Skip to main content

A Pathway to Ultra-Lean IC Engine Combustion: The Narrow Throat Pre-chamber

  • Chapter
  • First Online:
Engines and Fuels for Future Transport

Abstract

Stable internal combustion (IC) engine operation with a lean mixture allows improved thermal efficiency and reduced engine-out emissions. However, lean limits in IC engines are challenging due to poor ignitibility. Narrow throat pre-chamber as an ignition source allows extending the lean limit through a robust multi-reactive jet ignition and in-cylinder turbulence generation. These benefits have revived the research interest in such narrow throat configurations of pre-chamber. Metal engine studies offer limited insights into the physics of pre-chamber combustion (PCC). However, when coupled with recent optical engine studies involving high-speed visualization and laser diagnostics, a better understanding of this combustion mode is unlocked. This work attempts to evaluate and summarise the recent advancement in PCC research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal AK, Gadekar S, Singh AP (2017) In-cylinder air-flow characteristics of different intake port geometries using tomographic PIV. Phys Fluids 29(9):095104. https://doi.org/10.1063/1.5000725

    Article  Google Scholar 

  • Aleiferis PG, Hardalupas Y, Taylor AMKP, Ishii K, Urata Y (2004) Flame chemiluminescence studies of cyclic combustion variations and air-to-fuel ratio of the reacting mixture in a lean-burn stratified-charge spark-ignition engine. Combust Flame 136(1–2):72–90. https://doi.org/10.1016/j.combustflame.2003.09.004

    Article  Google Scholar 

  • Alvarez CEC, Couto GE, Roso VR, Thiriet AB, Valle RM (2018) A review of prechamber ignition systems as lean combustion technology for SI engines. Appl Therm Eng 128:107–120. https://doi.org/10.1016/j.applthermaleng.2017.08.118

  • Attard W, Blaxill H (2012) A lean burn gasoline fueled pre-chamber jet ignition combustion system achieving high efficiency and low NOx at part load. https://doi.org/10.4271/2012-01-1146

  • Biswas S (2018) Physics of turbulent jet ignition Sayan Biswas mechanisms and dynamics of ultra-lean combustion

    Google Scholar 

  • Bunce M, Blaxill H, Kulatilaka W, Jiang N (2014) The effects of turbulent jet characteristics on engine performance using a pre-chamber combustor. In: SAE 2014 World Congress and exhibition 1. https://doi.org/10.4271/2014-01-1195

  • Bureshaid K, Shimura R, Feng D, Zhao H, Bunce M (2019) Experimental studies of the effect of ethanol auxiliary fueled turbulent jet ignition in an optical engine

    Google Scholar 

  • Christensen M, Hultqvist A, Johansson B (1999) Demonstrating the multi fuel capability of a homogeneous charge compression ignition engine with variable compression ratio. SAE Technical Papers, no. 724. https://doi.org/10.4271/1999-01-3679

  • Cooper A, Harrington A, Bassett M, Reader S, Bunce M (2020) Application of the passive MAHLE jet ignition system and synergies with Miller cycle and exhaust gas recirculation. SAE Technical Papers 2020-April (April): 1–15. https://doi.org/10.4271/2020-01-0283

  • da Costa RBR, Teixeira AF, Filho FAR, Pujatti FJP, Coronado CJR, Hernández JJ, Lora EES (2019) Development of a homogeneous charge pre-chamber torch ignition system for an SI engine fuelled with hydrous ethanol. Appl Thermal Eng 152(2018):261–74. https://doi.org/10.1016/j.applthermaleng.2019.02.090

  • Dunn-Rankin D, Therkelsen P, Bradley D, Cheng RK, Dunn-Rankin D, Evans RL, Keller J et al (2016) Lean combustion. Lean combustion: technology and control, 2nd edn. Elsevier. https://doi.org/10.1016/C2013-0-13446-0

  • Duong J, Andersson Ö, Hyvönen J, Álden M, Wellander R, Johansson B, Richter M (2014) High speed combustion imaging in a Large Bore Gas engine: the relationship between pre- and main chamber heat release. In: Heat transfer and thermal engineering, V08AT09A022, vol 8A. ASME. https://doi.org/10.1115/imece2013-64286

  • Echeverri Marquez M, Hlaing P, Tang Q, Sampath R, Cenker E, Houidi MB, Magnotti G, Johansson B (2020) High-speed imaging of main chamber combustion of a narrow throat pre-chamber under lean conditions. In: SAE Technical Paper 2020-01-2081, vol 1. SAE International. https://doi.org/10.4271/2020-01-2081

  • Gabele PA, Baugh JO, Black F, Snow R (1985) Characterization of emissions from vehicles using methanol and methanol-gasoline blended fuels. J Air Pollut Control Assoc 35(11):1168–1175. https://doi.org/10.1080/00022470.1985.10466019

