Skip to main content
Book cover

CRISPR pp 23–92Cite as

Gene Editing Through CRISPR-Based Technology

  • Chapter
  • First Online:
  • 1326 Accesses

Abstract

Realizing arbitrary modification of DNA sequence is a major goal of genetic engineering and an important way for human beings to transform life. Initially, people used homologous recombination that relied on low frequency in nature to edit specific genes. This strategy was successfully applied to some lower organisms, such as yeast, and is still used today. For most organisms, however, the homologous recombination is low frequency in the absence of DNA double-strand breaks, especially for higher organisms, such as mammals. For this reason, a series of gene editing methods based on nucleases have been developed, i.e. simple and efficient gene editing tools, such as zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN). The emergence of CRISPR generated a storm of gene editing, providing people with a simple and efficient approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Horvath, P., et al. 2008. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. Journal of Bacteriology 190: 1401–1412.

    Article  CAS  PubMed  Google Scholar 

  2. Marraffini, L.A., and E.J. Sontheimer. 2010. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Rev. Genet. 11: 181–190.

    Article  CAS  PubMed  Google Scholar 

  3. Marraffini, L.A., and E.J. Sontheimer. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322: 1843–1845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hale, C.R., et al. 2009. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139: 945–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lillestøl, R.K., et al. 2009. CRISPR families of the crenarchaeal genus Sulfolobus: Bidirectional transcription and dynamic properties. Molecular Microbiology 72: 259–272.

    Article  PubMed  CAS  Google Scholar 

  6. Pul, U. et al. Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Mol. Microbiol. 75, 1495–1512 (2010)

    Google Scholar 

  7. Barrangou, R., et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709–1712.

    Article  CAS  PubMed  Google Scholar 

  8. Deveau, H., et al. 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. Journal of Bacteriology 190: 1390–1400.

    Article  CAS  PubMed  Google Scholar 

  9. Girard, S.L., and S. Moineau. 2007. Analysis of two theta-replicating plasmids of Streptococcus thermophilus. Plasmid 58: 174–181.

    Article  CAS  PubMed  Google Scholar 

  10. Kiewiet, R., J. Kok, J.F. Seegers, G. Venema, and S. Bron. 1993. The mode of replication is a major factor in segregational plasmid instability in Lactococcus lactis. Applied and Environment Microbiology 59: 358–364.

    Article  CAS  Google Scholar 

  11. Vaillancourt, K., et al. 2008. Role of galK and galM in galactose metabolism by Streptococcus thermophilus. Applied and Environment Microbiology 74: 1264–1267.

    Article  CAS  Google Scholar 

  12. controlled expression of the green fluorescent protein. 2000. Nieto, C., Fernández de Palencia, P., López, P. & Espinosa, M. Construction of a tightly regulated plasmid vector for Streptococcus pneumoniae. Plasmid 43: 205–213.

    Article  CAS  Google Scholar 

  13. Bolotin, A., B. Quinquis, A. Sorokin, and S.D. Ehrlich. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151: 2551–2561.

    Article  CAS  PubMed  Google Scholar 

  14. Andersson, A.F., and J.F. Banfield. 2008. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320: 1047–1050.

    Article  CAS  PubMed  Google Scholar 

  15. Deveau, H., J.E. Garneau, and S. Moineau. 2010. CRISPR/Cas system and its role in phage-bacteria interactions. Annual Review of Microbiology 64: 475–493.

    Article  CAS  PubMed  Google Scholar 

  16. Horvath, P., and R. Barrangou. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327: 167–170.

    Article  CAS  PubMed  Google Scholar 

  17. Koonin, E. V. & Makarova, K. S. CRISPR-Cas: an adaptive immunity system in prokaryotes. F1000 Biol. Rep. 1, 95 (2009)

    Google Scholar 

  18. Sorek, R., V. Kunin, and P. Hugenholtz. 2008. CRISPR — a widespread system that provides acquired resistance against phages in bacteria and archaea. Nature Rev. Microbiol. 6: 181–186.

    Article  CAS  Google Scholar 

  19. van der Oost, J., M.M. Jore, E.R. Westra, M. Lundgren, and S.J. Brouns. 2009. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends in Biochemical Sciences 34: 401–407.

    Article  PubMed  CAS  Google Scholar 

  20. Mojica, F.J., C. Diez-Villasenor, J. Garcia-Martinez, and E. Soria. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution 60: 174–182.

    Article  CAS  PubMed  Google Scholar 

  21. Pourcel, C., G. Salvignol, and G. Vergnaud. 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151: 653–663.

    Article  CAS  PubMed  Google Scholar 

  22. van der Oost, J., and S.J. Brouns. 2009. RNAi: Prokaryotes get in on the act. Cell 139: 863–865.

    Article  PubMed  CAS  Google Scholar 

  23. Jansen, R., J.D. Embden, W. Gaastra, and L.M. Schouls. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology 43: 1565–1575.

    Article  CAS  PubMed  Google Scholar 

  24. Mojica, F.J., C. Ferrer, G. Juez, and F. Rodriguez-Valera. 1995. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Molecular Microbiology 17: 85–93.

    Article  CAS  PubMed  Google Scholar 

  25. Nakata, A., M. Amemura, and K. Makino. 1989. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. Journal of Bacteriology 171: 3553–3556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Waters, L.S., and G. Storz. 2009. Regulatory RNAs in bacteria. Cell 136: 615–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Makarova, K.S., L. Aravind, N.V. Grishin, I.B. Rogozin, and E.V.A. Koonin. 2002. DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Research 30: 482–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garneau, J.E., et al. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468: 67–71.

