Skip to main content

Metal–Organic Frameworks (MOFs) as Versatile Detoxifiers for Chemical Warfare Agents (CWAs)

  • Chapter
  • First Online:
Metal-Organic Frameworks (MOFs) as Catalysts

Abstract

Chemical warfare agents (CWAs) are considered as one of the most fatal weapons potentially strong to cause extreme toxicity and disastrous effects to a large population. They were used as weapons for the first time in 1915 during World War I (WWI) when Ypres, a Belgian city, was attacked by the German military. Sulfur mustard, a dreadful chemical warfare agent, which was used in the subsequent battles became the major cause of chemical casualties in WWI. These chemicals imposed harsh after-effects even years after they were deployed. Nerve agents and vesicants are particularly known to be extremely harmful, among the various classes of CWAs; even short-term exposure to these chemicals can lead to severe after-effects. Above all, CWAs also release various volatile organic compounds (VOCs), which comprise an important group of air pollutants, which can potentially cause serious health effects to mankind including mutagenesis and carcinogenesis. In view of these consequences, capture and subsequent degradation of these agents to less or completely non-toxic by-products are of paramount importance. Being highly toxic, degradation of hazardous CWAs through catalytic reactions such as hydrolysis, methanolysis, and oxidation has been proved to be one of the best methods that can eventually transform them into less-toxic products. Research communities throughout the globe have been making relentless attempts on developing novel catalytic materials in this field. Metal-organic frameworks (MOFs), being specifically designed making use of organic linkers and inorganic nodes, offer scope for fabrication of a versatile range of materials with great diversity in structural and chemical properties, characterized by their high stability, crystalline, and ordered nature with significantly large surface areas, high porosity, and free volume. The presence of freely available metal sites and/or numerous functional moieties on the surface of the MOFs allows adsorption or capture of certain toxic CWAs with high selectivity and efficiency via various interactions which may be either H-bonds, ionic or Coulombic interactions, coordination bonds, Π-Π* interactions, etc. or a combination of these. Moreover, further functionalization with coordinating or conjugating agents also imparts them good catalytic properties. The pore properties along with the specificity of the functional groups in the MOFs together ascribe to the subsequent catalytic degradation of highly toxic CWAs and their simulants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4-MAP:

Methylaminopyridine

ACh:

Acetyl choline

AchE:

Acetyl cholinesterase

ALD:

Atomic layer deposition

CEES:

2-Chloroethyl ethyl sulfide

CEESO:

2-Chloroethyl ethyl sulfoxide

CEESO2:

2-Chloroethyl ethyl sulfone

CN:

2-Chloroacetophenone

CR:

Dibenz (b,f)-1,43-oxazepine

CS:

2-(2-Chlorobenzylidene) malononitrile

CWAs:

Chemical Warfare Agents

DCP:

Diethyl chloro phosphonate

DESH:

Diisopropylamino ethyl mercaptan

DIFP:

Diisopropylfluorophosphate

DMNP:

Dimethyl 4-nitrophenyl phosphate

EA-2192:

S-[2(diisopropyla mino) ethyl]methyl phosphonic acid

EMPA:

Ethyl methyl phosphonic acid

GB:

Sarin

GD:

Soman

H4TBAPy:

4,4′,4″,4′′′-(Pyrene-1,3,6,8-tetrayl) tetrabenzoic acid

HD:

Sulfur mustard

HN1:

Bis-(2-chloroethyl)-ethyl-amine

HN2:

2-Chloroethyl)-methyl-amine

HN3:

Tris-(2-chloroethyl)-amine

ID50:

Lethal Dose 50

LED:

Light-emitting diode

LSD:

Lysergic acid diethylamide

MOFs:

Metal-organic Frameworks

NADH:

Nicotinamide adenine dinucleotide hydrogenase

OMS:

Open metal sites

OP:

Organophosphorus

PA-6:

Polyamide-6 nanofiber

PAN:

Polyacrylonitrile

PCN:

Porous coordination networks

PEI:

Polyethyleneimine

PFIB:

Perfluoro isobutylene

PIM:

Polymers of intrinsic microporosity

PMPA:

Pinacolyl methyl phosphonic acid

PNPDPP:

P-nitrophenyl diphenyl phosphate

POPs:

Porous organic polymers

SBUs:

Secondary building units

TA:

Tabun

THC:

Tetrahydrocannabinol

TOF:

Turn Over Frequency

VOCs:

Volatile Organic Compounds

VX:

S-{2-[Di(propan-2-yl) amino] ethyl} O-ethyl methylphosphonothioate

WW I:

World War I

WW II:

World War II

Zr-MOFs:

Zirconium-based Metal–Organic Frameworks

References

  1. Szinicz L (2005) History of chemical and biological warfare agents. Toxicology 214:167–181

    Article  CAS  PubMed  Google Scholar 

  2. Coleman K (2005) A history of chemical warfare. Palgrave Macmillan, New York

    Book  Google Scholar 

  3. Bajgar J, Fusek J, Kassa J, Kuca K, Jun D (2020) Chapter 3—Global impact of chemical warfare agents used before and after 1945. In: Gupta RC (ed) Handbook of toxicology of chemical warfare agents. Academic Press, San Diego, pp 17–24

    Google Scholar 

  4. Kuca K, Pohanka M (2010) Chemical warfare agents. EXS 100:543–558

    CAS  PubMed  Google Scholar 

  5. Barea E, Montoro C, Navarro JA (2014) Toxic gas removal—metal-organic frameworks for the capture and degradation of toxic gases and vapours. Chem Soc Rev 43:5419–5430

    Article  CAS  PubMed  Google Scholar 

  6. Huang NY, Gu J, Chen D, Xu Q (2021) MOF/hydrogel catalysts for efficient nerve-agent degradation. Chem Catalysis 1(3):502–504

    Article  Google Scholar 

  7. Wagner GW, Peterson GW, Mahle JJ (2012) Effect of adsorbed water and surface hydroxyls on the hydrolysis of VX, GD, and HD on titania materials: the development.of self-decontaminating paints. Ind Eng Chem Res 51:3598–3603

    Article  CAS  Google Scholar 

  8. Bandosz TJ, Laskoski M, Mahle J et al (2012) Reactions of VX, GD, and HD with Zr(OH)4: near instantaneous decontamination of VX. J Phys Chem C 116:11606–11614

    Article  CAS  Google Scholar 

  9. Dong J, Hu J, Chi Y, et al (2017) A polyoxoniobate-polyoxovanadate double-anion catalyst for simultaneous oxidative and hydrolytic decontamination of chemical warfare agent simulants. Angew Chem Int Ed 56:4473–4477

    Google Scholar 

  10. Hou Y, An H, Zhang Y et al (2018) Rapid destruction of two types of chemical warfare agent simulants by hybrid polyoxomolybdates modified by carboxylic acid ligands. ACS Catal 8:6062–6069

    Article  CAS  Google Scholar 

  11. Bobbitt NS, Mendonca ML, Howarth AJ et al (2017) Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chem Soc Rev 46:3357–3385

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y, Howarth AJ, Vermeulen NA et al (2017) Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks. Coord Chem Rev 346:101–111

    Article  CAS  Google Scholar 

  13. Yaghi OM, Keeffe MO, Ockwig NW et al (2003) Reticular synthesis and the design of new materials. Nature 423:705–714

    Article  CAS  PubMed  Google Scholar 

  14. Bai Y, Dou Y, Xie LH, Rutledge W et al (2016) Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev 45:2327–2367

    Article  CAS  PubMed  Google Scholar 

  15. Larsson A, Qvarnström J, Lindberg S (2021) In vitro human skin decontamination efficacy of MOF-808 in decontamination lotion following exposure to the nerve agent VX. Toxicol Lett 339:32–38

    Article  CAS  PubMed  Google Scholar 

  16. Wu H, Yildirim T, Zhou W (2013) Exceptional mechanical stability of highly porous zirconium metal-organic framework UiO-66 and its important implications. J Phys Chem Lett 4:925–930

    Article  CAS  PubMed  Google Scholar 

  17. Monsdloch JE, Katz MJ, Planas N et al (2014) Are Zr6-based MOFs water stable? Linker hydrolysis versus capillary-force driven channel collapse. Chem Commun 50:8944–8946

    Article  Google Scholar 

  18. Katz MJ, Moon SY, Mondloch JE et al (2015) Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH2. Chem Sci 6:2286–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Isl1amoglu T, Ortuno MA, Proussaloglou E, et al (2018) Presence versus proximity: the role of pendant amines in the catalytic hydrolysis of a nerve agent simulant. Angew Chem Int Ed 57:1949–1953

    Google Scholar 

  20. Dwyer DB, Dugan N, Hoffman N et al (2018) Chemical protective textiles of UiO-66-integrated PVDF composite fibers with rapid heterogeneous decontamination of toxic organophosphates. ACS Appl Mater Interfaces 10:34585

    Article  CAS  PubMed  Google Scholar 

  21. Yao A, Jiao X, Chen D et al (2019) Photothermally enhanced detoxification of chemical warfare agent simulants using bioinspired core-shell dopamine-melanin@ metal-organic frameworks and their fabrics. ACS Appl Mater Interfaces 11:7927–7935

    Article  CAS  PubMed  Google Scholar 

  22. Kalaj M et al (2019) Spray-coating of catalytically active MOF–polythiourea through postsynthetic polymerization. Angew Chem Int Ed 58(8):2336

    Article  CAS  Google Scholar 

  23. Lee DT, Zhao J, Peterson GW et al (2017) Catalytic “MOF-cloth” formed via directed supramolecular assembly of UiO-66-v crystals on atomic layer deposition-coated textiles for rapid degradation of chemical warfare agent simulants. Chem Mater 29:4894–4903

    Article  CAS  Google Scholar 

  24. Zhao J, Lee DT, Yaga RW et al (2016) Ultra-fast degradation of chemical warfare agents using MOF-nanofiber kebabs. Angew Chem Int Ed 55:13224–13228

    Article  CAS  Google Scholar 

  25. Lee DT, Zhao J, Oldham CJ et al (2017) UiO-66-NH2 metal-organic framework (MOF) nucleation on TiO2, ZnO, and Al2O3 atomic layer deposition-treated polymer fibers: role of metal oxide on MOF growth and catalytic hydrolysis of chemical warfare agent simulants. ACS Appl Mater Interfaces 9:44847–44855

    Article  CAS  PubMed  Google Scholar 

  26. Ganesan K, Raza SK, Vijayaraghavan R (2010) Chemical warfare agents. J Pharm Bio Allied Sci 2:166–178

    Article  CAS  Google Scholar 

  27. López-Muñoz F, Alamo C, Guerra JA et al (2008) The development of neurotoxic agents as chemical weapons during the National Socialist period in Germany. Rev Neurol 47:99–106

    PubMed  Google Scholar 

  28. Rowell M, Kehe K, Balszuweit F, Thiermann H (2009) The chronic effects of sulfur mustard exposure. Toxicology 263:9–11

    Article  CAS  PubMed  Google Scholar 

  29. Young RA, Bast CB (2009) Chapter 8: mustards and vesicants. Gupta RC (ed) Handbook of toxicology of chemical warfare agents. Academic Press,San Diego, p 69

    Google Scholar 

  30. Smith WJ (2009) Therapeutic options to treat sulfur mustard poisoning—the road ahead. Toxicology 263:70–73

    Article  CAS  PubMed  Google Scholar 

  31. Kehe K, Thiermann H, Balszuweit F et al (2009) Acute effects of sulfur mustard injury—Munich experiences. Toxicology 263:3–8

    Article  CAS  PubMed  Google Scholar 

  32. Jyothi MS, Nagarajan V, Chandiramouli R (2020) Benzyl alcohol and 2-methyldecalin vapor adsorption studies on ß-bismuthene sheets—A DFT outlook. Chem Phys Lett 755

    Google Scholar 

  33. Bartlett JG, Sifton DW, Kelly GL (eds) (2002) PDR guide to biological and chemical warfare response, 1st edn. Thompson Healthcare Publications, Montvale, NJ, pp 1–404

    Google Scholar 

  34. Borowitz JL, Isom GE, Baskin SI (2001) Chemical warfare agents: toxicity at low levels. CRC Press, Boca Raton, p 305

    Google Scholar 

  35. Cummings TF (2004) The treatment of cyanide poisoning. Occup Med 54:82–85

    Article  CAS  Google Scholar 

  36. Zellner T, Eyer F (2020). Choking agents and chlorine gas—History, pathophysiology, clinical effects and treatment. Toxicol Lett 320:73–79

    Google Scholar 

  37. Hoenig SL (2007) Choking agents. Compendium of chemical warfare agents. Springer

    Google Scholar 

  38. Beswick FW (1983) Chemical agents used in riot control and warfare. Hum Toxicol 2:247

    Article  CAS  PubMed  Google Scholar 

  39. Fusek J, Bajgar J, Kassa J et al (2009) Psychotomimetic agent BZ(3-quinuclidinyl benzilate). In: Gupta RC (ed) Handbook of toxicology of chemical warfare agents. Elsevier, London, pp 135–142

    Chapter  Google Scholar 

  40. Costa LG, Furlong, C, Gupta RC (eds) (2009) Handbook of toxicology of chemical warfare agents. Elsevier-Academic Press, Amsterdam, pp 1023–1031

    Google Scholar 

  41. Ketchum JS (2006) Chemical warfare: secrets almost forgotten. ChemBooks, Santa Rosa, CA

    Google Scholar 

  42. Goodman E (2010). Historical contributions to the human toxicology of atropine: behavioural effects of high doses of atropine and military uses of atropine to produce intoxication. Eximdyne, Wentzville, Missouri, p 62

    Google Scholar 

  43. Nichols DE (2004) Hallucinogens. Pharmacol Ther 101:131–181

    Article  CAS  PubMed  Google Scholar 

  44. Holze F, Vizeli P, Ley L, Müller F, Dolder P, Stocker M et al (2021) Acute dose-dependent effects of lysergic acid diethylamide in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology 46(3):537–544

    Article  CAS  PubMed  Google Scholar 

  45. Kinston W, Rosser R (1974) Disaster effects on mental and physical state. J Psychosom Res 18:437–456

    Article  CAS  PubMed  Google Scholar 

  46. Bajgar J, Fusek J, Kassa J et al (2009) Chemical aspects of pharmacological prophylaxis against nerve agent poisoning. Curr Med Chem 16:2977–2986

    Article  CAS  PubMed  Google Scholar 

  47. Bajgar J (2005) Complex view on poisoning with nerve agents and organophosphates. Acta Medica (Hradec Kralove) 48:3–21

    Article  CAS  Google Scholar 

  48. Shakarjian MP, Heck DE, Gray JP et al (2010) Mechanisms mediating the vesicant actions of sulfur mustard after cutaneous exposure. Toxicol Sci 114:5–19

    Article  CAS  PubMed  Google Scholar 

  49. Kehe K, Szinicz L (2005) Medical aspects of sulphur mustard poisoning. Toxicology 214:198–209

    Article  CAS  PubMed  Google Scholar 

  50. Lavoie J, Srinivasan S, Nagarajan R (2011) Using cheminformatics to find simulants for chemical warfare agents. J Hazard Mater 194:85–91

    Article  CAS  PubMed  Google Scholar 

  51. Bartelt-Hunt SL, Knappe DRU, Barlaz MA (2008) A review of chemical warfare agent simulants for the study of environmental behaviour. Crit Rev Environ Sci Technol 38:112–136

    Article  CAS  Google Scholar 

  52. Moon SY, Liu Y, Hupp JT et al (2015) Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal-organic framework. Angew Chem Int Ed Engl 54:6795–6799

    Article  CAS  PubMed  Google Scholar 

  53. Climent E, Biyikal M, Gawlitza K, Dropa T, Urban M, Costero AM, Martínez-Máñez R, Rurack K, et al (2016) A rapid and sensitive strip-based quick test for nerve agents Tabun, Sarin, and Soman Using BODIPY-modified silica materials. Chem Eur J 22:11138–11142

    Google Scholar 

  54. Gupta RC (2006) In: Gupta RC (ed) Toxicology of organophosphate and carbamate compounds. Elsevier, Burlington, pp 103–160

    Google Scholar 

  55. Wu H, Chua YS, Krungleviciute V et al (2013) Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J Am Chem Soc 135:10525–10532

    Article  CAS  PubMed  Google Scholar 

  56. Montoro C, Linares F, Procopio EQ et al (2011) Capture of nerve agents and mustard gas analogues by hydrophobic robust MOF-5 type metalorganic frameworks. Am Chem Soc 133:11888

    Article  CAS  Google Scholar 

  57. Stylianou KC, Heck R, Chong SY et al (2010) A guest-responsive fluorescent 3D microporous metal-organic framework derived from a long-lifetime pyrene core. J Am Chem Soc 132:4119–4130

    Article  CAS  PubMed  Google Scholar 

  58. Liu Y, Buru CT, Howarth AJ et al (2016) Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal-organic framework. J Mater Chem A 4:13809–13813

    Article  CAS  Google Scholar 

  59. Bromberg L, Klichko Y, Chang EP et al (2012) Alkylaminopyridine-modified aluminum aminoterephthalate metal-organic frameworks as components of reactive self-detoxifying materials. ACS Appl Mater Interfaces 4:4595–4602

    Article  CAS  PubMed  Google Scholar 

  60. Price KE, Mason BP, Bogdan AR et al (2006) Microencapsulated linear polymers: “Soluble” heterogeneous catalysts. J Am Chem Soc 128:10376–10377

    Article  CAS  PubMed  Google Scholar 

  61. Gil-San-Millan R, López-Maya E, Hall M et al (2017) Chemical warfare agents detoxification properties of zirconium metal-organic frameworks by synergistic incorporation of nucleophilic and basic sites. ACS Appl Mater Interfaces 9:23967–23973

    Article  CAS  PubMed  Google Scholar 

  62. Meng Q, Doetschman DC, Rizos AK et al (2011) Adsorption of organophosphates into microporous and mesoporous NaX zeolites and subsequent chemistry. Environ Sci Technol 45:3000–3005

    Article  CAS  PubMed  Google Scholar 

  63. López-Maya E, Montoro C, Rodríguez-Albelo LM et al (2015) Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents. Angew Chem Int Ed Engl 54:6790–6794

    Article  PubMed  Google Scholar 

  64. Katz MJ, Mondloch JE, Totten RK et al (2014) Simple and Compelling biomimetic metal-organic framework catalyst for the degradation of nerve agent simulants. Angew Chem Int Ed Engl 53:497–501

    Article  CAS  PubMed  Google Scholar 

  65. Cavka JH, Jakobsen S, Olsbye U et al (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851

    Article  PubMed  Google Scholar 

  66. Peterson GW, Moon SY, Wagner GW et al (2015) Tailoring the pore size and functionality of UiO-type metal-organic frameworks for optimal nerve agent destruction. Inorg Chem 54:9684–9686

    Article  CAS  PubMed  Google Scholar 

  67. Zhao J, Lee DT, Yaga RW et al (2016) Ultra-fast degradation of chemical warfare agents using MOF–nanofiber kebabs. Angew Chem 128:13418–13422

    Article  Google Scholar 

  68. Xiong J, Wang L, Qin X et al (2021) Acid-promoted synthesis of defected UiO-66-NH2 for rapid detoxification of chemical warfare agent simulant. Mater Lett 302:130427.

    Google Scholar 

  69. Mondloch JE, Katz MJ, Isley WC et al (2015) Destruction of chemical warfare agents using metal-organic frameworks. Nat Mater 14:512–516

    Article  CAS  PubMed  Google Scholar 

  70. Jiang J, Gándara F, Zhang YB et al (2014) Superacidity in sulfated metal-organic framework-808. J Am Chem Soc 136:12844–12847

    Article  CAS  PubMed  Google Scholar 

  71. Liang W, Chevreau H, Ragon F et al (2014) Metal-organic frameworks as media for the catalytic degradation of chemical warfare agents. Cryst Eng Comm 16:6530–6533

    Article  CAS  Google Scholar 

  72. DeCoste JB, Peterson GW (2014) Metal-organic frameworks for air purification of toxic chemicals. Chem Rev 114:5695–5727

    Article  CAS  PubMed  Google Scholar 

  73. Moon SY, Proussaloglou E, Peterson GW et al (2016) Detoxification of chemical warfare agents using a Zr6-based metal-organic framework/polymer mixture. Chem Eur J 22:14864–14868

    Article  CAS  PubMed  Google Scholar 

  74. Liu Y, Moon SY, Joseph T et al (2015) Dual-function metal-organic framework as a versatile catalyst for detoxifying chemical warfare agent simulants. ACS Nano 9:12358–12364

    Google Scholar 

  75. Ringenbach CR, Livingston SR, Kumar D et al (2005) Vanadium-doped acid-prepared mesoporous silica: synthesis, characterization, and catalytic studies on the oxidation of a mustard gas analogue. Chem Mater 17:5580–5586

    Article  CAS  Google Scholar 

  76. Wagne GW, Yang YC (2002) Rapid nucleophilic/oxidative decontamination of chemical warfare agents. Ind Eng Chem Res 41:1925–1928

    Article  Google Scholar 

  77. Boring E, Geletii YV, Hill CL (2001) A homogeneous catalyst for selective O2 oxidation at ambient temperature. diversity-based discovery and mechanistic investigation of thioether oxidation by the Au (III)Cl2NO3(thioether)/O2 system. J Am Chem Soc 123:1625–1635

    Article  CAS  PubMed  Google Scholar 

  78. Ameloot R, Aubrey M, Wiers BM et al (2013) Ionic conductivity in the metal-organic framework UiO-66 by dehydration and insertion of lithium tert-butoxide. Chem Eur J 19:5533–5536

    Article  CAS  PubMed  Google Scholar 

  79. Carniato F, Bisio F, Psaro R et al (2014) Niobium(V) saponite clay for the catalytic oxidative abatement of chemical warfare agents. Angew Chem Int Ed Engl 53:10095–10098

    Article  CAS  PubMed  Google Scholar 

  80. Liu Y, Howarth AJ, Hupp JT et al (2015) Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks. Angew Chem 127:9129–9133

    Article  Google Scholar 

  81. Padial NM, Procopio EQ, Montoro C et al (2013) Highly Hydrophobic isoreticular porous metal-organic frameworks for the capture of harmful volatile organic compounds. Angew Chem Int Ed 52:8290–8294

    Article  CAS  Google Scholar 

  82. Daczkowski CM, Pegan SD, Harvey SP (2015) Engineering the organophosphorus acid anhydrolase enzyme for increased catalytic efficiency and broadened stereospecificity on Russian VX. Biochemistry 54:6423–6433

    Article  CAS  PubMed  Google Scholar 

  83. Lykourinou V, Chen Y, Wang XS et al (2011) Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis. J Am Chem Soc 133:10382–10385

    Article  CAS  PubMed  Google Scholar 

  84. Feng D, Liu TF, Su J et al (2015) Wang. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nat Commun 6:5979

    Google Scholar 

  85. Chen Y, Lykourinou V, Hoang T et al (2012) Size-selective biocatalysis of myoglobin immobilized into a mesoporous metal-organic framework with hierarchical pore sizes. Inorg Chem 51:9156–9158

    Article  CAS  PubMed  Google Scholar 

  86. Li P, Moon SY, Guelta MA et al (2016) Encapsulation of a nerve agent detoxifying enzyme by a mesoporous zirconium metal-organic framework engenders thermal and long-term stability. J Am Chem Soc 138:8052–8055

    Article  CAS  PubMed  Google Scholar 

  87. Cheng T, Harvey SP, Chen GL (1996) Cloning and expression of a gene encoding a bacterial enzyme for decontamination of organophosphorus nerve agents and nucleotide sequence of the enzyme. Appl Environ Microbiol 62:1636–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Totten RK, Kim YS, Weston MH et al (2013) Enhanced catalytic activity through the tuning of micropore environment and supercritical CO2 processing: Al(porphyrin)-based porous organic polymers for the degradation of a nerve agent simulant. J Am Chem Soc 135:11720–11723

    Article  CAS  PubMed  Google Scholar 

  89. Totten RK, Ryan P, Kang B et al (2012) Enhanced catalytic decomposition of a phosphate triester by modularly accessible bimetallic porphyrin dyads and dimers. Chem Commun 48:4178–4180

    Article  CAS  Google Scholar 

  90. Dinçalp H, Kızılok S, Içli S et al (2014) Targeted singlet oxygen generation using different DNA-interacting perylene diimide type photosensitizers. J Fluorescene 24:917–924

    Article  Google Scholar 

  91. Okamoto M, Tanaka F (2002) Quenching by oxygen of the lowest singlet and triplet states of pyrene and the efficiency of the formation of singlet oxygen in liquid solution under high pressure. J Phys Chem A 10:3982

    Article  Google Scholar 

  92. Grossman JN, Stern AP, Kirich ML et al (2016) Anthracene and pyrene photolysis kinetics in aqueous, organic, and mixed aqueous-organic phases. Atmos Environ 128:158

    Article  CAS  Google Scholar 

  93. DeCoste JB, Rossin JA, Peterson GW (2015) Hierarchical pore development by plasma etching of Zr-based metal-organic frameworks. Chem Eur J 21:18029–18032

    Article  CAS  PubMed  Google Scholar 

  94. Yang YC (1999) Chemical detoxification of nerve agent VX. Acc Chem Res 32:109–115

    Article  CAS  Google Scholar 

  95. Yang YC, Szafraniec LL, Beaudry WT et al (1996) Autocatalytic hydrolysis of V-type nerve agents. Org Chem 61:8407–8413

    Article  CAS  Google Scholar 

  96. Son FA, Wasson MC, Islamoglu T et al (2020) Uncovering the role of metal-organic framework topology on the capture and reactivity of chemical warfare agents. Chem Mater 32:4609–4617

    Article  CAS  Google Scholar 

  97. Asha P, Sinha M, Mandal S (2017) Effective removal of chemical warfare agent simulants using water stable metal-organic frameworks: mechanistic study and structure—Property correlation. RSC Adv 7:6691–6696

    Article  CAS  Google Scholar 

  98. Deng H, Doonan CJ, Furukawa H et al (2010) Multiple functional groups of varying ratios in metal-organic frameworks. Science 327:846

    Article  CAS  PubMed  Google Scholar 

  99. Phadatare A, Kandasubramanian B (2020) Metal organic framework functionalized fabrics for detoxification of chemical warfare agents. Ind Eng Chem Res 59:569–586

    Article  CAS  Google Scholar 

  100. Giannakoudakis DA, Hu Y, Florent M et al (2017) Smart textiles of MOF/g-C3N4 nanospheres for the rapid detection/detoxification of chemical warfare agents. Nanoscale Horiz 2:356–364

    Article  CAS  PubMed  Google Scholar 

  101. Wang S, Pomerantz N, Dai Z et al (2020) Polymer of intrinsic microporosity (PIM) based fibrous mat: combining particle filtration and rapid catalytic hydrolysis of chemical warfare agent simulants into a highly sorptive, breathable, and mechanically robust fiber matrix. Mater Today Adv 8:100085

    Google Scholar 

  102. Hao L, Hurlock MJ, Li X, Ding G, Kriegsman KW, Guo X, Zhang Q (2019) Efficient oxidative desulfurization using a mesoporous Zr-based MOF. Catal Today 350:64–70

    Article  Google Scholar 

  103. Zou, D, Liu D (2019) Understanding the modifications and applications of highly stable porous frameworks via UiO-66. Mater Today Chem 12:139–165

    Google Scholar 

  104. Vahabi AH, Norouzi F, Sheibani E et al (2021) Functionalized Zr-UiO-67 metal-organic frameworks: Structural landscape and application. Coord Chem Rev 445:214050

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Principal, Sir Venkateshwara College, University of Delhi and Principal, Acharya Narendra Dev College, University of Delhi for their valuable cooperation and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Hooda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saya, L., Hooda, S. (2022). Metal–Organic Frameworks (MOFs) as Versatile Detoxifiers for Chemical Warfare Agents (CWAs). In: Gulati, S. (eds) Metal-Organic Frameworks (MOFs) as Catalysts. Springer, Singapore. https://doi.org/10.1007/978-981-16-7959-9_18

Download citation

Publish with us

Policies and ethics