cancer, promotes cell growth and disrupts the cell cycle by regulating LATS2. Int J Oncol 48(5):1997–2006

    Article  CAS  PubMed  Google Scholar 

  • i Altaba AR, Sánchez P, Dahmane N (2002) Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer 2(5):361–372

    Article  CAS  Google Scholar 

  • Ikushima H, Miyazono K (2010) TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer 10(6):415–424

    Article  CAS  PubMed  Google Scholar 

  • Janakiraman H, House RP, Gangaraju VK, Diehl JA, Howe PH, Palanisamy V (2018) The long (lncRNA) and short (miRNA) of it: TGFβ-mediated control of RNA-binding proteins and noncoding RNAs. Mol Cancer Res 16(4):567–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, Xiang D, DeSano JT, Bommer GT, Fan D (2009) MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4(8):e6816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Xiang G, Wang Y, Zhang L, Yang X, Cao L, Peng H, Xue P, Chen D (2012) MicroRNA-590-5p regulates proliferation and invasion in human hepatocellular carcinoma cells by targeting TGF-β RII. Mol Cells 33(6):545–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang F, Mu J, Wang X, Ye X, Si L, Ning S, Li Z, Li Y (2014a) The repressive effect of miR-148a on TGF beta-SMADs signal pathway is involved in the glabridin-induced inhibition of the cancer stem cells-like properties in hepatocellular carcinoma cells. PLoS One 9(5):e96698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Jin C, Liu J, Hua D, Zhou F, Lou X, Zhao N, Lan Q, Huang Q, Yoon J-G (2014b) Next generation sequencing analysis of miRNAs: MiR-127-3p inhibits glioblastoma proliferation and activates TGF-β signaling by targeting SKI. Omics 18(3):196–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao LR, Frampton AE, Jacob J, Pellegrino L, Krell J, Giamas G, Tsim N, Vlavianos P, Cohen P, Ahmad R (2012) MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors. PLoS One 7(2):e32068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin X, Sun Y, Yang H, Li J, Yu S, Chang X, Lu Z, Chen J (2015) Deregulation of the MiR-193b-KRAS axis contributes to impaired cell growth in pancreatic cancer. PLoS One 10(4):e0125515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647

    Article  CAS  PubMed  Google Scholar 

  • Kanda M, Matthaei H, Wu J, Hong SM, Yu J, Borges M, Hruban RH, Maitra A, Kinzler K, Vogelstein B (2012) Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology 142(4):730–733.e739

    Article  CAS  PubMed  Google Scholar 

  • Kaplan DR, Whitman M, Schaffhausen B, Pallas DC, White M, Cantley L, Roberts TM (1987) Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity. Cell 50(7):1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9(7):517–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keklikoglou I, Hosaka K, Bender C, Bott A, Koerner C, Mitra D, Will R, Woerner A, Muenstermann E, Wilhelm H (2015) MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes. Oncogene 34(37):4867–4878

    Article  CAS  PubMed  Google Scholar 

  • Knudsen ES, Knudsen KE (2008) Tailoring to RB: tumour suppressor status and therapeutic response. Nat Rev Cancer 8(9):714–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladha MH, Lee KY, Upton TM, Reed MF, Ewen ME (1998) Regulation of exit from quiescence by p27 and cyclin D1-CDK4. Mol Cell Biol 18(11):6605–6615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Fu H, Xu C, Tie Y, Xing R, Zhu J, Qin Y, Sun Z, Zheng X (2010) miR-183 inhibits TGF-β1-induced apoptosis by downregulation of PDCD4 expression in human hepatocellular carcinoma cells. BMC Cancer 10(1):1–10

    Article  CAS  Google Scholar 

  • Liu Y, Sun R, Lin X, Liang D, Deng Q, Lan K (2012) Kaposi's sarcoma-associated herpesvirus-encoded microRNA miR-K12-11 attenuates transforming growth factor beta signaling through suppression of SMAD5. J Virol 86(3):1372–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Nie J, Chen L, Dong G, Du X, Wu X, Tang Y, Han W (2013) The oncogenic role of microRNA-130a/301a/454 in human colorectal cancer via targeting Smad4 expression. PLoS One 8(2):e55532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhao H, Luo C, Du D, Huang J, Ming Q, Jin F, Wang D, Huang W (2019) Acetaminophen responsive miR-19b modulates SIRT1/Nrf2 signaling pathway in drug-induced hepatotoxicity. Toxicol Sci 170(2):476–488

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Yu S, Zhao W, Lu Z, Chen J (2010) miR-27a regulates the growth, colony formation and migration of pancreatic cancer cells by targeting Sprouty2. Cancer Lett 298(2):150–158