    Article  Google Scholar 

  • Gentz GR, Toulson E (2016) Experimental studies of a liquid propane auxiliary fueled turbulent jet igniter in a rapid compression machine. SAE Int J Eng 9(2):2016–01–0708. https://doi.org/10.4271/2016-01-0708

  • Getzlaff J, Pape J, Gruenig C, Kuhnert D, Latsch R (2007) Investigations on pre-chamber spark plug with pilot injection 724:776–90. https://doi.org/10.4271/2007-01-0479

  • Gussak LA, Karpov VP, Tikhonov YV (1979) The application of lag-process in prechamber engines. In: SAE Technical Papers, vol 1. SAE International. https://doi.org/10.4271/790692

  • Gussak LA, Turkish MC, Siegla DC (1975) High chemical activity of incomplete combustion products and a method of prechamber torch ignition for avalanche activation of combustion in internal combustion engines. In: SAE Technical Paper Series, vol 1.https://doi.org/10.4271/750890

  • Heywood JB (1998) Internal combustion engine fundementals. McGraw-Hill

    Google Scholar 

  • Hlaing P, Marquez ME, Shankar VSB, Cenker E, Houidi MB, Johansson B (2019) A study of lean burn pre-chamber concept in a heavy duty engine. SAE Tech Paper Series 1:1–13. https://doi.org/10.4271/2019-24-0107

    Article  Google Scholar 

  • Hlaing P, Marquez ME, Burgos P, Cenker E, Houidi MB, Johansson B (2021) Analysis of fuel properties on combustion characteristics in a narrow-throat pre-chamber engine. SAE International

    Google Scholar 

  • Hlaing P, Marquez ME, Singh E, Almatrafi F, Cenker E, Houidi MB, Johansson B (2020) Effect of pre-chamber enrichment on lean burn pre-chamber spark ignition combustion concept with a narrow-throat geometry. SAE Technical Papers, 1–21. https://doi.org/10.4271/2020-01-0825

  • Kar K, Cheng WK (2010) Speciated engine-out organic gas emissions from a PFI-SI engine operating on ethanol/gasoline mixtures. SAE Int J Fuels Lubr 2(2):91–101. https://doi.org/10.4271/2009-01-2673

    Article  Google Scholar 

  • Kyaw ZH, Watson HC (1992) Hydrogen assisted jet ignition for near elimination of NOx and cyclic variability in the S.I. engine. In: Symposium (International) on combustion 24(1):1449–1455. https://doi.org/10.1016/S0082-0784(06)80169-4

  • Malé Q, Staffelbach G, Vermorel O, Misdariis A, Ravet F, Poinsot T (2019) Large eddy simulation of pre-chamber ignition in an internal combustion engine. Flow Turbulence Combust 103(2):465–483. https://doi.org/10.1007/S10494-019-00026-Y

  • Manente V, Zander CG, Johansson B, Tunestal P, Cannella W (2010) An advanced internal combustion engine concept for low emissions and high efficiency from idle to max load using gasoline partially premixed combustion. SAE Technical Papers. https://doi.org/10.4271/2010-01-2198

    Article  Google Scholar 

  • Maurel A, Ern P, Zielinska BJA, Wesfreid JE (1996) Experimental study of self-sustained oscillations in a confined jet. Phys Rev E 54(4):3643–3651. https://doi.org/10.1103/PhysRevE.54.3643

    Article  Google Scholar 

  • Müller SHR, Böhm B, Gleißner M, Arndt S, Dreizler A (2010) Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF. Appl Phys B: Lasers Opt 100(3):447–452. https://doi.org/10.1007/s00340-010-4134-3

    Article  Google Scholar 

  • Olsen DB, Lisowski JM (2009) Prechamber NOx formation in low BMEP 2-stroke cycle natural gas engines. Appl Therm Eng 29(4):687–694. https://doi.org/10.1016/j.applthermaleng.2008.03.049

    Article  Google Scholar 

  • Rajasegar R, Niki Y, García-Oliver JM, Li Z, Musculus MPB (2021) Fundamental insights on ignition and combustion of natural gas in an active fueled pre-chamber spark-ignition system. Combust Flame 232:111561. https://doi.org/10.1016/J.COMBUSTFLAME.2021.111561

    Article  Google Scholar 

  • Sampath R, Tang Q, Marquez ME, Sharma P, Hlaing P, Houidi MB, Cenker E, Chang J, Johansson B, Magnotti G (2020) Study on the pre-chamber fueling ratio effect on the main chamber combustion using simultaneous PLIF and OH* chemiluminescence imaging. SAE Technical Papers, no. 2020 (September). https://doi.org/10.4271/2020-01-2024

  • Sens M, Günther M, Medicke M, Walther U (2020) Developing a spark-ignition engine with 45 % efficiency. MTZ Worldwide 81(4):46–51. https://doi.org/10.1007/s38313-020-0194-x