    Article  CAS  PubMed  Google Scholar 

  29. Marraffini, L.A., and E.J. Sontheimer. 2010. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463: 568–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Drider, D., and C. Condon. 2004. The continuing story of endoribonuclease III. Journal of Molecular Microbiology and Biotechnology 8: 195–200.

    Article  PubMed  CAS  Google Scholar 

  31. Huntzinger, E., et al. 2005. Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO Journal 24: 824–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nicholson, A.W. 1999. Function, mechanism and regulation of bacterial ribonucleases. FEMS Microbiology Reviews 23: 371–390.

    Article  CAS  PubMed  Google Scholar 

  33. Vogel, J., L. Argaman, E.G. Wagner, and S. Altuvia. 2004. The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide. Current Biology 14: 2271–2276.

    Article  CAS  PubMed  Google Scholar 

  34. Opdyke, J.A., E.M. Fozo, M.R. Hemm, and G. Storz. 2010. RNase III participates in GadY-dependent cleavage of the gadX-gadW mRNA. Journal of Molecular Biology 406: 29–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Aliyari, R., and S.W. Ding. 2009. RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunological Reviews 227: 176–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jinek, M., and J.A. Doudna. 2009. A three-dimensional view of the molecular machinery of RNA interference. Nature 457: 405–412.

    Article  CAS  PubMed  Google Scholar 

  37. Malone, C.D., and G.J. Hannon. 2009. Small RNAs as guardians of the genome. Cell 136: 656–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meister, G., and T. Tuschl. 2004. Mechanisms of gene silencing by double-stranded RNA. Nature 431: 343–349.

    Article  CAS  PubMed  Google Scholar 

  39. Carmell, M.A., and G.J. Hannon. 2004. RNase III enzymes and the initiation of gene silencing. Nature Struct. Mol. Biol. 11: 214–218.

    Article  CAS  Google Scholar 

  40. Condon, C. 2007. Maturation and degradation of RNA in bacteria. Current Opinion in Microbiology 10: 271–278.

    Article  CAS  PubMed  Google Scholar 

  41. Carte, J., R.Y. Wang, H. Li, R.M. Terns, and M.P. Terns. 2008. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes & Development 22: 3489–3496.

    Article  CAS  Google Scholar 

  42. Brouns, S.J., et al. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321: 960–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sharma, C.M., et al. 2010. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464: 250–255.

    Article  CAS  PubMed  Google Scholar 

  44. Hille, F., et al. 2018. The biology of CRISPR-Cas: Backward and forward. Cell 172: 1239–1259.

    Article  CAS  PubMed  Google Scholar 

  45. Makarova, K.S., Y.I. Wolf, and E.V. Koonin. 2018. Classification and nomenclature of CRISPR-Cas systems: Where from here? CRISPR J. 1: 325–336.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Samai, P., et al. 2015. Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity. Cell 161: 1164–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goldberg, G.W., W. Jiang, D. Bikard, and L.A. Marraffini. 2014. Conditional tolerance of temperate phages via transcription-dependent CRISPR–Cas targeting. Nature 514: 633–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jackson, S.A., N. Birkholz, L.M. Malone, and P.C. Fineran. 2019. Imprecise spacer acquisition generates CRISPR-Cas immune diversity through primed adaptation. Cell Host & Microbe 25: 250–260.

    Article  CAS  Google Scholar 

  49. Koonin, E.V., K.S. Makarova, and Y.I. Wolf. 2017. Evolutionary genomics of defense systems in archaea and bacteria. Annual Review of Microbiology 71: 233–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bondy-Denomy, J., A. Pawluk, K.L. Maxwell, and A.R. Davidson. 2013. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493: 429–432.

    Article  CAS  PubMed  Google Scholar 

  51. Pawluk, A., J. Bondy-Denomy, V.H.W. Cheung, K.L. Maxwell, and A.R. Davidson. 2014. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR–Cas system of Pseudomonas aeruginosa. MBio 5: e00896-e914.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Pawluk, A., et al. 2016. Inactivation of CRISPR–Cas systems by anti-CRISPR proteins in diverse bacterial species. Nature Microbiology 1: 16085.

    Article  CAS  PubMed  Google Scholar 

  53. van Belkum, A., et al. 2015. Phylogenetic distribution of CRISPR–Cas systems in antibiotic-resistant Pseudomonas aeruginosa. MBio 6: e01796-e1815.

    PubMed  PubMed Central  Google Scholar 

  54. Makarova, K.S., et al. 2015. An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology 13: 722–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marino, N.D., et al. 2018. Discovery of widespread type I and type V CRISPR–Cas inhibitors. Science 362: 240–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bryson, A. L. et al. Covalent modification of bacteriophage T4 DNA inhibits CRISPR–Cas9. mBio 6, e00648–15 (2015).

    Google Scholar 

  57. Strotskaya, A., et al. 2017. The action of Escherichia coli CRISPR–Cas system on lytic bacteriophages with different lifestyles and development strategies. Nucleic Acids Research 45: 1946–1957.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Vlot, M., et al. 2018. Bacteriophage DNA glucosylation impairs target DNA binding by type I and II but not by type V CRISPR–Cas effector complexes. Nucleic Acids Research 46: 873–885.

    Article  CAS  PubMed  Google Scholar 

  59. Huang, L.H., C.M. Farnet, K.C. Ehrlich, and M. Ehrlich. 1982. Digestion of highly modified bacteriophage DNA by restriction endonucleases. Nucleic Acids Research 10: 1579–1591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chaikeeratisak, V., et al. 2017. Assembly of a nucleus-like structure during viral replication in bacteria. Science 355: 194–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chaikeeratisak, V., et al. 2017. The phage nucleus and tubulin spindle are conserved among large Pseudomonas phages. Cell Reports 20: 1563–1571.

    Article  CAS  PubMed  Google Scholar 

  62. Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).

    Google Scholar 

  63. Gootenberg, J.S., et al. 2017. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356: 438–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tamulaitis, G., et al. 2014. Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus. Molecular Cell 56: 506–517.

    Article  CAS  PubMed  Google Scholar 

  65. Kazlauskiene, M., G. Kostiuk, Č Venclovas, G. Tamulaitis, and V. Siksnys. 2017. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 357: 605–609.

    Article  CAS  PubMed  Google Scholar 

  66. Niewoehner, O., et al. 2017. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature 548: 543–548.

    Article  CAS  PubMed  Google Scholar 

  67. Rouillon, C., Athukoralage, J. S., Graham, S., Grüschow, S. & White, M. F. Control of cyclic oligoadenylate synthesis in a type III CRISPR system. eLife 7, e36734 (2018).

    Google Scholar 

  68. Makarova, K.S., V. Anantharaman, N.V. Grishin, E.V. Koonin, and L. Aravind. 2014. CARF and WYL domains: Ligand-binding regulators of prokaryotic defense systems. Frontiers in Genetics 5: 102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Rostøl, J.T., and L.A. Marraffini. 2019. Non-specific degradation of transcripts promotes plasmid clearance during type III-A CRISPR-Cas immunity. Nature Microbiology 4: 656–662.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Pyenson, N.C., K. Gayvert, A. Varble, O. Elemento, and L.A. Marraffini. 2017. Broad targeting specificity during bacterial type III CRISPR-Cas immunity constrains viral escape. Cell Host & Microbe 22: 343–353.

    Article  CAS  Google Scholar 

  71. Deng, L., R.A. Garrett, S.A. Shah, X. Peng, and Q. She. 2013. A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus. Molecular Microbiology 87: 1088–1099.

    Article  CAS  PubMed  Google Scholar 

  72. Jiang, W., P. Samai, and L.A. Marraffini. 2016. Degradation of phage transcripts by CRISPR-associated RNases enables type III CRISPR-Cas immunity. Cell 164: 710–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Athukoralage, J.S., C. Rouillon, S. Graham, S. Grüschow, and M.F. White. 2018. Ring nucleases deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate. Nature 562: 277–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Borges, A.L., A.R. Davidson, and J. Bondy-Denomy. 2017. The discovery, mechanisms, and evolutionary impact of anti-CRISPRs. Annu. Rev. Virol. 4: 37–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hwang, S., and K.L. Maxwell. 2019. Meet the anti-CRISPRs: Widespread protein inhibitors of CRISPR-Cas systems. CRISPR J. 2: 23–30.

    Article  PubMed  Google Scholar 

  76. Bhoobalan-Chitty, Y., T.B. Johansen, N. Di Cianni, and X. Peng. 2019. Inhibition of type III CRISPR-Cas immunity by an archaeal virus-encoded anti-CRISPR protein. Cell 179: 448–458.

    Article  CAS  PubMed  Google Scholar 

  77. Keller, J., et al. 2007. Crystal structure of AFV3-109, a highly conserved protein from crenarchaeal viruses. Virol. J. 4: 12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Whiteley, A.T., et al. 2019. Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature 567: 194–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Maelfait, J., and J. Rehwinkel. 2017. RECONsidering sensing of cyclic dinucleotides. Immunity 46: 337–339.

    Article  CAS  PubMed  Google Scholar 

  80. Cohen, D., et al. 2019. Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature 574: 691–695.

    Article  CAS  PubMed  Google Scholar 

  81. Wiedenheft, B., S.H. Sternberg, and J.A. Doudna. 2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482: 331–338.

    Article  CAS  PubMed  Google Scholar 

  82. Deltcheva, E., et al. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471: 602–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jinek, M., et al. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gasiunas, G., R. Barrangou, P. Horvath, and V. Siksnys. 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National academy of Sciences of the United States of America 109: E2579–E2586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. von Hippel, P.H., and O.G. Berg. 1989. Facilitated target location in biological systems. Journal of Biological Chemistry 264: 675–678.

    Article  Google Scholar 

  86. Gorman, J., A.J. Plys, M.-L. Visnapuu, E. Alani, and E.C. Greene. 2010. Visualizing one-dimensional diffusion of eukaryotic DNA repair factors along a chromatin lattice. Nature Struct. Mol. Biol. 17: 932–938.

    Article  CAS  Google Scholar 

  87. Wang, F., et al. 2013. The promoter-search mechanism of Escherichia coli RNA polymerase is dominated by three-dimensional diffusion. Nature Struct. Mol. Biol. 20: 174–181.

    Article  CAS  Google Scholar 

  88. Gorman, J., et al. 2012. Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair. Proceedings of the National academy of Sciences of the United States of America 109: E3074–E3083.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sashital, D.G., B. Wiedenheft, and J.A. Doudna. 2012. Mechanism of foreign DNA selection in a bacterial adaptive immune system. Molecular Cell 46: 606–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jiang, W., D. Bikard, D. Cox, F. Zhang, and L.A. Marraffini. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnol. 31: 233–239.

    Article  CAS  Google Scholar 

  91. Pattanayak, V., et al. 2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature Biotechnol. 31: 839–843.

    Article  CAS  Google Scholar 

  92. Hsu, P.D., et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnol. 31: 827–832.

    Article  CAS  Google Scholar 

  93. Fu, Y., et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnol. 31: 822–826.

    Article  CAS  Google Scholar 

  94. McGraw, C.M., R.C. Samaco, and H.Y. Zoghbi. 2011. Adult neural function requires MeCP2. Science 333: 186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shalem, O., et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343: 84–87.

    Article  CAS  PubMed  Google Scholar 

  96. Wang, T., J.J. Wei, D.M. Sabatini, and E.S. Lander. 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343: 80–84.

    Article  CAS  PubMed  Google Scholar 

  97. Maeder, M.L., et al. 2013. CRISPR RNA-guided activation of endogenous human genes. Nature Methods 10: 977–979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Perez-Pinera, P., et al. 2013. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nature Methods 10: 973–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mali, P., et al. 2013. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnol. 31: 833–838.

    Article  CAS  Google Scholar 

  100. Konermann, S., et al. 2013. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500: 472–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Prahallad, A., et al. 2012. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483: 100–103.

    Article  CAS  PubMed  Google Scholar 

  102. Corcoran, R.B., et al. 2012. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discovery 2: 227–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Johannessen, C.M., et al. 2013. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504: 138–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Barretina, J., et al. 2012. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483: 603–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lin, W.M., et al. 2008. Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Research 68: 664–673.

    Article  CAS  PubMed  Google Scholar 

  106. Chang, N., et al. 2013. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Research 23: 465–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cho, S.W., S. Kim, J.M. Kim, and J.S. Kim. 2013. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnology 31: 230–232.

    Article  CAS  PubMed  Google Scholar 

  108. Cong, L., et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Friedland, A.E. et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat. Methods 10, 741–743 (2013).

    Google Scholar 

  110. Hsu, P.D., E.S. Lander, and F. Zhang. 2014. Development and applications of CRISPR–Cas9 for genome engineering. Cell 157: 1262–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hwang, W.Y., et al. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology 31: 227–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ikmi, A., S.A. McKinney, K.M. Delventhal, and M.C. Gibson. 2014. TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nature Communications 5: 5486.

    Article  CAS  PubMed  Google Scholar 

  113. Irion, U., J. Krauss, and C. Nusslein-Volhard. 2014. Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development 141 (24): 4827–4830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jinek, M. et al. RNA-programmed genome editing in human cells. Elife 2, e00471 (2013).

    Google Scholar 

  115. Li, D., et al. 2013. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology 31: 681–683.

    Article  CAS  PubMed  Google Scholar 

  116. Li, W., F. Teng, T. Li, and Q. Zhou. 2013. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology 31: 684–686.

    Article  CAS  PubMed  Google Scholar 

  117. Long, C., J.R. McAnally, J.M. Shelton, A.A. Mireault, R. Bassel-Duby, and E.N. Olson. 2014. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 345: 1184–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ma, Y., X. Zhang, B. Shen, Y. Lu, W. Chen, J. Ma, L. Bai, X. Huang, and L. Zhang. 2014. Generating rats with conditional alleles using CRISPR/Cas9. Cell Research 24: 122–125.

    Article  CAS  PubMed  Google Scholar 

  119. Mali, P., et al. 2013. RNA-guided human genome engineering via Cas9. Science 339: 823–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Niu, Y., B. Shen, Y. Cui, Y. Chen, J. Wang, L. Wang, Y. Kang, X. Zhao, W. Si, W. Li, et al. 2014. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156: 836–843.

    Article  CAS  PubMed  Google Scholar 

  121. Smith, C., L. Abalde-Atristain, C. He, B.R. Brodsky, E.M. Braunstein, P. Chaudhari, Y.Y. Jang, L. Cheng, and Z. Ye. 2014. Efficient and allele-specific genome editing of disease loci in human iPSCs. Molecular Therapy 23: 570–577.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Wu, Y., D. Liang, Y. Wang, M. Bai, W. Tang, S. Bao, Z. Yan, D. Li, and J. Li. 2013. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13: 659–662.

    Article  CAS  PubMed  Google Scholar 

  123. Wu, Y., H. Zhou, X. Fan, Y. Zhang, M. Zhang, Y. Wang, Z. Xie, M. Bai, Q. Yin, D. Liang, et al. 2014. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Research 25: 67–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Yang, H., H. Wang, C.S. Shivalila, A.W. Cheng, L. Shi, and R. Jaenisch. 2013. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154: 1370–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Smith, C., A. Gore, W. Yan, L. Abalde-Atristain, Z. Li, C. He, Y. Wang, R.A. Brodsky, K. Zhang, L. Cheng, et al. 2014. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-Based Genome Editing in Human iPSCs. Cell Stem Cell 15: 12–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Suzuki, K., C. Yu, J. Qu, M. Li, X. Yao, T. Yuan, A. Goebl, S. Tang, R. Ren, E. Aizawa, et al. 2014. Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones. Cell Stem Cell 15: 31–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Veres, A., B.S. Gosis, Q. Ding, R. Collins, A. Ragavendran, H. Brand, S. Erdin, M.E. Talkowski, and K. Musunuru. 2014. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 15: 27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cradick, T.J., E.J. Fine, C.J. Antico, and G. Bao. 2013. CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Research 41: 9584–9592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dean, F.B., S. Hosono, L. Fang, X. Wu, A.F. Faruqi, P. Bray-Ward, Z. Sun, Q. Zong, Y. Du, J. Du, et al. 2002. Comprehensive human genome amplification using multiple displacement amplification. Proceedings of the National academy of Sciences of the United States of America 99: 5261–5266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hosono, S., A.F. Faruqi, F.B. Dean, Y. Du, Z. Sun, X. Wu, J. Du, S.F. Kingsmore, M. Egholm, and R.S. Lasken. 2003. Unbiased whole-genome amplification directly from clinical samples. Genome Research 13: 954–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. San Filippo, J., P. Sung, and H. Klein. 2008. Mechanism of eukaryotic homologous recombination. Annual Review of Biochemistry 77: 229–257.

    Article  CAS  PubMed  Google Scholar 

  132. Baltimore, B.D., P. Berg, M. Botchan, D. Carroll, R.A. Charo, G. Church, J.E. Corn, G.Q. Daley, J.A. Doudna, M. Fenner, et al. 2015. A prudent path forward for genomic engineering and germline gene modification. Science 348: 36–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cyranoski, D. 2015. Ethics of embryo editing divides scientists. Nature 519: 272.

    Article  CAS  PubMed  Google Scholar 

  134. Lanphier, E., F. Urnov, S.E. Haecker, M. Werner, and J. Smolenski. 2015. Don’t edit the human germ line. Nature 519: 410–411.

    Article  CAS  PubMed  Google Scholar 

  135. Bansal, V., and O. Libiger. 2011. A probabilistic method for the detection and genotyping of small indels from population-scale sequence data. Bioinformatics 27: 2047–2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Papathanos, P.A., N. Windbichler, M. Menichelli, A. Burt, and A. Crisanti. 2009. The vasa regulatory region mediates germline expression and maternal transmission of proteins in the malaria mosquito Anopheles gambiae: A versatile tool for genetic control strategies. BMC Molecular Biology 10: 65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Konet, D.S., et al. 2007. Short-hairpin RNA expressed from polymerase III promoters mediates RNA interference in mosquito cells. Insect Molecular Biology 16: 199–206.

    Article  CAS  PubMed  Google Scholar 

  138. Liang, P., Y. Xu, X. Zhang, C. Ding, R. Huang, Z. Zhang, J. Lv, X. Xie, Y. Chen, Y. Li, Y. Sun, Y. Bai, Z. Songyang, W. Ma, C. Zhou, and J. Huang. 2015. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell 6: 363–372.

    Article  CAS  Google Scholar 

  139. Kang, X., W. He, Y. Huang, Q. Yu, Y. Chen, X. Gao, X. Sun, and Y. Fan. 2016. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. Journal of Assisted Reproduction and Genetics 33: 581–588.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Shen, B., et al. 2013. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Research 23: 720–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Miura, H., et al. 2015. CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA. Science and Reports 5: 12799.

    Article  CAS  Google Scholar 

  142. Bishop KA, et al. CRISPR/Cas9-mediated insertion of loxP sites in the mouse Dock7 gene provides an effective alternative to use of targeted embryonic stem cells. G3 Bethesda Md. 2016;6:2051–61.

    Google Scholar 

  143. Jacobi, A.M., et al. 2017. Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes. Methods. https://doi.org/10.1016/j.ymeth.2017.03.021.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Frum, T., et al. 2013. Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst. Developmental Cell 25: 610–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Macaulay, I.C., et al. 2015. G&T-seq: Parallel sequencing of single-cell genomes and transcriptomes. Nature Methods 12: 519–522.

    Article  CAS  PubMed  Google Scholar 

  146. Yan, L., et al. 2013. Single-cell RNA-seq profiling of human preimplantation embryos and embryonic stem cells. Nature Structural & Molecular Biology 20: 1131–1139.

    Article  CAS  Google Scholar 

  147. Joung, J., et al. 2017. Genome-scale CRISPR–Cas9 knockout and transcriptional activation screening. Nat. Protocols 12: 828–863.

    Article  CAS  PubMed  Google Scholar 

  148. Trapnell, C., et al. 2014. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology 32: 381–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Setty, M., et al. 2016. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nature Biotechnology 34: 637–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rizvi, A.H., et al. 2017. Single-cell topological RNA-seq analysis reveals insights into cellular differentiation and development. Nature Biotechnology 35: 551–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shin, J., et al. 2015. Single-cell RNA-Seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17: 360–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Furchtgott, L.A., Melton, S., Menon, V. & Ramanathan, S. Discovering sparse transcription factor codes for cell states and state transitions during development. eLife 6, e20488 (2017).

    Google Scholar 

  153. Kretzschmar, K., and F.M. Watt. 2012. Lineage tracing. Cell 148: 33–45.

    Article  CAS  PubMed  Google Scholar 

  154. Woodworth, M.B., K.M. Girskis, and C.A. Walsh. 2017. Building a lineage from single cells: Genetic techniques for cell lineage tracking. Nature Reviews Genetics 18: 230–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Howe, D.G., et al. 2013. ZFIN, the Zebrafish Model Organism Database: Increased support for mutants and transgenics. Nucleic Acids Research 41: D854–D860.

    Article  CAS  PubMed  Google Scholar 

  156. Wilson, S.W., M. Brand, and J.S. Eisen. 2002. Patterning the zebrafish central nervous system. Results and Problems in Cell Differentiation 40: 181–215.

    Article  CAS  PubMed  Google Scholar 

  157. McKenna, A. et al. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353, aaf7907 (2016).

    Google Scholar 

  158. Grandel, H., J. Kaslin, J. Ganz, I. Wenzel, and M. Brand. 2006. Neural stem cells and neurogenesis in the adult zebrafish brain: Origin, proliferation dynamics, migration and cell fate. Developmental Biology 295: 263–277.

    Article  CAS  PubMed  Google Scholar 

  159. Junker, J.P., et al. 2017. Massively parallel clonal analysis using CRISPR/Cas9 induced genetic scars. Preprint at bioRxiv. https://doi.org/10.1101/056499.

    Article  Google Scholar 

  160. Schmidt, S.T., S.M. Zimmerman, J. Wang, S.K. Kim, and S.R. Quake. 2017. Quantitative analysis of synthetic cell lineage tracing using nuclease barcoding. ACS Synthetic Biology 6: 936–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Klein, A.M., et al. 2015. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161: 1187–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zilionis, R., et al. 2017. Single-cell barcoding and sequencing using droplet microfluidics. Nature Protocols 12: 44–73.