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Nong K, Wu B, Dong B, Bai Y, Zhu H, Wang W, Huang X, Yuan Z, Ai K (2014) miR-212 promotes pancreatic cancer cell growth and invasion by targeting the Hedgehog signaling pathway receptor patched-1. J Exp Clin Cancer Res 33(1):1–7

    Article  CAS  Google Scholar 

  • Martin J, Jenkins RH, Bennagi R, Krupa A, Phillips AO, Bowen T, Fraser DJ (2011) Post-transcriptional regulation of transforming growth factor beta-1 by microRNA-744. PLoS One 6(10):e25044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E (2014) PI3K/AKT signaling pathway and cancer: an updated review. Ann Med 46(6):372–383

    Article  CAS  PubMed  Google Scholar 

  • Masri S, Liu Z, Phung S, Wang E, Yuan Y-C, Chen S (2010) The role of microRNA-128a in regulating TGFbeta signaling in letrozole-resistant breast cancer cells. Breast Cancer Res Treat 124(1):89–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCleary-Wheeler AL, McWilliams R, Fernandez-Zapico ME (2012) Aberrant signaling pathways in pancreatic cancer: a two compartment view. Mol Carcinog 51(1):25–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng X-m, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12(6):325–338

    Article  CAS  PubMed  Google Scholar 

  • Mestdagh P, Boström A-K, Impens F, Fredlund E, Van Peer G, De Antonellis P, Von Stedingk K, Ghesquière B, Schulte S, Dews M (2010) The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma. Mol Cell 40(5):762–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda KC, Huynh T, Tay Y, Ang Y-S, Tam W-L, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Deng JJ, Gowda PS, Rao MK, Lin C-L, Chen CL, Huang T, Sun L-Z (2014) Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer. Oncogene 33(31):4097–4106

    Article  CAS  PubMed  Google Scholar 

  • Miyaki M, Konishi M, Kikuchi-Yanoshita R, Enomoto M, Igari T, Tanaka K, Muraoka M, Takahashi H, Amada Y, Fukayama M (1994) Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res 54(11):3011–3020

    CAS  PubMed  Google Scholar 

  • Miyamoto Y, Maitra A, Ghosh B, Zechner U, Argani P, Iacobuzio-Donahue CA, Sriuranpong V, Iso T, Meszoely IM, Wolfe MS (2003) Notch mediates TGFα-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 3(6):565–576

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K (2002) Two major Smad pathways in TGF-β superfamily signalling. Genes Cells 7(12):1191–1204

    Article  CAS  PubMed  Google Scholar 

  • Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Diff 20(12):1603–1614

    Article  CAS  Google Scholar 

  • Mori M, Triboulet R, Mohseni M, Schlegelmilch K, Shrestha K, Camargo FD, Gregory RI (2014) Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer. Cell 156(5):893–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275(5307):1787–1790

    Article  CAS  PubMed  Google Scholar 

  • Morrison DK (2012) MAP kinase pathways. Cold Spring Harb Perspect Biol 4(11):a011254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortoglou M, Wallace D, Buha Djordjevic A, Djordjevic V, Arisan ED, Uysal-Onganer P (2021) MicroRNA-regulated signaling pathways: potential biomarkers for pancreatic ductal adenocarcinoma. Stress 1(1):30–47

    Article  Google Scholar 

  • Mu P, Han Y-C, Betel D, Yao E, Squatrito M, Ogrodowski P, De Stanchina E, D’Andrea A, Sander C, Ventura A (2009) Genetic dissection of the miR-17∼ 92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev 23(24):2806–2811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mudhasani R, Zhu Z, Hutvagner G, Eischen CM, Lyle S, Hall LL, Lawrence JB, Imbalzano AN, Jones SN (2008) Loss of miRNA biogenesis induces p19Arf-p53 signaling and senescence in primary cells. J Cell Biol 181(7):1055–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munemitsu S, Albert I, Rubinfeld B, Polakis P (1996) Deletion of an amino-terminal sequence beta-catenin in vivo and promotes hyperphosporylation of the adenomatous polyposis coli tumor suppressor protein. Mol Cell Biol 16(8):4088–4094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalls D, Tang S-N, Rodova M, Srivastava RK, Shankar S (2011) Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One 6(8):e24099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandy SB, Arumugam A, Subramani R, Pedroza D, Hernandez K, Saltzstein E, Lakshmanaswamy R (2015) MicroRNA-125a influences breast cancer stem cells by targeting leukemia inhibitory factor receptor which regulates the Hippo signaling pathway. Oncotarget 6(19):17366

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohtsubo M, Chibazakura T (1996) G1 phase regulation. Tanpakushitsu kakusan koso Protein, nucleic acid, enzyme 41(12 Suppl):1712–1718

    Google Scholar 

  • Pandurangan AK (2013) Potential targets for prevention of colorectal cancer: a focus on PI3K/Akt/mTOR and Wnt pathways. Asian Pac J Cancer Prev 14(4):2201–2205

    Article  PubMed  Google Scholar 

  • Petrocca F, Vecchione A, Croce CM (2008) Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor β signaling. Cancer Res 68(20):8191–8194

    Article  CAS  PubMed  Google Scholar 

  • Pickup M, Novitskiy S, Moses HL (2013) The roles of TGFβ in the tumour microenvironment. Nat Rev Cancer 13(11):788–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollari S, Leivonen S-K, Perälä M, Fey V, Käkönen S-M, Kallioniemi O (2012) Identification of microRNAs inhibiting TGF-β-induced IL-11 production in bone metastatic breast cancer cells. PLoS One 7(5):e37361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poon CL, Lin JI, Zhang X, Harvey KF (2011) The sterile 20-like kinase Tao-1 controls tissue growth by regulating the Salvador-Warts-Hippo pathway. Dev Cell 21(5):896–906

    Article  CAS  PubMed  Google Scholar 

  • Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, Vogelstein B, Kinzler KW (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359(6392):235–237

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Gregory MA, Li Z, Brousal JP, West K, Hann SR (2004) p19 ARF directly and differentially controls the functions of c-Myc independently of p53. Nature 431(7009):712–717

    Article  CAS  PubMed  Google Scholar 

  • Radtke F, Raj K (2003) The role of notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3(10):756–767

    Article  CAS  PubMed  Google Scholar 

  • Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117(8):1281–1283

    Article  CAS  PubMed  Google Scholar 

  • Reichard JF, Motz GT, Puga A (2007) Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1. Nucleic Acids Res 35(21):7074–7086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26(22):3291–3310

    Article  CAS  PubMed  Google Scholar 

  • Roberts AB, Wakefield LM (2003) The two faces of transforming growth factor β in carcinogenesis. Proc Natl Acad Sci U S A 100(15):8621–8623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roush S, Slack FJ (2008) The let-7 family of microRNAs. Trends Cell Biol 18(10):505–516

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Dubaybo H, Ali S, Goncalves P, Kollepara SL, Sethi S, Philip PA, Li Y (2013) Down-regulation of miR-221 inhibits proliferation of pancreatic cancer cells through up-regulation of PTEN, p27kip1, p57kip2, and PUMA. Am J Cancer Res 3(5):465

    PubMed  PubMed Central  Google Scholar 

  • Schram AM, Berger MF, Hyman DM (2017) Precision oncology: charting a path forward to broader deployment of genomic profiling. PLoS Med 14(2):e1002242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sholl LM, Do K, Shivdasani P, Cerami E, Dubuc AM, Kuo FC, Garcia EP, Jia Y, Davineni P, Abo RP (2016) Institutional implementation of clinical tumor profiling on an unselected cancer population. JCI Insight 1(19):e87062

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith AL, Iwanaga R, Drasin DJ, Micalizzi DS, Vartuli RL, Tan A-C, Ford HL (2012) The miR-106b-25 cluster targets Smad7, activates TGF-β signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene 31(50):5162–5171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun HB, Chen X, Ji H, Wu T, Lu HW, Zhang Y, Li H, Li YM (2014) miR-494 is an independent prognostic factor and promotes cell migration and invasion in colorectal cancer by directly targeting PTEN. Int J Oncol 45(6):2486–2494

    Article  CAS  PubMed  Google Scholar 

  • Sureban SM, May R, Qu D, Weygant N, Chandrakesan P, Ali N, Lightfoot SA, Pantazis P, Rao CV, Postier RG (2013) DCLK1 regulates pluripotency and angiogenic factors via microRNA-dependent mechanisms in pancreatic cancer. PLoS One 8(9):e73940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009) Modulation of microRNA processing by p53. Nature 460(7254):529–533

    Article  CAS  PubMed  Google Scholar 

  • Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY, Qi YP, Gysin S, Fernández-del Castillo C, Yajnik V (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425(6960):851–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timar J, Kashofer K (2020) Molecular epidemiology and diagnostics of KRAS mutations in human cancer. Cancer Metastasis Rev 39(4):1029–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turcatel G, Rubin N, El-Hashash A, Warburton D (2012) MIR-99a and MIR-99b modulate TGF-β induced epithelial to mesenchymal plasticity in normal murine mammary gland cells. PLoS One 7(1):e31032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20(5):515–524

    Article  CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 11(5):329–341

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799

    Article  CAS  PubMed  Google Scholar 

  • Vorvis C, Koutsioumpa M, Iliopoulos D (2016) Developments in miRNA gene signaling pathways in pancreatic cancer. Future Oncol 12(9):1135–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhang Y, Li Y, Banerjee S, Liao J, Sarkar FH (2006) Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Mol Cancer Ther 5(3):483–493

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Ach RA, Curry B (2007) Direct and sensitive miRNA profiling from low-input total RNA. RNA 13(1):151–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Chen Y, Sternberg P, Cai J (2008) Essential roles of the PI3 kinase/Akt pathway in regulating Nrf2-dependent antioxidant functions in the RPE. Invest Ophthalmol Vis Sci 49(4):1671–1678

    Article  PubMed  Google Scholar 

  • Wang B, Teng Y, Liu Q (2016) MicroRNA-153 regulates NRF2 expression and is associated with breast carcinogenesis. Clin Lab 62(1–2):39–47

    CAS  PubMed  Google Scholar 

  • Welch HC, Coadwell WJ, Ellson CD, Ferguson GJ, Andrews SR, Erdjument-Bromage H, Tempst P, Hawkins PT, Stephens LR (2002) P-Rex1, a PtdIns (3, 4, 5) P3-and Gβγ-regulated guanine-nucleotide exchange factor for Rac. Cell 108(6):809–821

    Article  CAS  PubMed  Google Scholar 

  • Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM (1985) Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315(6016):239–242

    Article  CAS  PubMed  Google Scholar 

  • Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, Adams JM, Huang DC (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19(11):1294–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu K, Hu G, He X, Zhou P, Li J, He B, Sun W (2013a) MicroRNA-424-5p suppresses the expression of SOCS6 in pancreatic cancer. Pathol Oncol Res 19(4):739–748

    Article  CAS  PubMed  Google Scholar 

  • Wu ZB, Cai L, Lin SJ, Lu JL, Yao Y, Zhou LF (2013b) The miR-92b functions as a potential oncogene by targeting on Smad3 in glioblastomas. Brain Res 1529:16–25

    Article  CAS  PubMed  Google Scholar 

  • Xia H, Ooi LLP, Hui KM (2013) MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology 58(2):629–641

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Lu Z, Liu C, Meng Y, Ma Y, Zhao W, Liu J, Yu J, Chen J (2010) miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res 70(14):6015–6025

    Article  CAS  PubMed  Google Scholar 

  • Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, Srinivasan P, Gao J, Chakravarty D, Devlin SM (2017) Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 23(6):703–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Fan K-J, Sun Q, Chen A-Z, Shen W-L, Zhao Z-H, Zheng X-F, Yang X (2012) Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-β signalling pathway. Nucleic Acids Res 40(18):9286–9297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Jia J, Zhao L, Li X, Xie Q, Chen X, Wang J, Lu F (2016) Down-regulation of microRNA-9 leads to activation of IL-6/Jak/STAT3 pathway through directly targeting IL-6 in HeLa cell. Mol Carcinog 55(5):732–742

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Li J, Wang Q, Meng G, Lv X, Zhou H, Li W, Zhang J (2017) The relationship between microRNAs and the STAT3-related signaling pathway in cancer. Tumor Biol 39(7):1010428317719869

    Article  Google Scholar 

  • Zhang Y, Guo L, Li Y, Feng G-H, Teng F, Li W, Zhou Q (2018) MicroRNA-494 promotes cancer progression and targets adenomatous polyposis coli in colorectal cancer. Mol Cancer 17(1):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W-G, Yu S-N, Lu Z-H, Ma Y-H, Gu Y-M, Chen J (2010) The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 31(10):1726–1733

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Zhang J, Zhang S, Yu D, Chen Y, Liu Q, Shi M, Ni C, Zhu M (2013) Diagnostic and biological significance of microRNA-192 in pancreatic ductal adenocarcinoma. Oncol Rep 30(1):276–284

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, Wang H-R, Yang S, Zhong J-H, Wang T, Wang C, Chen F-Y (2010) Targeting Smad4 links microRNA-146a to the TGF-β pathway during retinoid acid induction in acute promyelocytic leukemia cell line. Int J Hematol 92(1):129–135

    Article  CAS  PubMed  Google Scholar 

  • Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ, Roussel MF (1998) Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12(15):2424–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manjari, K.S., Avvari, S., Khan, I.A., Prasad, D. (2022). MicroRNAs and Cancer Signaling Pathways. In: Prasad, D., Santosh Sushma, P. (eds) Role of MicroRNAs in Cancers. Springer, Singapore. https://doi.org/10.1007/978-981-16-9186-7_2

Download citation

Publish with us

Policies and ethics