Skip to main content

Tuning the Mechanical Properties of the Viscoelastic Materials, for the Improvement of Their Adhesive Performance

  • Conference paper
  • First Online:
Proceedings of the 9th International Conference on Fracture, Fatigue and Wear (FFW 2021 2021)

Abstract

In this paper, the peeling of elastic thin tapes from real-like viscoelastic substrates is investigated by focusing the attention on the damping properties of this kind of materials. We show that the number of relaxation times involved in the physical process, is a key factor to increase the range in frequency where energy dissipation is predominant. This entails several advantages for appropriately managing the detachment process of the elastic tape. Indeed, we show how it is possible to obtain stable release conditions at high loads, so that the peeling force can be employed as control parameter. The practical case of the PMMA (polymethyl methacrylate) is considered as example, as it exhibits high damping at low-frequencies. As a result, stable detachment of the tape occurs at very small peeling velocities, especially with relatively stiff tapes. The results of this study can be exploited in many applications where the adherence of elastic tapes on viscoelastic substrates needs to be suitably designed such as, for example, in bio-medical contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorb SN, Varenberg M (2007) Mushroom-shaped geometry of contact elements in biological adhesive systems. J Adhes Sci Technol 21:1175–1183

    Article  Google Scholar 

  2. Carbone G, Pierro E, Gorb S (2011) Origin of the superior adhesive performance of mushroom-shaped microstructured surfaces. Soft Matter 7:5545–5552

    Article  Google Scholar 

  3. Carbone G, Pierro E (2012) Sticky bio-inspired micropillars: finding the best shape. Small 8(9):1449–1454

    Article  Google Scholar 

  4. Afferrante L, Carbone G (2013) The mechanisms of detachment of mushroom-shaped micro-pillars: from defect propagation to membrane peeling. Macromol React Eng 7:609–615

    Article  Google Scholar 

  5. Gorb S, Jiao Y, Scherge M (2000) Ultrastructural architecture and mechanical properties of attachment pads in Tettigonia viridissima (Orthoptera Tettigoniidae). J Comp Physiol A 186(9):821–831

    Article  Google Scholar 

  6. Jiao Y, Gorb S, Scherge M (2000) Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, Insecta). J Exp Biol 203(12):1887–1895

    Article  Google Scholar 

  7. Afferrante L, Carbone C (2012) Biomimetic surfaces with controlled direction-dependent adhesion. J R Soc Interf 9:3359–3365

    Article  Google Scholar 

  8. Afferrante L, Grimaldi G, Demelio G, Carbone G (2015) Direction-dependent adhesion of micro-walls based biomimetic adhesives. Int J Adhes Adhes 61:93–98

    Article  Google Scholar 

  9. Huber G, Mantz H, Spolenak R, Mecke K, Jacobs K, Gorb SN, Arzt E (2005) Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc Natl Acad Sci USA 102(45):16293–16296

    Article  Google Scholar 

  10. Pesika NS, Tian Y, Zhao B, Rosenberg K, Zeng H, McGuiggan P, Autumn K, Israelachvili JN (2007) Peel-zone model of tape peeling based on the gecko adhesive system. J Adhes 83:383–401

    Article  Google Scholar 

  11. Chen B, Wu P, Gao H (2009) Pre-tension generates strongly reversible adhesion of a spatula pad on substrate. J R Soc Interf 6(2065):529–537

    Article  Google Scholar 

  12. Peng ZL, Chen SH, Soh AK (2010) Peeling behavior of a bio-inspired nano-film on a substrate. Int J Solids Struc 47:1952–1960

    Article  Google Scholar 

  13. Lepore E, Pugno F, Pugno NM (2012) Optimal angles for maximal adhesion in living tokay geckos. J Adhes 88(10):820–830

    Article  Google Scholar 

  14. Sauer RA (2011) The peeling behavior of thin films with finite bending stiffness and the implications on gecko adhesion. J Adhes 87(7–8):624–643

    Article  Google Scholar 

  15. Wu X, Zhang Y, Liu Y, Hu C (2012) Viscoelastic analysis of gecko digital peeling by hyperextension. In: Proceedings of the 2012 IEEE International conference on mechatronics and automation, August 5–8, Chengdu, China

    Google Scholar 

  16. Tian Y, Pesika N, Zeng HB, Rosenberg K, Zhao BX, McGuiggan P, Autumn K, Israelachvili J (2006) Adhesion and friction in gecko toe attachment and detachment. Proc Natl Acad Sci USA 103:19320–19325

    Article  Google Scholar 

  17. Rivlin RS (1944) The effective work of adhesion. Paint Technol 9:215–216

    Google Scholar 

  18. Afferrante L, Carbone G, Demelio G, Pugno N (2013) Adhesion of elastic thin films: double peeling fo tapes versus axisymmetric peeling of membranes. Tribol Lett 52:439–447

    Article  Google Scholar 

  19. Misseroni D, Afferrante L, Carbone G, Pugno NM (2017) Non-linear double-peeling: experimental vs. theoretical predictions. J Adhes 94(1):46–57

    Google Scholar 

  20. Menga N, Afferrante L, Pugno NM, Carbone G (2018) The multiple V-shaped double peeling of elastic thin films from elastic substrates. J Mech Phys Solids 113:56–64

    Article  MathSciNet  Google Scholar 

  21. Putignano C, Afferrante L, Mangialardi L, Carbone G (2014) Equilibrium states and stability of pre-tensioned adhesive tapes. Beilstein J Nanotechnol 5:1725–1731

    Article  Google Scholar 

  22. Pugno NM (2011) The theory of multiple peeling. Int J Fract 171:185–193

    Article  Google Scholar 

  23. Peng Z, Chen S (2015) Peeling behavior of a thin-film on a corrugated surface. Int J Solids Struc 60(61):60–65

    Article  Google Scholar 

  24. Christensen MS, Hargens CW, Nacht S, Gans EH (1977) Viscoelastic properties of intact human skin: instrumentation, hydration effects, and the contribution of the stratum corneum. J Invest Dermatol 69:282–286

    Article  Google Scholar 

  25. Agache PG, Monneur C, Leveque JL, De Rigal J (1980) Mechanical properties and Young’s modulus of human skin in vivo. Arch Dermatol Res 269(3):221–232

    Article  Google Scholar 

  26. Escoffier C, de Rigal J, Rochefort A, Vasselet R, Leveque J-L, Agache PG (1989) Age-related mechanical properties of human skin: an In vivo study. J Invest Dermatol 93:353–357

    Article  Google Scholar 

  27. Pereira JM, Mansour JM, Davis BR (1991) Dynamic measurement of the viscoelastic properties of skin. J Biomech 24(2):157–162

    Article  Google Scholar 

  28. Edwards C, Marks R (1995) Evaluation of biomechanical properties of human skin. Clin Dermatol 13(4):375–380

    Article  Google Scholar 

  29. Silver FH, Freeman JW, CeVoe D (2001) Viscoelastic properties of human skin and processed dermis. Skin Res Technol 7:18–23

    Article  Google Scholar 

  30. Boyer G, Lyon CNRS, Zahouani H, Le Bot A, Laquieze L (2007) In vivo characterization of viscoelastic properties of human skin using dynamic micro-indentation. In: Engineering in medicine and biology society, EMBS 2007. 29th Annual international conference of the IEEE

    Google Scholar 

  31. Chivers RA (2001) Easy removal of pressure sensitive adhesives for skin applications. Int J Adhes Adhes 21:381–388

    Article  Google Scholar 

  32. Renvoise J (2006) Rheological and peeling properties on a viscoelastic substrate. Medical applications. PhD Thesis, University of Pau, France

    Google Scholar 

  33. Renvoise J, Burlot D, Marin G, Derailb C (2007) Peeling of PSAs on viscoelastic substrates: a failure criterion. J Adhes 83:403–416

    Article  Google Scholar 

  34. Renvoise J, Burlot D, Marina G, Deraila C (2009) Adherence performances of pressure sensitive adhesives on a model viscoelastic synthetic film: a tool for the understanding of adhesion on the human skin. Int J Pharm 368(1–2):83–88

    Article  Google Scholar 

  35. Lir I, Haber M, Dodiuk-Kenig H (2007) Skin surface model material as a substrate for adhesion-to-skin testing. J Adhes Sci Technol 21(5):1497–1512

    Article  Google Scholar 

  36. Plaut RH (2010) Two-dimensional analysis of peeling adhesive tape from human skin. J Adhes 86(11):1086–1110

    Article  Google Scholar 

  37. Pierro E (2020) Damping control in viscoelastic beam dynamics. J Vib Control 26(19–20):1753–1764

    Article  MathSciNet  Google Scholar 

  38. Pierro E (2019) Viscoelastic beam dynamics: theoretical analysis on damping mechanisms. In: ECCOMAS Thematic conference on computational methods in structural dynamics and earthquake engineering

    Google Scholar 

  39. Pierro E, Carbone G (2020) Vibration-based identification of mechanical properties of viscoelastic materials. In: Proceedings of ISMA2020, Leuven, Belgium, September 7–9 2020

    Google Scholar 

  40. Afferrante L, Carbone G (2016) The ultratough peeling of elastic tapes from viscoelastic substrates. J Mech Phys Solids 96:223–234

    Article  MathSciNet  Google Scholar 

  41. Pierro E, Afferrante L, Carbone G (2020) On the peeling of elastic tapes from viscoelastic substrates: designing materials for ultratough peeling. Tribol Int 146

    Google Scholar 

  42. Park SW, Schapery RA (1999) Methods of interconversion between linear viscoelastic material functions. Part I-A Numer Meth Based Prony Ser Int J Solids Struct 36:1653–1675

    MATH  Google Scholar 

  43. Peng Z, Chen S (2015) Effect of bending stiffness on the peeling behavior of an elastic thin film on a rigid substrate. Phys Rev E 91:042401

    Google Scholar 

  44. Carbone G, Putignano C (2013) A novel methodology to predict sliding and rolling friction of viscoelastic materials: theory and experiments. J Mech Phys Solids 61:1822–1834

    Article  MathSciNet  Google Scholar 

  45. Christensen RM (1982) Theory of viscoelasticity. Academic Press, New York

    Google Scholar 

  46. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  47. Kovalchick C, Molinari A, Ravichandran G (2014) Rate dependent adhesion energy and nonsteady peeling of inextensible tapes. J Appl Mech 81(4):041016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Pierro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pierro, E., Afferrante, L., Carbone, G. (2022). Tuning the Mechanical Properties of the Viscoelastic Materials, for the Improvement of Their Adhesive Performance. In: Abdel Wahab, M. (eds) Proceedings of the 9th International Conference on Fracture, Fatigue and Wear . FFW 2021 2021. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-8810-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8810-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8809-6

  • Online ISBN: 978-981-16-8810-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics