Skip to main content

Nanotechnological Applications in the Diagnosis and Treatment of Alzheimer’s Dementia

  • Chapter
  • First Online:
  • 526 Accesses

Abstract

Alzheimer’s disease (AD) is one of the most devastating neurological disorders causing memory loss and impairment of cognitive functions. It is distinguished by the presence of extracellular amyloid beta peptides, intracellular neurofibrillary tangles, and substantial loss in the cortex and hippocampus region of the brain. AD is incurable and has significant social and economic impacts. The disease, therefore, essentially requires successful diagnostics and effective therapeutic approaches. It has been demonstrated that conventional approaches often fail to achieve excellent pharmacokinetic and pharmacodynamic properties at the target site and thus produce low therapeutic efficacy and high toxicity. Recent advances in the pharmaceutical domain have shown the development of nano-systems to overcome the limitations associated with conventional therapy. In addition, emergence of nanotechnology serves as a potential tool in understanding complex mechanisms as well as treatment strategies of AD. These nanosystems are site-specific and offer desired pharmacokinetic properties such as solubility, bioavailability, absorption, permeability across the blood-brain barrier, and better therapeutic effects. Nowadays, a plethora of nano-carriers including solid lipid carriers, liposomes, emulsions, and carbon nanotubes have been designed to attain greater therapeutic effect in AD. Furthermore, nanotechnology also contributes to the early diagnosis of AD. The current chapter encompasses latest developments in nanotechnology-based diagnosis and therapeutic strategies for AD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad J, Akhter S, Rizwanullah M, Khan MA, Pigeon L, Addo RT et al (2017) Nanotechnology based theranostic approaches in Alzheimer’s disease management: current status and future perspective. Curr Alzheimer Res 14(11):1164–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam MS, Javed MN, Pottoo FH, Waziri A, Almalki FA, Hasnain MS et al (2019) QbD approached comparison of reaction mechanism in microwave synthesized gold nanoparticles and their superior catalytic role against hazardous nirto-dye. Appl Organomet Chem 33(9):e5071

    Google Scholar 

  • Ali ME, Lamprecht A (2014) Spray freeze drying for dry powder inhalation of nanoparticles. Eur J Pharm Biopharm 87(3):510–517

    Article  CAS  PubMed  Google Scholar 

  • Aliev G, Ashraf GM, Tarasov VV, Chubarev VN, Leszek J, Gąsiorowski K et al (2019) Alzheimer’s disease – future therapy based on dendrimers. Curr Neuropharmacol 17(3):288–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aluani D, Tzankova V, Yordanov Y et al (2017) In vitro protective effects of encapsulated quercetin in neuronal models of oxidative stress injury. Biotechnol Biotechnol Equip 31(5):1055–1053

    Article  CAS  Google Scholar 

  • Alyautdin R, Khalin I, Nafeeza MI et al (2014) Nanoscale drug delivery systems and the blood–brain barrier. Int J Nanomedicine 9:795–811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amanzadeh E, Esmaeili A, Enteshari R, Abadi N, Kazemipour N, Pahlevanneshan Z et al (2019) Quercetin conjugated with superparamagnetic iron oxide nanoparticles improves learning and memory better than free quercetin via interacting with proteins involved in LTP. Sci Rep 9:6876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amidon GL, Lennernäs H, Shah VP et al (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12(3):413–420

    Article  CAS  PubMed  Google Scholar 

  • Amorim C d M et al (2010) Antioxidant idebenone-loaded nanoparticles based on chitosan and N-carboxymethylchitosan. Nanomedicine 6(6):745–742

    Article  CAS  Google Scholar 

  • Andrade S, Ramalho MJ, do Carmo Pereira M et al (2018) Resveratrol brain delivery for neurological disorders prevention and treatment. Front Pharmacol 9:1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansari MA, Badrealam KF, Alam A, Tufail S, Khalique G, Equbal MJ et al (2020a) Recent nano-based therapeutic intervention of bioactive sesquiterpenes: prospects in cancer therapeutics. Curr Pharm Des 26(11):1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Ansari MA, Chung IM, Rajakumar G, Alzohairy MA, Alomary MN, Thiruvengadam M et al (2020b) Current nanoparticle approaches in nose to brain drug delivery and anticancer therapy - a review. Curr Pharm Des 26(11):1128–1137

    Article  CAS  PubMed  Google Scholar 

  • Arora D, Jaglan S (2018) Therapeutic applications of resveratrol nanoformulations. Environ Chem Lett 16:35–31

    Article  CAS  Google Scholar 

  • Arruebo M et al (2009) Antibody-conjugated nanoparticles for biomedical applications. J Nanomater 2009:439389. https://doi.org/10.1155/2009/439389

    Article  CAS  Google Scholar 

  • Augustin MA (2013) Nano- and micro-encapsulated systems for enhancing the delivery of resveratrol. Ann N Y Acad Sci 1290(1):107–102

    Article  CAS  PubMed  Google Scholar 

  • Ayaz M, Sadiq A, Junaid M, Ullah F, Ovais M, Ullah I et al (2019) Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front Aging Neurosci 11:155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azalea DR, Mohambed M, Joji S et al (2012) Design and evaluation of chitosan nanoparticles as novel drug carriers for the delivery of donepezil. Iran J Pharm Sci 8(3):154–155

    Google Scholar 

  • Babu GK (2015) Formulation and evaluation of galantamine loaded PLGA nanoparticles for Alzheimer’s disease. J Pharma Care Health Sys 2(4):48

    Google Scholar 

  • Baptista da Silva S, Amorim M, Fonte P, Madureira R, Ferreira D, Pintado M et al (2015) Natural extracts into chitosan nanocarriers for rosmarinic acid drug delivery. Pharm Biol 53(5):642–642

    Article  CAS  Google Scholar 

  • Barbara R, Belletti D, Pederzoli F et al (2017) Novel curcumin loaded nanoparticles engineered for blood-brain barrier crossing and able to disrupt Abeta aggregates. Int J Pharm 526(1–2):413–414

    Article  CAS  PubMed  Google Scholar 

  • Barkat MA, Harshita, Rizwanullah M, Pottoo FH, Beg S, Akhter S et al (2020) Therapeutic nanoemulsion: concept to delivery. Curr Pharm Des 26(11):1145–1166

    Article  CAS  PubMed  Google Scholar 

  • Baysal I, Ucar G, Gultekinoglu M et al (2017) Donepezil loaded PLGA-b-PEG nanoparticles: their ability to induce destabilization of amyloid fibrils and to cross blood brain barrier in vitro. J Neural Transm (Vienna) 124(1):33–35

    Article  CAS  Google Scholar 

  • Beach TG et al (1989) Patterns of gliosis in Alzheimer’s disease and aging cerebrum. Glia 2(6):420–426

    Article  CAS  PubMed  Google Scholar 

  • Bennet D, Kim S (2014) Polymer nanoparticles for smart drug delivery [cited 2020 March 11]. Available from: https://www.intechopen.com/books/application-of-nanotechnology-in-drug-delivery/polymer-nanoparticles-for-smart-drug-delivery

  • Bhatt PC, Srivastava P, Pandey P et al (2016) Nose to brain delivery of astaxanthin-loaded solid lipid nanoparticles: fabrication, radio labeling, optimization and biological studies. RSC Adv 6(12):10001–10010

    Article  Google Scholar 

  • Boudad H, Legrand P, Lebas G et al (2001) Combined hydroxypropyl-beta-cyclodextrin and poly(alkylcyanoacrylate) nanoparticles intended for oral administration of saquinavir. Int J Pharm 218(1–2):113–124

    Article  CAS  PubMed  Google Scholar 

  • Brahamdutt, Kamboj VK, Kumar A et al (2018) Nanotechnology: various methods used for preparation of nanomaterials. Asian J Pharm Pharmacol 4(4):386–383

    CAS  Google Scholar 

  • Brambilla D, Verpillot R, De Kimpe L et al (2010) Nanoparticles against Alzheimer’s disease: PEG-PACA nanoparticles are able to link the Aβ-peptide and influence its aggregation kinetic. J Biotechnol 150(Suppl):27

    Article  Google Scholar 

  • Brekov S, Georgieva L, Kondakova V et al (2009) Plant sources of galathamine: phytochemical and biotechnological aspects. Biotechnol Biotechnol Equip 23:1170–1176

    Article  Google Scholar 

  • Calcul L, Zhang B, Jinwal UK et al (2012) Natural products as a rich source of tau-targeting drugs for Alzheimer’s disease. Future Med Chem 4(13):1751–1751

    Article  CAS  PubMed  Google Scholar 

  • Calvo P, Remuñán-López C, Vila-Jato JL et al (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63(1):125–122

    Article  CAS  Google Scholar 

  • Campardelli R, Cherain M, Perfetti C et al (2013) Lipid nanoparticles production by supercritical fluid assisted emulsion–diffusion. J Supercrit Fluids 82:34–40

    Article  CAS  Google Scholar 

  • Cano A, Ettcheto M, Chang JH, Barroso E, Espina M, Kühne BA et al (2019) Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model. J Control Release 301:62–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carradori D, Balducci C, Re F, Brambilla D, Le Droumaguet B, Flores O et al (2018) Antobody-functionalized polymer nanoparticles leading to memory recovery in Alzheimer’s disease-like transgenic mouse model. Nanomed Nanotechnol Biol Med 14:609–618

    Article  CAS  Google Scholar 

  • Cascella M, Bimonte S, Muzio MR et al (2017) The efficacy of Epigallocatechin-3-gallate (green tea) in the treatment of Alzheimer’s disease: an overview of pre-clinical studies and translational perspectives in clinical practice. Infect Agents Cancer 12:36

    Article  CAS  Google Scholar 

  • Chander V, Aswal JS, Dobhal R et al (2017) A review on pharmacological potential of Berberine; an active component of Himalayan Berberis aristata. J Phytopharmacol 6(1):53–58

    Article  Google Scholar 

  • Chavda VP (2019) Nanobased nano drug delivery: a comprehensive review. In: Mohapatra S, Ranjan S, Dasgupta N (eds) Applications of targeted nano drugs and delivery systems: nanoscience and nanotechnology in drug delivery. Elsevier, Amsterdam, pp 69–92

    Chapter  Google Scholar 

  • Chen M, Du ZY, Zheng X et al (2018) Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen Res 13(4):742–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng KK, Yeung CF, Ho SW et al (2013) Highly stabilized curcumin nanoparticles tested in an in vitro blood–brain barrier model and in Alzheimer’s disease Tg2576 mice. AAPS J 15(2):324–336

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Yin J, Yuan H, Jin C, Zhang F, Wang Z et al (2018) Blood-derived plasma protein biomarkers for Alzheimer’s disease in Han Chinese. Front Aging Neurosci 10:414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chonpathompikunlert P et al (2010) Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food Chem Toxicol 48(3):798–802

    Article  CAS  PubMed  Google Scholar 

  • Chorilli M et al (2013) Caffeine encapsulated in small unilamellar liposomes: characerization and in vitro release profile. J Dispers Sci Technol 34(10):1465–1470

    Article  CAS  Google Scholar 

  • Chu KS, Hasan W, Rawal S et al (2013) Plasma, tumor and tissue pharmacokinetics of Docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft. Nanomedicine 9(5):686–683

    Article  CAS  PubMed  Google Scholar 

  • Chu C, Deng J, Man Y et al (2017) Green tea extracts epigallocatechin-3-gallate for different treatments. Biomed Res Int 2017:5615647

    Article  PubMed  PubMed Central  Google Scholar 

  • Corey-Bloom J et al (1998) A randomized trial evaluating the efficacy and safety of ENA 713 (rivastigmine tartrate), a new acetylcholinesterase inhibitor, in patients with mild to moderately severe Alzheimer’s disease. Int J Geriatr Psychopharmacol 1:55–65

    CAS  Google Scholar 

  • Couvreur P et al (2002) Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 19(2):99–134

    Article  CAS  PubMed  Google Scholar 

  • Damar U, Gersner R, Johnstone JT et al (2016) Huperzine A as a neuroprotective and antiepileptic drug: a review of preclinical research. Expert Rev Neurother 16(6):671–680

    Article  CAS  PubMed  Google Scholar 

  • de Souza ALR, Andreani T, Nunes FM et al (2012) Loading of praziquantel in the crystal lattice of solid lipid nanoparticles. J Therm Anal Calorim 108(1):353–360

    Article  CAS  Google Scholar 

  • Del Prado-Audelo ML, Caballero-Florán IH, Meza-Toledo JA, Mendoza-Muñoz N, González-Torres M, Florán B et al (2019) Formulations of curcumin nanoparticles for brain diseases. Biomol Ther 9(2):56

    Google Scholar 

  • Do TD, Ul Amin F, Noh Y et al (2016) Guidance of magnetic nanocontainers for treating Alzheimer’s disease using an electromagnetic. Targeted drug-delivery actuator. J Biomed Nanotechnol 12(3):569–574

    Article  CAS  PubMed  Google Scholar 

  • Dong Y et al (2012) Solid lipid nanoparticles: continuous and potential large-scale nanoprecipitation production in static mixers. Colloids Surf B Biointerfaces 94:68–62

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Ng WK, Shen S et al (2013) Scalable ionic gelation synthesis of chitosan nanoparticles for drug delivery in static mixers. Carbohydr Polym 94(2):940–945

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos Tramontin N, da Silva S, Arruda R, Ugioni KS, Canteiro PB, de Bem Silveira G et al (2020) Gold nanoparticles treatment reverses brain damage in Alzheimer’s disease model. Mol Neurobiol 57(2):926–936

    Article  PubMed  CAS  Google Scholar 

  • Eke CS, Jammeh E, Li X et al (2018) Identification of optimum panel of blood-based biomarkers for Alzheimer’s disease diagnosis using machine learning. Conf Proc IEEE Eng Med Biol Soc 2018:3991–3994

    CAS  Google Scholar 

  • Elnaggar YS, Etman SM, Abdelmonsif DA et al (2015a) Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci 104(10):3544–3556

    Article  CAS  PubMed  Google Scholar 

  • Elnaggar YS, Etman SM, Abdelmonsif DA et al (2015b) Novel piperine-loaded Tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’s disease: pharmaceutical, biological, and toxicological studies. Int J Nanomedicine 10:5459–5473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezrahi S et al (1999) Aggregation behavior in one-phase (Winsor IV) microemulsion systems. In: Kumar P, Mittal KL (eds) Handbook of microemulsion science and technology. Marcel Dekker, Inc, New York, pp 195–240

    Google Scholar 

  • Fan S, Zheng Y, Liu X et al (2018) Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Deliv 25(1):1091–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fazil M, Md S, Haque S, Kumar M, Baboota S, Sahni J et al (2012) Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci 47(1):6–15

    Article  CAS  PubMed  Google Scholar 

  • Felix Joe V, Sathesh Kumar S (2018) Formulation, characterization and determination of anti-Alzheimeric activity of tacrine loaded poly (lactide-co-glycolide) nanoparticles. Int J Pharm Sci Res 9(12):5111–5120

    Google Scholar 

  • Fernández-Bachiller MI, Pérez C, González-Muñoz GC, Conde S, López MG, Villarrova M et al (2010) Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with neuroprotective, cholinergic, antioxidant and coppercomplexing properties. J Med Chem 53:4927–4937

    Article  PubMed  CAS  Google Scholar 

  • Fiorani M, Guidarelli A, Blasa M, Azzolini C, Candiracci M, Piatti E et al (2010) Mitochondria accumulate large amounts of quercetin: prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid. J Nutr Biochem 21:397–404

    Article  CAS  PubMed  Google Scholar 

  • Fleming KC et al (1995) Dementia: diagnosis and evaluation. Mayo Clin Proc 70(11):1093–1107

    Article  CAS  PubMed  Google Scholar 

  • Fonseca-Santos B, Gremião MP, Chorilli M (2015) Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int J Nanomedicine 10:4981–5003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freitas C, Müllerä RH (1998) Spray-drying of solid lipid nanoparticles (SLN TM). Eur J Pharm Biopharm 46(2):145–151

    Article  CAS  PubMed  Google Scholar 

  • Frias I, Neves AR, Pinheiro M et al (2016) Design, development, and characterization of lipid nanocarriers-based epigallocatechin gallate delivery system for preventive and therapeutic supplementation. Drug Des Devel Ther 10:3519–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frozza RL, Bernardi A, Hoppe JB, Meneghetti AB, Matté A, Battastini AMO et al (2013) Neuroprotective effects of resveratrol against Aβ administration in rats are improved by lipid-core nanocapsules. Mol Neurobiol 47:1066–1080

    Article  CAS  PubMed  Google Scholar 

  • Galasso C, Orefice I, Pellone P, Cirino P, Miele R, Ianora A et al (2018) On the neuroprotective role of astaxanthin: new perspectives? Mar Drugs 16(8):247

    Article  PubMed Central  CAS  Google Scholar 

  • Ghanbarzadeh S et al (2013) Application of response surface methodology in development of sirolimus liposomes prepared by thin film hydration technique. Bioimpacts 3(2):75–71

    PubMed  PubMed Central  Google Scholar 

  • Gomes BAQ, Silva JPB, Romeiro CFR et al (2018) Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: role of SIRT1. Oxidative Med Cell Longev 2018:8152373

    Article  CAS  Google Scholar 

  • Graff CL, Pollack GM (2005) Nasal drug administration: potential for targeted central nervous system delivery. J Pharm Sci 94(6):1187–1185

    Article  CAS  PubMed  Google Scholar 

  • Granja A, Frias I, Neves AR et al (2017) Therapeutic potential of epigallocatechin gallate nanodelivery systems. Biomed Res Int 2017:5813793. https://doi.org/10.1155/2017/5813793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray NE, Alcazar Magana A, Lak P et al (2018) Centella asiatica - Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochem Rev: Proceedings of the Phytochemical Society of Europe 17(1):161–194

    Google Scholar 

  • Grimmig B, Kim SH, Nash K et al (2017) Neuroprotective mechanisms of astaxanthin: a potential therapeutic role in preserving cognitive function in age and neurodegeneration. Geroscience 39(1):19–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulati M, Grover M, Singh S et al (1998) Lipophilic drug derivatives in liposomes. Int J Pharm 165(2):129–168

    Article  CAS  Google Scholar 

  • Guterres SS et al (2007) Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights 2:147–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Habtemariam S (2018) Molecular pharmacology of rosmarinic and salvianolic acids: potential seeds for Alzheimer’s and vascular dementia drugs. Int J Mol Sci 19(2):458

    Article  PubMed Central  CAS  Google Scholar 

  • Hadian Z, Sahari MA, Moghimi HR et al (2014) Formulation, characterization and optimization of liposomes containing eicosapentaenoic and docosahexaenoic acids; a methodology approach. Iran J Pharm Res 13(2):393–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hajialyani M, Hosein Farzaei M, Echeverría J et al (2019) Hesperidin as a neuroprotective agent: a review of animal and clinical evidence. Molecules 24(3):648

    Article  CAS  PubMed Central  Google Scholar 

  • Haque S, Md S, Alam MI et al (2012) Nanostructure-based drug delivery systems for brain targeting. Drug Dev Ind Pharm 38(4):387–411

    Article  CAS  PubMed  Google Scholar 

  • Harilal S, Jose J, Parambi DGT, Kumar R, Mathew GE, Uddin MS et al (2019) Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J Pharm Pharmacol 71(9):1370–1383

    Article  CAS  PubMed  Google Scholar 

  • Harshita, Barkat MA, Das SS et al (2020) Lipid-based nanosystem as intelligent carriers for versatile drug delivery applications. Curr Pharm Des 26(11):1167–1180

    Article  CAS  PubMed  Google Scholar 

  • Harthi SA, Alavi SE, Radwan MA et al (2019) Nasal delivery of donepezil HCl-loaded hydrogels for the treatment of Alzheimer’s disease. Sci Rep 9:9563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hong-Qi Y et al (2012) Current advances in the treatment of Alzheimer’s disease: focused on considerations targeting Aβ and tau. Transl Neurodegener 1:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hossain MF, Uddin MS, Uddin GMS, Sumsuzzman DM, Islam MS, Barreto GE et al (2019) Melatonin in Alzheimer’s disease: a latent endogenous regulator of neurogenesis to mitigate Alzheimer’s neuropathology. Mol Neurobiol 56(12):8255–8276

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Wang J, Jin W et al (2012) Degradation of Laminaria japonica fucoidan by hydrogen peroxide and antioxidant activities of the degradation products of different molecular weights. Carbohydr Polym 87:153–159

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Guo Y, Wang L et al (2011) Coenzyme Q10 nanoparticles prepared by a supercritical fluid-based method. J Supercrit Fluids 57(1):66–62

    Article  CAS  Google Scholar 

  • Huo X, Zhang Y, Jin X et al (2019) A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer’s disease. J Photochem Photobiol B 190:98–102

    Article  CAS  PubMed  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphite carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Inglis F (2002) The tolerability and safety of cholinesterase inhibitors in the treatment of dementia. Int J Clin Pract Suppl 127:45–63

    CAS  Google Scholar 

  • Isailović BD, Kostić IT, Zvonar A et al (2013) Resveratrol loaded liposomes produced by different techniques. Innov Food Sci Emerg Technol 19:181–189

    Article  CAS  Google Scholar 

  • Ito N, Saito H, Seki S et al (2018) Effects of composite supplement containing astaxanthin and sesamin on cognitive functions in people with mild cognitive impairment: a randomized, double-blind, placebo-controlled trial. J Alzheimers Dis 62(4):1767–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson SA, Sabbagh MN (2008) Donepezil: potential neuroprotective and disease-modifying effects. Expert Opin Drug Metab Toxicol 4:1363–1369

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal M et al (2015) Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5(2):123–127

    Article  PubMed  Google Scholar 

  • Juillerat-Jeanneret L (2008) The targeted delivery of cancer drugs across the blood-brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today 13(23–24):1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Karami Z, Hamidi M (2016) Cubosomes: remarkable drug delivery potential. Drug Discov Today 21(5):789–801

    Article  CAS  PubMed  Google Scholar 

  • Karis JH et al (1966) The action of tacrine on neuromuscular transmission: a comparison with hexafluorenium. Brit J Anaesth 38:762–774

    Article  CAS  PubMed  Google Scholar 

  • Kaulmann A, Bohn T (2014) Carotenoids, inflammation, and oxidative stress—implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res 34:907–929

    Article  CAS  PubMed  Google Scholar 

  • Kaur SP, Rao R, Hussain A et al (2011) Preparation and characterization of Rivastigmine loaded chitosan nanoparticles. J Pharm Sci Res 3(5):1227–1222

    CAS  Google Scholar 

  • Kaur A, Nigam K, Bhatnagar I, Sukhpal H, Awasthy S, Shankar S et al (2020a) Treatment of Alzheimer’s diseases using donepezil nanoemulsion: an intranasal approach. Drug Deliv Transl Res. https://doi.org/10.1007/s13346-020-00754-z

  • Kaur A, Nigam K, Srivastava S et al (2020b) Memantine nanoemulsion: a new approach to treat Alzheimer’s disease. J Microencapsul 15:1–30

    CAS  Google Scholar 

  • Kheradmand E et al (2018) Neuroprotective effect of hesperetin and nano-hesperetin on recognition memory impairment and the elevated oxygen stress in rat model of Alzheimer’s disease. Biomed Pharmacother 97:1096–1101

    Article  CAS  PubMed  Google Scholar 

  • Kocahan S, Doğan Z (2017) Mechanisms of Alzheimer’s disease pathogenesis and prevention: the brain, neural pathology, N-methyl-D-aspartate receptors, Tau protein and other risk factors. Clin Psychopharmacol Neurosci 15(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovačević AB, Müller RH, Savić SD et al (2014) Solid lipid nanoparticles (SLN) stabilized with polyhydroxy surfactants: preparation, characterization and physical stability investigation. Colloids Surf A Physicochem Eng Asp 444:15–25

    Article  CAS  Google Scholar 

  • Kreuter J (1978) Nanoparticles and nanocapsules – new dosage forms in the nanometer size range. Pharm Acta Helv 53(2):33–39

    CAS  PubMed  Google Scholar 

  • Krishna KV, Wadhwa G, Alexander A, Kanojia N, Saha RN, Kukreti R et al (2019) Design and biological evaluation of lipoprotein-based donepezil nanocarrier for enhanced brain uptake through oral delivery. ACS Chem Neurosci 10(9):4124–4135

    Article  CAS  PubMed  Google Scholar 

  • Kroto HW, Hearth JR, O’Brien SC, Curl RF, Smalley RE (1985) Buckminsterfullerenes. Nature 318:162–163

    Article  CAS  Google Scholar 

  • Kryger G et al (1999) Structure of acetylcholinesterase complexed with E2020 (Aricept): implications for the design of new anti-Alzheimer drugs. Struct 7:297–307

    Article  CAS  Google Scholar 

  • Kumar R, Yasir M, Saraf SA et al (2013) Glyceryl monostearate based nanoparticles of mefenamic acid: fabrication and in vitro characterization. Drug Invent Today 5(3):246–250

    Article  CAS  Google Scholar 

  • Kumar B, Pandey M, Pottoo FH et al (2020) Liposomes: novel drug delivery approach for targeting Parkinson’s disease. Curr Pharm Des. https://doi.org/10.2174/1381612826666200128145124

  • Kuns B, Varghese D (2019) StatPearls: memantine. StatPearls Publishing, Florida

    Google Scholar 

  • Kuntiü V, Brboriü J, Holclajtner-Antunoviü I et al (2014) Evaluating the bioactive effects of flavonoid hesperidin – a new literature data survey. Vojnosanit Pregl 71(1):60–65

    Article  Google Scholar 

  • Kuo YC, Rajesh R (2017) Targeted delivery of rosmarinic acid across the blood-brain barrier for neuronal rescue using polyacrylamide-chitosan-poly(lactide-co-glycolide) nanoparticles with surface cross-reacting material 197 and apolipoprotein E. Int J Pharm 528(1–2):228–241

    Article  CAS  PubMed  Google Scholar 

  • Kuo YC, Tsai HC (2018) Rosmarinic acid- and curcumin-loaded polyacrylamide-cardiolipin-poly (lactide-co-glycolide) nanoparticles with conjugated 83-14 monoclonal antibody to protect β-amyloid-insulted neurons. Mater Sci Eng C Mater Biol Appl 91:445–457

    Article  CAS  PubMed  Google Scholar 

  • Langevin D (1988) Microemulsions. Acc Chem Res 21(7):255–260

    Article  CAS  Google Scholar 

  • Lasic DD (1998) Novel applications of liposomes. Trends Biotechnol 16(7):307–321

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Youn K, Lim G et al (2018) In Silico docking and in vitro approaches towards BACE1 and cholinesterases inhibitory effect of citrus flavanones. Molecules 23(7):1509

    Article  PubMed Central  CAS  Google Scholar 

  • Liu Y, Zhou H, Yin T, Gong Y, Yuan G, Chen L et al (2019) Quercetin-modified gold-palladium nanoparticles as a potential autophagy inducer for the treatment of Alzheimer’s disease. J Colloid Interface Sci 552:388–400

    Article  CAS  PubMed  Google Scholar 

  • Lobos P, Bruna B, Cordova A, Barattini P, Galáz JL, Adasme T et al (2016) Astaxanthin protects primary hippocampal neurons against noxious effects of Aβ-Oligomers. Neural Plast 2016:3456783. https://doi.org/10.1155/2016/3456783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohan S, Raza K, Mehta SK et al (2017) Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: a preclinical evidence. Int J Pharm 530(1–2):263–278

    Article  CAS  PubMed  Google Scholar 

  • Loureiro JA, Andrade S, Duarte A, Neves AR, Queiroz JF, Nunes C et al (2017) Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules 22(2):277

    Article  PubMed Central  CAS  Google Scholar 

  • Lu X, Ji C, Xu H, Li X, Ding H, Ye M et al (2009) Resveratrol-loaded polymeric micelles protect cells from Abeta-induced oxidative stress. Int J Pharm 375:89–86

    Article  CAS  PubMed  Google Scholar 

  • Luppi B, Bigucci F, Corace G, Delucca A, Cerchiara T, Sorrenti M et al (2011) Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. Eur J Pharm Sci 44(4):559–565

    Article  CAS  PubMed  Google Scholar 

  • Lv J, Sharma A, Zhang T et al (2018) Pharmacological review on asiatic acid and its derivatives: a potential compound. SLAS Technol 23(2):111–127

    Article  CAS  PubMed  Google Scholar 

  • Madhavi B, Banji D, Anisetti RN et al (2009) Extraction, identification, formulation and evaluation of piperine in alginate beads. Int J Pharm Pharmaceut Sci 1(2):156–161

    Google Scholar 

  • Mainardes RM, Evangelista RC (2005) Praziquantel-loaded PLGA nanoparticles: preparation and characterization. J Microencapsul 22(1):13–24

    Article  CAS  PubMed  Google Scholar 

  • Manap ASA, Tan ACW, Leong WH, Chia AYY, Vijayabalan S, Arya A et al (2019) Synergistic effects of curcumin and piperine as potent acetylcholine and amyloidogenic inhibitors with significant neuroprotective activity in SH-SY5Y cells via computational molecular modeling and in vitro assay. Front Aging Neurosci 11:1–17

    CAS  Google Scholar 

  • Martins S, Silva AC, Ferreira DC et al (2009) Improving oral absorption of Salmon calcitonin by trimyristin lipid nanoparticles. J Biomed Nanotechnol 5(1):76–73

    Article  CAS  PubMed  Google Scholar 

  • Martins SM, Sarmento B, Nunes C et al (2013) Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration. Eur J Pharm Biopharm 85(3 Pt A):488–502

    Article  CAS  PubMed  Google Scholar 

  • Mazzarino L, Coche-Guérente L, Labbé P et al (2014) On the mucoadhesive properties of chitosan-coated polycaprolactone nanoparticles loaded with curcumin using quartz crystal microbalance with dissipation monitoring. J Biomed Nanotechnol 10(5):787–784

    Article  CAS  PubMed  Google Scholar 

  • McDonald TO, Siccardi M, Moss D, Liptrott N, Giardiello M, Rannard S et al (2015) The application of nanotechnology to drug delivery in medicine. In: Dolez PI (ed) Nanoengineering: global approaches to health and safety issues. Elsevier, Amsterdam, pp 173–223

    Chapter  Google Scholar 

  • Md S, Ali A, Bhatnagar A et al (2014) Design, development, optimization and characterization of donepezil loaded chitosan nanoparticles for brain targeting to treat Alzheimer’s disease. Sci Adv Mater 6(4):720–735

    Article  CAS  Google Scholar 

  • Mehnert W, Mäder K (2012) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 64(Suppl):83–101

    Article  Google Scholar 

  • Meng F, Asghar S, Gao S et al (2015) A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer’s disease. Colloid Surface B 134:88–97

    Article  CAS  Google Scholar 

  • Meng Q, Wang A, Hua H, Jiang Y, Wang Y, Mu H et al (2018) Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int J Nanomedicine 13:705–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Sharma S, Javed MN, Pottoo FH, Barkat MA, Harshita et al (2019) Bioinspired nanocomposites: applications in disease diagnosis and treatment. Pharm Nanotechnol. 7(3):206–219

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Chopra K, Saikia UN, Sinha VR, Sehgal R, Modi M et al (2016) Effect of mesenchymal stem cells and galantamine nanoparticles in rat model of Alzheimer’s disease. Regen Med 11(7):629–646

    Article  CAS  PubMed  Google Scholar 

  • Mokhber-Dezfuli N, Saeidnia S, Gohari AR et al (2014) Phytochemistry and pharmacology of berberis species. Pharmacogn Rev 8(15):8–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monroy A et al (2013) Curcumin and neurodegenerative diseases. Biofactors 39(1):122–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno LCGEI, Puerta E, Suárez-Santiago JE et al (2017) Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer’s disease. Int J Pharm 517(1–2):50–57