    Article  Google Scholar 

  • Shah A (2015) Improving the efficiency of gas engines using pre-chamber ignition

    Google Scholar 

  • Shah A, Tunestal P, Johansson B (2012) Investigation of performance and emission characteristics of a heavy duty natural gas engine operated with pre-chamber spark plug and dilution with excess air and EGR. SAE Int J Engines 5(4):1790–1801. https://doi.org/10.4271/2012-01-1980

    Article  Google Scholar 

  • Shah A, Tunestal P, Johansson B (2014) Effect of relative mixture strength on performance of divided chamber ‘avalanche activated combustion’ ignition technique in a heavy duty natural gas engine. SAE Technical Papers 1. https://doi.org/10.4271/2014-01-1327

  • Shah A, Tunestal P, Johansson B (2015) Effect of pre-chamber volume and nozzle diameter on pre-chamber ignition in heavy duty natural gas engines. In: SAE Technical Paper Series, vol 1. https://doi.org/10.4271/2015-01-0867

  • Shapiro E, Tiney N, Kyrtatos P, Kotzagianni M, Bolla M, Boulouchos K, Tallu G, Lucas G, Weissner M (2019) Experimental and numerical analysis of pre-chamber combustion systems for lean burn gas engines. In: SAE Technical Paper Series. https://doi.org/10.4271/2019-01-0260

  • Tang Q, Sampath R, Marquez ME, Hlaing P, Sharma P, Houidi MB, Cenker E, Chang J, Magnotti G, Johansson B (2020) Simultaneous negative PLIF and OH* chemiluminescence imaging of the gas exchange and flame jet from a narrow throat pre-chamber. In: SAE Technical Papers. SAE International. https://doi.org/10.4271/2020-01-2080

  • Tang Q, Sampath R, Marquez ME, Sharma P, Hlaing P, Houidi MB, Cenker E, Chang J, Magnotti G, Johansson B (2021) Optical diagnostics on the pre-chamber jet and main chamber ignition in the active pre-chamber combustion (PCC). Combust Flame 228:218–235. https://doi.org/10.1016/j.combustflame.2021.02.001

    Article  Google Scholar 

  • Toulson E, Huisjen A, Chen X, Squibb C, Zhu G, Schock H, Attard WP (2012) Visualization of propane and natural gas spark ignition and turbulent jet ignition combustion. SAE Int J Engines 5(4):2012-32-0002. https://doi.org/10.4271/2012-32-0002

  • Toulson E, Schock HJ, Attard WP (2010) A review of pre-chamber initiated jet ignition combustion systems. https://doi.org/10.4271/2010-01-2263

  • Vedula RT, Song R, Stuecken T, Zhu GG, Schock H (2017) Thermal efficiency of a dual-mode turbulent jet ignition engine under lean and near-stoichiometric operation. Int J Engine Res 18(10):1055–1066. https://doi.org/10.1177/1468087417699979

    Article  Google Scholar 

  • Wenig M, Fogla N, Roggendorf K (2019) Towards predictive dual-fuel combustion and pre-chamber modeling for large two-stroke engines in the scope of 0D/1D simulation

    Google Scholar 

  • Wenig M, Roggendorf K (2019) Development of a predictive dual-fuel combustion and prechamber model for large two-stroke engines within a Fast 0D/1D-simulation environment, pp 386–397

    Google Scholar 

  • Yu X, Zhang A, Baur A, Engineer N (2021) The impact of pre-chamber design on part load efficiency and emissions of a Miller cycle light duty gasoline engine, pp 1–16. https://doi.org/10.4271/2021-01-0479.Abstract

  • Zhang A, Yu X, Engineer N, Zhang Y, Pei Y (2020) Numerical investigation of pre-chamber jet combustion in a light-duty gasoline engine. In: ASME 2020 Internal combustion engine division fall technical conference, 1–15. American Society of Mechanical Engineers. https://doi.org/10.1115/ICEF2020-2997

Download references

Acknowledgements

The work is supported by Saudi Aramco Research and Development Centre FUELCOM3 program under Master Research Agreement Number 6600024505/01. FUELCOM (Fuel Combustion for Advanced Engines) is a collaborative research undertaking between Saudi Aramco and King Abdullah University of Science and Technology (KAUST) to address the fundamental aspects of hydrocarbon fuel combustion in engines and develop fuel/engine design tools suitable for advanced combustion modes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ponnya Hlaing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marquez, M.A.E. et al. (2022). A Pathway to Ultra-Lean IC Engine Combustion: The Narrow Throat Pre-chamber. In: Kalghatgi, G., Agarwal, A.K., Leach, F., Senecal, K. (eds) Engines and Fuels for Future Transport. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-8717-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8717-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8716-7

  • Online ISBN: 978-981-16-8717-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics