Skip to main content

Designer Probiotics in Metabolic Disorders

  • Chapter
  • First Online:
Probiotic Research in Therapeutics

Abstract

Microbes play several vital physiological and metabolic functions in human body. It has been observed that alteration in human gut microbiota has resulted in various chronic and acute metabolic diseases such as obesity, hypertension, neurogenic diseases (Parkinson’s and Alzheimer), diabetes, etc. Hence, re-establishment of microbial population, with the help of commensal probiotic bacteria, to improve the gut dysbiosis, has always been the topic of interest. Currently, with the growing knowledge of synthetic biology, genetic engineering, metabolic engineering, and other advanced tools, researchers are attempting to design recombinant probiotic strains, which are capable of carrying therapeutic molecules to the target site. These designer probiotics will enhance the efficacy of the carried molecule without showing any side effects. However, currently, the consumer acceptance of such “Designer Probiotics” is very low. The current chapter envisages a brief introduction about designer probiotics, their developmental strategies, applications of designer probiotics in regulating metabolic diseases, and the challenges in the path of their development discussing examples of few designer probiotic strains. Overall, this chapter intends to provide insight towards the development of designer probiotics to improve the human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amaral AC, Silva ON, Mundim NC et al (2012) Predicting antimicrobial peptides from eukaryotic genomes: in silico strategies to develop antibiotics. Peptides 37:301–308

    Article  CAS  PubMed  Google Scholar 

  • Andreu D, Torrent M (2015) Prediction of bioactive peptides using artificial neural networks. Methods Mol Biol 1260:101–118

    Article  CAS  PubMed  Google Scholar 

  • Asemi Z, Zare Z, Shakeri H et al (2013) Effect of multispecies probiotic supplements on metabolic profiles, Hs-CRP, and oxidative stress in patients with Type 2 diabetes. Ann Nutr Metab 63:1–9

    Article  CAS  PubMed  Google Scholar 

  • Atarashi K, Tanoue T, Shima T et al (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337–341

    Article  CAS  PubMed  Google Scholar 

  • Atarashi K, Tanoue T, Oshima K et al (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500:232–236

    Article  CAS  PubMed  Google Scholar 

  • Auron A, Brophy PD (2012) Hyperammonemia in review: pathophysiology, diagnosis, and treatment. Pediatr Nephrol 27:207–222

    Article  PubMed  Google Scholar 

  • Aydin A, Ahmed K, Zaman I et al (2015) Recurrent urinary tract infections in women. Int Urogynecol J 26:795–804

    Article  PubMed  Google Scholar 

  • Benbouziane B, Ribelles P, Aubry C et al (2013) Development of a stress-inducible controlled expression (SICE) system in Lactococcus lactis for the production and delivery of therapeutic molecules at mucosal surfaces. J Biotechnol 168:120–129

    Article  CAS  PubMed  Google Scholar 

  • Bergmann S, Curzon G, Friedel J et al (1974) The absorption and metabolism of a standard oral dose of levodopa in patients with Parkinsonism. Br J Clin Pharmacol 1:417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besseling-van der Vaart I, Heath MD, Guagnini F, Kramer MF (2016) In vitro evidence for efficacy in food intolerance for the multispecies probiotic formulation EcologicR tolerance (Syngut™). Benef Microbes 7:111–118

    Article  CAS  PubMed  Google Scholar 

  • Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464:1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braat H (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4:754–759

    Article  CAS  PubMed  Google Scholar 

  • Canani RB, Costanzo MD, Leone L et al (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 17:1519–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Wang R, Li X-F, Wang R-L (2011) Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome. Br J Nutr 107:1429–1434

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Guo L, Zhang Y et al (2014) Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest 124:3391–3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke SF, Murphy EF, O’Sullivan O et al (2014) Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63:1913–1920

    Article  CAS  PubMed  Google Scholar 

  • Dao MC, Everard A, Aron-Wisnewsky J et al (2016) Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65:426–436

    Article  CAS  PubMed  Google Scholar 

  • De Palma G, Collin SM, Bercik P (2014) The microbiota-gut-brain axis in functional gastrointestinal disorders. Gut Microb 5:419

    Article  Google Scholar 

  • De Palma G, Lynch MDJ, Lu J et al (2017) Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci Transl Med 9:6397

    Article  CAS  Google Scholar 

  • Dethlefsen L, Relman DA (2010) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 108:4554–4561