    Article  CAS  PubMed  Google Scholar 

  163. Alemany, A., et al. 2018. Whole-organism clone tracing using single-cell sequencing. Nature. https://doi.org/10.1038/nature25969.

    Article  PubMed  Google Scholar 

  164. Raj, B., et al. 2018. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nature Biotechnology. https://doi.org/10.1038/nbt.4103.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Gantz, V.M., et al. 2015. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National academy of Sciences of the United States of America 112: E6736–E6743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hammond, A., et al. 2016. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Biotechnology 34: 78–83.

    Article  CAS  PubMed  Google Scholar 

  167. Burt, A. 2003. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proceedings of the Royal Society of London, Series B: Biological Sciences 270: 921–928.

    Article  CAS  Google Scholar 

  168. Deredec, A., H.C. Godfray, and A. Burt. 2011. Requirements for effective malaria control with homing endonuclease genes. Proceedings of the National academy of Sciences of the United States of America 108: E874–E880.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Hamilton, W.D. Extraordinary sex ratios. A sex-ratio theory for sex linkage and inbreeding has new implications in cytogenetics and entomology. Science 156, 477–488 (1967).

    Google Scholar 

  170. Galizi, R., et al. 2014. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nature Communications 5: 3977.

    Article  CAS  PubMed  Google Scholar 

  171. Murray, S.M., S.Y. Yang, and M. Van Doren. 2010. Germ cell sex determination: A collaboration between soma and germline. Current Opinion in Cell Biology 22: 722–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Curtis, C.F. 1968. Possible use of translocations to fix desirable genes in insect pest populations. Nature 218: 368–369.

    Article  CAS  PubMed  Google Scholar 

  173. KaramiNejadRanjbar, M., et al. 2018. Consequences of resistance evolution in a Cas9-based sex conversion-suppression gene drive for insect pest management. Proceedings of the National academy of Sciences of the United States of America 115: 6189–6194.

    Article  CAS  Google Scholar 

  174. National Academies of Sciences, Engineering & Medicine. Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values (National Academies Press, Washington, DC, 2016).

    Google Scholar 

  175. Dominguez, A.A., W.A. Lim, and L.S. Qi. 2016. Beyond editing: Repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nature Reviews Molecular Cell Biology 17: 5–15.

    Article  CAS  PubMed  Google Scholar 

  176. Komor, A.C., A.H. Badran, and D.R. Liu. 2017. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168: 20–36.

    Article  CAS  PubMed  Google Scholar 

  177. Nielsen, A.A., and C.A. Voigt. 2014. Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Molecular Systems Biology 10: 763–763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Gander, M.W., J.D. Vrana, W.E. Voje, J.M. Carothers, and E. Klavins. 2017. Digital logic circuits in yeast with CRISPR-dCas9 NOR gates. Nature Communications 8: 15459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Pawluk, A., et al. 2016. Naturally occurring off-switches for CRISPR–Cas9. Cell 167: 1829–1838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Rauch, B.J., et al. 2017. Inhibition of CRISPR–Cas9 with bacteriophage proteins. Cell 168: 150–158.

    Article  CAS  PubMed  Google Scholar 

  181. Harrington, L.B., et al. 2017. A broad-spectrum inhibitor of CRISPR-Cas9. Cell 170: 1224-1233.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Li, J., Xu, Z., Chupalov, A. & Marchisio, M. A. Anti-CRISPR-based biosensors in the yeast S. cerevisiae. J. Biol. Eng. 12, 11 (2018).

    Google Scholar 

  183. Basgall, E.M., et al. 2018. Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae. Microbiology 164: 464–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Liu, X.S., et al. 2018. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172: 979-992.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Gao, Y., et al. 2016. Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nature Methods 13: 1043–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kipniss, N.H., et al. 2017. Engineering cell sensing and responses using a GPCR-coupled CRISPR-Cas system. Nature Communications 8: 2212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Gantz, V. M. & Bier, E. Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348, 442–444 (2015).

    Google Scholar 

  188. Kyrou, K., et al. 2018. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nature Biotechnology 36: 1062–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Burstein, D., et al. 2017. New CRISPR–Cas systems from uncultivated microbes. Nature 542: 237–241.

    Article  CAS  PubMed  Google Scholar 

  190. Koonin, E.V., K.S. Makarova, and F. Zhang. 2017. Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology 37: 67–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Yamano, T., et al. 2016. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165: 949–962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Yang, H., P. Gao, K.R. Rajashankar, and D.J. Patel. 2016. PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR–Cas endonuclease. Cell 167: 1814-1828.e1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Zetsche, B., et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163: 759–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Oakes, B.L., D.C. Nadler, and D.F. Savage. 2014. Protein engineering of Cas9 for enhanced function. Methods in Enzymology 546: 491–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Oakes, B.L., et al. 2016. Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Nature Biotechnology 34: 646–651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Yamano, T., et al. 2017. Structural basis for the canonical and non-canonical PAM recognition by CRISPR–Cpf1. Molecular Cell 67: 633-645.e633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Jaitin, D.A., et al. 2016. Cell 167: 1883-1896.e15.

    Article  CAS  PubMed  Google Scholar 

  198. Adamson, B., et al. 2016. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167: 1867-1882.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Dixit, A., et al. 2016. Cell 167: 1853-1866.e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Datlinger, P., et al. 2017. Nature Methods 14: 297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Stoeckius, M., et al. 2017. Nature Methods 14: 865–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Peterson, V.M., et al. 2017. Nature Biotechnology 35: 936–939.

    Article  CAS  PubMed  Google Scholar 

  203. Stoeckius, M., et al. 2018. Genome Biology 19: 224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Koonin, E.V., and K.S. Makarova. 2017. Mobile genetic elements and evolution of CRISPR-Cas systems: All the way there and back. Genome Biology and Evolution 9: 2812–2825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Broecker, F., and K. Moelling. 2019. Evolution of immune systems from viruses and transposable elements. Frontiers in Microbiology 10: 51.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Kapitonov, V.V., K.S. Makarova, and E.V. Koonin. 2016. ISC, a novel group of bacterial and archaeal DNA transposons that encode Cas9 homologs. Journal of Bacteriology 198: 797–807.

    Article  CAS  PubMed Central  Google Scholar 

  207. Shmakov, S., et al. 2015. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Molecular Cell 60: 385–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Krupovic, M., P. Béguin, and E.V. Koonin. 2017. Casposons: Mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery. Current Opinion in Microbiology 38: 36–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Peters, J.E., K.S. Makarova, S. Shmakov, and E.V. Koonin. 2017. Recruitment of CRISPR-Cas systems by Tn7-like transposons. Proceedings of the National academy of Sciences of the United States of America 114: E7358–E7366.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Peters, J. E. Tn7. Microbiol. Spectr. 2, MDNA3–0010–2014 (2014).

    Google Scholar 

  211. Choi, K.Y., J.M. Spencer, and N.L. Craig. 2014. The Tn7 transposition regulator TnsC interacts with the transposase subunit TnsB and target selector TnsD. Proceedings of the National academy of Sciences of the United States of America 111: E2858–E2865.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Wiedenheft, B., et al. 2011. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proceedings of the National academy of Sciences of the United States of America 108: 10092–10097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Luo, M.L., et al. 2016. The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers. Nucleic Acids Research 44: 7385–7394.

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A. M. Mobile DNA III (2014).

    Google Scholar 

  215. Xu, H., S. Jia, and H. Xu. 2019. Therapeutic potential of exosomes in autoimmune diseases. Clinical Immunology 205: 116–124.

    Article  CAS  PubMed  Google Scholar 

  216. Rokad, D., H. Jin, V. Anantharam, A. Kanthasamy, and A.G. Kanthasamy. 2019. Exosomes as mediators of chemical-induced toxicity. Curr Environ Health Rep. 6 (3): 73–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Wang, Y., Z. Liu, X. Wang, Y. Dai, X. Li, S. Gao, et al. 2019. Rapid and quantitative analysis of exosomes by a chemiluminescence immunoassay using superparamagnetic iron oxide particles. Journal of Biomedical Nanotechnology 15 (8): 1792–1800.

    Article  CAS  PubMed  Google Scholar 

  218. Gao, M.L., F. He, B.C. Yin, and B.C. Ye. 2019. A dual signal amplification method for exosome detection based on DNA dendrimer self-assembly. The Analyst 144 (6): 1995–2002.

    Article  CAS  PubMed  Google Scholar 

  219. Houalla, R., F. Devaux, A. Fatica, J. Kufel, D. Barrass, C. Torchet, et al. 2006. Microarray detection of novel nuclear RNA substrates for the exosome. Yeast 23 (6): 439–454.

    Article  CAS  PubMed  Google Scholar 

  220. Wang, Q., L. Zou, X. Yang, X. Liu, W. Nie, Y. Zheng, et al. 2019. Direct quantification of cancerous exosomes via surface plasmon resonance with dual gold nanoparticle-assisted signal amplification. Biosensors & Bioelectronics 135: 129–136.

    Article  CAS  Google Scholar 

  221. Rest, J.S., et al. 2013. Nonlinear fitness consequences of variation in expression level of a eukaryotic gene. Molecular Biology and Evolution 30: 448–456.

    Article  CAS  PubMed  Google Scholar 

  222. Bauer, C.R., S. Li, and M.L. Siegal. 2015. Essential gene disruptions reveal complex relationships between phenotypic robustness, pleiotropy, and fitness. Molecular Systems Biology 11: 773–773.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Keren, L., et al. 2016. Massively parallel interrogation of the effects of gene expression levels on fitness. Cell 166: 1282-1294.e18.

    Article  CAS  PubMed  Google Scholar 

  224. Dykhuizen, D.E., A.M. Dean, and D.L. Hartl. 1987. Metabolic flux and fitness. Genetics 115: 25–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Dekel, E., and U. Alon. 2005. Optimality and evolutionary tuning of the expression level of a protein. Nature 436: 588–592.

    Article  CAS  PubMed  Google Scholar 

  226. Alper, H., C. Fischer, E. Nevoigt, and G. Stephanopoulos. 2005. Tuning genetic control through promoter engineering. Proceedings of the National academy of Sciences of the United States of America 102: 12678–12683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Perfeito, L., Ghozzi, S., Berg, J., Schnetz, K. & Lässig, M. Nonlinear fitness landscape of a molecular pathway. PLoS Genet. 7, e1002160 (2011).

    Google Scholar 

  228. Michaels, Y.S., et al. 2019. Precise tuning of gene expression levels in mammalian cells. Nature Communications 10: 818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Patwardhan, R.P., et al. 2009. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nature Biotechnology 27: 1173–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Horlbeck, M. A. et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. eLife 5, e19760 (2016).

    Google Scholar 

  231. Mateescu, B., et al. 2017. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - An ISEV position paper. J. Extracell. Vesicles. https://doi.org/10.1080/20013078.2017.1286095.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Zomer, A., et al. 2015. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161: 1046–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Hung, M.E., and J.N. Leonard. 2016. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery. J. Extracell. Vesicles. https://doi.org/10.3402/jev.v5.31027.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Wang, H., et al. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153: 910–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Wang, L., et al. 2015. Large genomic fragment deletion and functional gene cassette knock-in via Cas9 protein mediated genome editing in one-cell rodent embryos. Science and Reports 5: 17517.

    Article  CAS  Google Scholar 

  236. Zhou, J., et al. 2014. Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting. FEBS Journal 281: 1717–1725.

    Article  CAS  PubMed  Google Scholar 

  237. Fujii, W., Kawasaki, K., Sugiura, K. & Naito, K. Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease. Nucleic Acids Res. 41, e187 (2013).

    Google Scholar 

  238. Hara, S. et al. Microinjection-based generation of mutant mice with a double mutation and a 0.5 Mb deletion in their genome by the CRISPR/Cas9 system. J. Reprod. Dev. 62, 531–536 (2016).

    Google Scholar 

  239. Seruggia, D., A. Fernandez, M. Cantero, P. Pelczar, and L. Montoliu. 2015. Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR-Cas9-mediated mutagenesis. Nucleic Acids Research 43: 4855–4867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Yen, S.T., M. Zhang, J.M. Deng, S.J. Usman, C.N. Smith, J. Parker-Thornburg, P.G. Swinton, J.F. Martin, and R.R. Behringer. 2014. Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes. Developmental Biology 393: 3–9.

    Article  CAS  PubMed  Google Scholar 

  241. Han, Y., O.J. Slivano, C.K. Christie, A.W. Cheng, and J.M. Miano. 2015. CRISPR-Cas9 genome editing of a single regulatory element nearly abolishes target gene expression in mice–brief report. Arteriosclerosis, Thrombosis, and Vascular Biology 35: 312–315.

    Article  CAS  PubMed  Google Scholar 

  242. Sung, Y.H., et al. 2014. Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Research 24: 125–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Zhang, L. et al. Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9. PLoS ONE 10, e0120396 (2015).

    Google Scholar 

  244. Bolukbasi, M.F., A. Gupta, and S.A. Wolfe. 2016. Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nature Methods 13: 41–50.

    Article  CAS  PubMed  Google Scholar 

  245. Hsu, P.D., et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology 31: 827–832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. He, X. et al. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res. 44, e85 (2016).

    Google Scholar 

  247. Lombardo, A., et al. 2007. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nature Biotechnology 25: 1298–1306.

    Article  CAS  PubMed  Google Scholar 

  248. Lin, S., Staahl, B. T., Alla, R. K. & Doudna, J. A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 3, e04766 (2014).

    Google Scholar 

  249. Zwaka, T.P., and J.A. Thomson. 2003. Homologous recombination in human embryonic stem cells. Nature Biotechnology 21: 319–321.

    Article  CAS  PubMed  Google Scholar 

  250. Hockemeyer, D., et al. 2009. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature Biotechnology 27: 851–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Liu, Y., and M. Rao. 2011. Gene targeting in human pluripotent stem cells. Methods in Molecular Biology 767: 355–367.

    Article  CAS  PubMed  Google Scholar 

  252. Hockemeyer, D., and R. Jaenisch. 2016. Induced pluripotent stem cells meet genome editing. Cell Stem Cell 18: 573–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Song, H., S.K. Chung, and Y. Xu. 2010. Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell Stem Cell 6: 80–89.

    Article  CAS  PubMed  Google Scholar 

  254. Merkle, F.T., et al. 2015. Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus. Cell Reports 11: 875–883.

    Article  CAS  PubMed  Google Scholar 

  255. Canny, M.D., et al. 2018. Nature Biotechnology 36: 95–102.

    Article  CAS  PubMed  Google Scholar 

  256. Cuella-Martin, R., et al. 2016. Molecular Cell 64: 51–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Doench, J.G., et al. 2016. Nature Biotechnology 34: 184–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Tsai, S.Q., et al. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology 33: 187–197.

    Article  CAS  PubMed  Google Scholar 

  259. Koike-Yusa, H., Y. Li, E.P. Tan, M.D.C. Velasco-Herrera, and K. Yusa. 2014. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nature Biotechnology 32: 267–273.

    Article  CAS  PubMed  Google Scholar 

  260. van Overbeek, M., et al. 2016. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Molecular Cell 63: 633–646.

    Article  PubMed  CAS  Google Scholar 

  261. Tan, E.P., Y. Li, M.D.C. Velasco-Herrera, K. Yusa, and A. Bradley. 2015. Off-target assessment of CRISPR-Cas9 guiding RNAs in human iPS and mouse ES cells. Genesis 53: 225–236.

    Article  CAS  PubMed  Google Scholar 

  262. Piras, F., et al. 2017. Lentiviral vectors escape innate sensing but trigger p53 in human hematopoietic stem and progenitor cells. EMBO Molecular Medicine 9: 1198–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Zacharias, J., L.G. Romanova, J. Menk, and N.J. Philpott. 2011. p53 inhibits adeno-associated viral vector integration. Human Gene Therapy 22: 1445–1451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Haapaniemi, E., S. Botla, J. Persson, B. Schmierer, and J. Taipale. 2018. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nature Medicine 24: 927–930.

    Article  CAS  PubMed  Google Scholar 

  265. Ihry, R.J., et al. 2018. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nature Medicine 24: 939–946.

    Article  CAS  PubMed  Google Scholar 

  266. Schiroli, G., et al. 2019. Precise gene editing preserves hematopoietic stem cell function following transient p53-mediated DNA damage response. Cell Stem Cell 24: 551-565.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Giacomelli, A.O., et al. 2018. Mutational processes shape the landscape of TP53 mutations in human cancer. Nature Genetics 50: 1381–1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Z., Wang, P., Liu, JL. (2022). Gene Editing Through CRISPR-Based Technology. In: Zhang, Z., Wang, P., Liu, JL. (eds) CRISPR. Springer, Singapore. https://doi.org/10.1007/978-981-16-8504-0_2

Download citation

Publish with us

Policies and ethics