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Cerbo A, Palmieri B, Aponte M et al (2016) Mechanisms and therapeutic effectiveness of lactobacilli. J Clin Pathol 69:187–203

    Article  PubMed  Google Scholar 

  • Duan FF, Liu JH, March JC (2015) Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes. Diabetes 64:1794–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durrer KE, Allen MS, Von Herbing IH (2017) Genetically engineered probiotic for the treatment of phenylketonuria (PKU); assessment of a novel treatment in vitro and in the PAHenu2 mouse model of PKU. PLoS One 12:e0176286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El Hage R, Hernandez-Sanabria E, Van de Wiele T (2017) Emerging trends in “smart probiotics”: functional consideration for the development of novel health and industrial applications. Front Microbiol 8:1889

    Article  PubMed  PubMed Central  Google Scholar 

  • Engels C, Ruscheweyh H-J, Beerenwinkel N et al (2016) The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front Microbiol 7:713

    Article  PubMed  PubMed Central  Google Scholar 

  • Focareta A, Paton JC, Morona R et al (2006) A recombinant probiotic for treatment and prevention of cholera. Gastroenterology 130:1688–1695

    Article  CAS  PubMed  Google Scholar 

  • Francino MP (2016) Antibiotics and the human gut microbiome: dysbiosis and accumulation of resistances. Front Microbiol 6:1543

    Article  PubMed  PubMed Central  Google Scholar 

  • Gauffin Cano P, Santacruz A, Moya Á, Sanz Y (2012) Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity. PLoS One 7:e41079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glaser P, Frangeul L, Buchrieser C et al (2001) Comparative genomics of Listeria species. Science 2001(294):849–852

    Article  Google Scholar 

  • Govender M, Choonara YE, Kumar P et al (2013) A review of the advancements in probiotic delivery: conventional vs non-conventional formulations for intestinal flora supplementation. AAPS Pharmsci Tech 15:29–43

    Article  CAS  Google Scholar 

  • Graf D, Di Cagno R, Fåk F et al (2015) Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis 26:26164

    PubMed  Google Scholar 

  • Gray MJ, Freitag NE, Boor KJ (2006) How the bacterial pathogen listeria monocytogenes mediates the switch from environmental Dr Jekyll to pathogenic Mr Hyde. Infect Immun 74:2505–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamon M, Bierne H, Cossart P (2006) Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol 4:423–434

    Article  CAS  PubMed  Google Scholar 

  • Hand TW (2016) The role of the microbiota in shaping infectious immunity. Trends Immunol 37:647–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heerze LD, Kelm MA, Talbot JA, Armstrong GD (1994) Oligosaccharide sequences attached to an inert support (SYNSORB) as potential therapy for antibiotic associated diarrhea and pseudomembranous colitis. J Infect Dis 169:1291–1296

    Article  CAS  PubMed  Google Scholar 

  • Hill C, Guarner F, Reid G et al (2014) Expert consensus document: the international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506

    Article  PubMed  Google Scholar 

  • Hoffmann RF, McLernon S, Feeney A et al (2013) A single point mutation in the listerial betL σ(a)-dependent promoter leads to improved osmo- and chill-tolerance and a morphological shift at elevated osmolarity. Bioengineered 4:401–407

    Article  PubMed  PubMed Central  Google Scholar 

  • Isabella VM, Ha BN, Castillo MJ et al (2018) Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol 36:857–864

    Article  CAS  PubMed  Google Scholar 

  • Jafarnejad S, Saremi S, Jafarnejad F, Arab A (2016) Effects of a multispecies probiotic mixture on glycemic control and inflammatory status in women with gestational diabetes: a randomized controlled clinical trial. J Nutr Metab 2016:5190846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kajander K, Myllyluoma E, Rajilic-Stojanovic M et al (2008) Clinical trial: multispecies probiotic supplementation alleviates the symptoms of irritable bowel syndrome and stabilizes intestinal microbiota. Aliment Pharmacol Ther 27:48–57

    Article  CAS  PubMed  Google Scholar 

  • Kasińska MA, Drzewoski J (2015) Effectiveness of probiotics in Type 2 diabetes: a meta-analysis. Pol Arch Intern Med 125:803–813

    Article  Google Scholar 

  • Kim S-W, Park K-Y, Kim B et al (2013) Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in highfat diet-fed mice through enhancement of adiponectin production. Biochem Biophys Res Commun 431:258–263

    Article  CAS  PubMed  Google Scholar 

  • Klaenhammer TR, Kleerebezem M, Kopp MV, Rescigno M (2012) The impact of probiotics and prebiotics on the immune system. Nat Rev Immunol 12:728–734

    Article  CAS  PubMed  Google Scholar 

  • Klöppel G, Löhr M, Habich K et al (1985) Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res 4:110–125

    PubMed  Google Scholar 

  • Kobyliak N, Conte C, Cammarota G et al (2016) Probiotics in prevention and treatment of obesity: a critical view. Nutr Metab 13:14

    Article  CAS  Google Scholar 

  • Koning CJ, Jonkers DM, Stobberingh EE et al (2008) The effect of a multispecies probiotic on the intestinal microbiota and bowel movements in healthy volunteers taking the antibiotic amoxicillin. Am J Gastroenterol 103:178–189

    Article  CAS  PubMed  Google Scholar 

  • Kristensen NB, Bryrup T, Allin KH et al (2016) Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med 8:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar M (2016) Bioengineered probiotics as a new hope for health and diseases: potential and prospects: an overview. Future Microbiol 11:585–600

    Article  CAS  PubMed  Google Scholar 

  • Kurtz CB, Millet YA, Puurunen MK et al (2019) An engineered E coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci Transl Med 11:eaau7975

    Article  CAS  PubMed  Google Scholar 

  • Kwon H-K, Lee C-G, So J-S et al (2010) Generation of regulatory dendritic cells and CD4CFoxp3C T cells by probiotics administration suppresses immune disorders. Proc Natl Acad Sci U S A 107:2159–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langdon A, Crook N, Dantas G (2016) The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med 8:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lecuit M (2005) Understanding how Listeria monocytogenes targets and crosses host barriers. Clin Microbiol Infect 11:430–436

    Article  CAS  PubMed  Google Scholar 

  • Leonard JV, Morris AAM (2002) Urea cycle disorders. Semin Neonatol Sn 7:27–35

    Article  CAS  PubMed  Google Scholar 

  • Li X, Song D, Leng SX (2015) Link between type 2 diabetes and Alzheimer’s disease: from epidemiology to mechanism and treatment. Clin Interv Aging 10:549

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Lin S, Vanhoutte PM et al (2016) Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in apoe−/−mice clinical. Circulation 133:2434–2446

    Article  CAS  PubMed  Google Scholar 

  • Liu KF (2016) Oral administration of Lactococcus lactis expressing heat shock protein 65 and tandemly repeated IA2P2 prevents type 1 diabetes in NOD mice. Immunol Lett 174:28–36

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Liu J, Hou J et al (2014) Oral administration of recombinant Lactococcus lactis expressing HSP65 and tandemly repeated P277 reduces the incidence of type I diabetes in non-obese diabetic mice. PLoS One 9:e105701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Macpherson AJ, de Agüero MG, Ganal-Vonarburg SC (2017) How nutrition and the maternal microbiota shape the neonatal immune system. Nat Rev Immunol 17:508–517

    Article  CAS  PubMed  Google Scholar 

  • Marotz CA, Zarrinpar A (2016) Treating obesity and metabolic syndrome with fecal microbiota transplantation. Yale J Biol Med 89:383–388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martín R, Miquel S, Benevides L et al (2017) Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: a step forward in the use of F prausnitzii as a next-generation probiotic. Front Microbiol 8:1226

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattila-Sandholm T, Myllärinen P, Crittenden R et al (2002) Technological challenges for future probiotic foods. Int Dairy J 12:173–182

    Article  CAS  Google Scholar 

  • Maxmen A (2017) Living therapeutics: scientists genetically modify bacteria to deliver drugs. Nat Med 23:5–7

    Article  CAS  PubMed  Google Scholar 

  • Merritt EA et al (2002) Characterization and crystal structure of a high-affinity pentavalent receptor binding inhibitor for cholera toxin and E coli heat labile enterotoxin. J Am Chem Soc 124:8818–8824

    Article  CAS  PubMed  Google Scholar 

  • Metchnikoff E (1907) Lactic acid as inhibiting intestinal putrefaction. The prolongation of life: optimistic studies. W Heinemann, London, pp 161–183

    Google Scholar 

  • Miettinen M, Vuopio-Varkila J, Varkila K (1996) Production of human tumor necrosis factor alpha, interleukin-6: and interleukin-10 is induced by lactic acid bacteria. Infect Immun 64:5403–5405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Minnen LP, Timmerman HM, Lutgendorff F et al (2007) Modification of intestinal flora with multispecies probiotics reduces bacterial translocation and improves clinical course in a rat model of acute pancreatitis. Surgery 141:470–480

    Article  PubMed  Google Scholar 

  • Mitchell JJ, Trakadis YJ, Scriver CR (2011) Phenylalanine hydroxylase deficiency. Genetics Med 13:697

    Article  CAS  Google Scholar 

  • Mulvey G, Kitov PI, Marcato P et al (2001) Glycan mimicry as a basis for antiinfective drugs. Biochimie 83:841–847

    Article  CAS  PubMed  Google Scholar 

  • Nazemian V, Shadnoush M, Manaheji H, Zaringhalam J (2016) Probiotics and inflammatory pain: a literature review study Middle East. J Rehabil Health Stud 3:e36087

    Google Scholar 

  • Nishikawa K et al (2002) A therapeutic agent with oriented carbohydrates for treatment of infections by Shiga toxin-producing Escherichia coli O157:H7. Proc Natl Acad Sci U S A 99:7669–7674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikawa K et al (2005) Identification of the optimal structure required for a Shiga toxin neutralizer with oriented carbohydrates to function in the circulation. J Infect Dis 191:2097–2105

    Article  CAS  PubMed  Google Scholar 

  • Patel R, DuPont HL (2015) New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clin Infect Dis 60:S108–S121

    Article  PubMed  PubMed Central  Google Scholar 

  • Paton AW (2012) Bioengineered microbes in disease therapy. Trends Mol Med 18:417–425

    Article  CAS  PubMed  Google Scholar 

  • Paton AW, Morona R, Paton JC (2000) A new biological agent for treatment of Shiga toxigenic Escherichia coli infections and dysentery in humans. Nat Med 6:265–270

    Article  CAS  PubMed  Google Scholar 

  • Paton AW, Jennings MP, Morona R et al (2005) Recombinant probiotics for treatment and prevention of enterotoxigenic Escherichia coli diarrhea. Gastroenterology 128:1219–1228

    Article  CAS  PubMed  Google Scholar 

  • Paton AW, Morona R, Paton JC (2006) Designer probiotics for prevention of enteric infections. Nat Rev Microbiol 4:193–200

    Article  CAS  PubMed  Google Scholar 

  • Paton JC, Paton AW (1998) Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin Microbiol Rev 11(3):450–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plaza-Diaz J (2014) Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics. World J Gastroenterol 20:15,632

    Article  CAS  Google Scholar 

  • Proctor LM (2011) The human microbiome project in 2011 and beyond. Cell Host Microbe 10:287–291

    Article  CAS  PubMed  Google Scholar 

  • Quévrain E, Maubert MA, Michon C et al (2016) Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65:415–425

    Article  PubMed  CAS  Google Scholar 

  • Raghuwanshi S, Misra S, Sharma S et al (2015) Indian perspective for probiotics: a review. Indian J Dairy Sci 68(3):195–205

    Google Scholar 

  • Raghuwanshi S, Misra S, Sharma S et al (2018) Probiotics: nutritional therapeutic tool. J Probiotics Health 6(1):1–8

    Article  Google Scholar 

  • Reichold A, Brenner SA, Spruss A et al (2014) Bifidobacterium adolescentis protects from the development of nonalcoholic steatohepatitis in a mouse model. J Nutr Biochem 25:118–125

    Article  CAS  PubMed  Google Scholar 

  • Reid G, Brigidi P, Burton JP et al (2015) Microbes central to human reproduction. Am J Reprod Immunol 73:1–11

    Article  PubMed  Google Scholar 

  • Reijnders D, Goossens GH, Hermes GD et al (2016) Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo controlled trial. Cell Metab 24:63–74

    Article  CAS  PubMed  Google Scholar 

  • Rekdal VM, Bess EN, Bisanz JE et al (2019) Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism. Science 364:eaau6323

    Article  PubMed Central  Google Scholar 

  • Robert S, Gysemans C, Takiishi T et al (2014) Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice. Diabetes 63:2876–2887

    Article  CAS  PubMed  Google Scholar 

  • Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:600

    Article  CAS  Google Scholar 

  • Round JL, Lee SM, Li J et al (2011) The toll like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332:974–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkissian CN, Shao Z, Blain F et al (1999) A different approach to treatment of phenylketonuria: phenylalanine degradation with recombinant phenylalanine ammonia lyase. Proc Natl Acad Sci 96:2339–2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saulnier DM, Ringel Y, Heyman MB et al (2013) The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes 4:17–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Savcheniuk O, Kobyliak N, Kondro M et al (2014) Short-term periodic consumption of multiprobiotic from childhood improves insulin sensitivity, prevents development of nonalcoholic fatty liver disease and adiposity in adult rats with glutamate-induced obesity. BMC Complement Altern Med 14:247

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneeberger M, Everard A, Gómez-Valadés AG et al (2015) Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep 5:16,643

    Article  CAS  Google Scholar 

  • Schwenger EM, Tejani AM, Loewen PS (2015) Probiotics for preventing urinary tract infections in adults and children. Cochrane Database Syst Rev 12:CD008772

    Google Scholar 

  • Scott KP, Antoine JM, Midtvedt T, van Hemert S (2015) Manipulating the gut microbiota to maintain health and treat disease. Microb Ecol Health Dis 26:25877

    PubMed  Google Scholar 

  • Seegers JF (2002) Lactobacilli as live vaccine delivery vectors: progress and prospects. Trends Biotechnol 20:508–515

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheehan VM, Sleator RD, Fitzgerald GF, Hill C (2006) Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118. Appl Environ Microbiol 72:2170–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheehan VM, Sleator RD, Hill C, Fitzgerald GF (2007) Improving gastric transit, gastrointestinal persistence and therapeutic efficacy of the probiotic strain Bifidobacterium breve UCC2003. Microbiology 153:3563–3571

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Mal G, Bissi L, Marotta F (2016) The holy grail of designer probiotics: the probiotics with multiple health benefits. J Gastrointest Dig Syst 6:2

    Google Scholar 

  • Singh B, Mal G, Marotta F (2017) Designer probiotics: paving the way to living therapeutics. Trends Biotechnol 35:679–682

    Article  CAS  PubMed  Google Scholar 

  • Sleator RD, Hill C (2006) Patho-biotechnology: using bad bugs to do good things. Curr Opin Biotechnol 17:211–216

    Article  CAS  PubMed  Google Scholar 

  • Sleator RD, Hill C (2007a) Patho-biotechnology; using bad bugs to make good bugs better. Sci Prog 90:1–14

    Article  CAS  PubMed  Google Scholar 

  • Sleator RD, Hill C (2007b) Food reformulations for improved health: a potential risk for microbial food safety? Med Hypotheses 69:1323–1324

    Article  PubMed  Google Scholar 

  • Sleator RD, Hill C (2008) New frontiers in probiotic research. Lett Appl Microbiol 46:143–147

    Article  CAS  PubMed  Google Scholar 

  • Sleator RD, Gahan CG, Abee T, Hill C (1999) Identification and disruption of BetL, a secondary glycine betaine transport system linked to the salt tolerance of Listeria monocytogenes LO28. Appl Environ Microbiol 65:2078–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sleator RD, Gahan CGMB, Hill C (2000) Analysis of the role of betL in contributing to the growth and survival of listeria monocytogenes LO28. Int J Food Microbiol 60:261–268

    Article  CAS  PubMed  Google Scholar 

  • Sleator RD, Francis GA, O’Beirne D et al (2003a) Betaine and carnitine uptake systems in Listeria monocytogenes affect growth and survival in foods and during infection. J Appl Microbiol 95:839–846

    Article  CAS  PubMed  Google Scholar 

  • Sleator RD, Wood JM, Hill C (2003b) Transcriptional regulation and posttranslational activity of the betaine transporter BetL in Listeria monocytogenes are controlled by environmental salinity. J Bacteriol 185:7140–7144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokol H, Pigneur B, Watterlot L et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:16,731–16,736

    Article  CAS  Google Scholar 

  • Somabhai CA, Raghuvanshi R, Nareshkumar G (2016) Genetically engineered Escherichia coli Nissle 1917 synbiotics reduce metabolic effects induced by chronic consumption of dietary fructose. PLoS One 11:e0164860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steenbergen L, Sellaro R, van Hemert S et al (2015) A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun 48:258–264

    Article  PubMed  Google Scholar 

  • Steidler L, Hans W, Schotte L et al (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289:1352–1355

    Article  CAS  PubMed  Google Scholar 

  • Stritzker J, Szalay AA (2013) Single-agent combinatorial cancer therapy. Proc Natl Acad Sci U S A 110:8325–8326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmerman HM, Koning CJM, Mulder L et al (2004) Monostrain, multistrain and multispecies probiotics—a comparison of functionality and efficacy. Int J Food Microbiol 96:219–233

    Article  CAS  PubMed  Google Scholar 

  • Tlaskalova-Hogenova H, Stepankova R, Hudcovic T et al (2004) Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett 93:97–108

    Article  CAS  PubMed  Google Scholar 

  • Troy EB, Kasper DL (2010) Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front Biosci 15:25–34

    Article  CAS  PubMed Central  Google Scholar 

  • Udayappan S, Manneras-Holm L, Chaplin-Scott A et al (2016) Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. NPJ Biofilms Microbiomes 2:16,009

    Article  Google Scholar 

  • Van Belle TL, Coppieters KT, Von Herrath MG (2011) Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 91:79–118

    Article  PubMed  CAS  Google Scholar 

  • Venturi A, Gionchetti P, Rizzello F et al (1999) Impact on the composition of the faecal flora by a new probiotic preparation: preliminary data on maintenance treatment of patients with ulcerative colitis. Aliment Pharmacol Ther 13:1103–1108

    Article  CAS  PubMed  Google Scholar 

  • Vinay K, Abbas AK, Fauston N (2005) Robbins and Cotran pathologic basis of disease, vol 8. Saunders, Elsevier, pp 208–221

    Google Scholar 

  • Wallace CJK, Milev R (2017) The effects of probiotics on depressive symptoms in humans: a systematic review. Ann General Psychiatry 16:14

    Article  Google Scholar 

  • Wang L, Gamez A, Sarkissian CN et al (2005) Structure-based chemical modification strategy for enzyme replacement treatment of phenylketonuria. Mol Genet Metab 86:134–140

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Tang H, Zhang C et al (2014) Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J 9:1–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Sun G, Feng T et al (2019) Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res 29:787–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe M et al (2004) Oral therapeutic agents with highly clustered globotriose for treatment of Shiga toxigenic Escherichia coli infections. J Infect Dis 189:360–368

    Article  CAS  PubMed  Google Scholar 

  • Wemekamp-Kamphuis HH, Wouters JA, Sleator RD et al (2002) Multiple deletions of the osmolyte transporters BetL, Gbu, and OpuC of listeria monocytogenes affect virulence and growth at high osmolarity. Appl Environ Microbiol 68:4710–4716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wexler HM (2007) Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20:593–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO/FAO (2006) Probiotics in food health and nutritional properties and guidelines for evaluation. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Yan F, Polk DB (2011) Probiotics and immune health. Curr Opin Gastroenterol 27:496–501

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang G, Jiang Y, Yang W et al (2015) Effective treatment of hypertension by recombinant Lactobacillus plantarum expressing angiotensin converting enzyme inhibitory peptide. Microb Cell Factories 14:202

    Article  CAS  Google Scholar 

  • Yang J-Y, Lee Y-S, Kim Y et al (2016) Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunol 10:104–116

    Article  PubMed  CAS  Google Scholar 

  • Yin Y-N (2010) Effects of four Bifidobacteria on obesity in high-fat diet induced rats. World J Gastroenterol 16:3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon JS, Sohn W, Lee OY et al (2013) Effect of multispecies probiotics on irritable bowel syndrome: a randomized, double-blind, placebo-controlled trial. J Gastroenterol Hepatol 29:52–59

    Article  Google Scholar 

  • Zhao X, Li Z, Gu B, Frankel FR (2005) Pathogenicity and immunogenicity of a vaccine strain of Listeria monocytogenes that relies on a suicide plasmid to supply an essential gene product. Infect Immun 73:5789–5798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng JH, Nguyen VH, Jiang SN et al (2017) Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci Transl Med 2017:9

    Google Scholar 

  • Zopf D, Roth S (1996) Oligosaccharide anti-infective agents. Lancet 347:1017–1021

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishi Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, R., Raghuwanshi, S. (2022). Designer Probiotics in Metabolic Disorders. In: Chopra, K., Bishnoi, M., Kondepudi, K.K. (eds) Probiotic Research in Therapeutics. Springer, Singapore. https://doi.org/10.1007/978-981-16-8444-9_12

Download citation

Publish with us

Policies and ethics