    Article  CAS  PubMed  Google Scholar 

  • Morimasa K, Ryuji O, Kazuya K et al (2018) Effect of chlorogenic acid intake on cognitive function in the elderly: a pilot study. Evid Based Complement Alternat Med 2018:8608497

    Google Scholar 

  • Mukhopadhyay S et al (2017) Development and evaluation of bio-nanoparticles as novel drug carriers for the delivery of donepezil. Int J Nano Dimens 8(1):9–17

    CAS  Google Scholar 

  • Müller RH et al (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54(Suppl 1):S131–S155

    Article  PubMed  Google Scholar 

  • Nadeem M, Imran M, Gondal TA, Imran A, Shahbaz M, Amir RM et al (2019) Therapeutic potential of rosmarinic acid: a comprehensive review. Appl Sci 9:3139

    Article  CAS  Google Scholar 

  • Nafisi S, Maibach HI (2017) Nanotechnology in cosmetics. In: Sakamoto K, Lochhead R, Maibach H, Yamashita Y (eds) Cosmetic science and technology: theoretical principles and applications. Elsevier, Amsterdam, pp 337–369

    Chapter  Google Scholar 

  • Nallamuthu I et al (2015) Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J Pharm Sci 10(3):203–211

    Article  Google Scholar 

  • Nasir M, Abdullah J, Habsah M et al (2012) Inhibitory effect of asiatic acid on acetylcholinesterase, excitatory post synapticpotential and locomotor activity. Phytomedicine 15:311–316

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM, Sajjadi M et al (2019) Applications of nanotechnology in daily life. In: Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z, Atarod M (eds) Interface science and technology. Elsevier, Amsterdam, pp 113–143

    Google Scholar 

  • Naveed M et al (2018) Chlorogenic acid (CGA): a pharmacological review and call for further research. Biomed Pharmacother 97:67–74

    Article  CAS  PubMed  Google Scholar 

  • Nazem A, Mansoori GA (2011) Nanotechnology for Alzheimer’s disease detection and treatment. Insciences J 1(4):169–193

    Article  CAS  Google Scholar 

  • Neag MA, Mocan A, Echeverría J, Pop RM, Bocsan CI, Crişan G et al (2018) Berberine: botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front Pharmacol 9:557

    Article  PubMed  PubMed Central  Google Scholar 

  • Nirale P et al (2020) Nanoemulsions for targeting the neurodegenerative diseases: Alzheimer’s, Parkinson’s and Prion’s. Life Sci 245:117394

    Article  CAS  PubMed  Google Scholar 

  • Oboh G, Agunloye OM, Akinyemi AJ et al (2013) Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro. Neurochem Res 38(2):413–419

    Article  CAS  PubMed  Google Scholar 

  • Ojha SK, Meeran MFN, Goyal SN et al (2018) Pharmacological properties, molecular mechanisms, and pharmaceutical development of asiatic acid: a pentacyclic triterpenoid of therapeutic promise. Front Pharmacol 9:1–35

    CAS  Google Scholar 

  • Palle S, Neerati P (2017) Quercetin nanoparticles attenuates scopolamine induced spatial memory deficits and pathological damages in rats. Bull Fac Pharm Cairo Univ 55:101–106

    Google Scholar 

  • Paolino D, Cosco D, Molinaro R et al (2011) Supramolecular devices to improve the treatment of brain diseases. Drug Discov Today 16(7–8):311–324

    Article  CAS  PubMed  Google Scholar 

  • Poddar A, Sawant KK (2017) Optimization of galantamine loaded bovine serum albumin nanoparticles by quality by design and its preliminary characterizations. J Nanomed Nanotechnol 8:459

    Article  CAS  Google Scholar 

  • Pottoo FH, Sharma S, Javed MN, Barkat MA, Harshita, Alam MS et al (2020) Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab Rev 52(1):185–204

    Article  CAS  PubMed  Google Scholar 

  • Povova J, Ambroz P, Bar M, Pavukova V, Sery O, Tomaskova H et al (2012) Epidemiological of and risk factors for Alzheimer’s disease: a review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 156:108–114

    Article  PubMed  Google Scholar 

  • Pupo E, Padrón A, Santana E, Sotolongo J, Quintana D, Dueñas S et al (2005) Preparation of plasmid DNA-containing liposomes using a high-pressure homogenization--extrusion technique. J Control Release 104(2):379–396

    Article  CAS  PubMed  Google Scholar 

  • Radwan RR et al (2020) Gamma radiation preparation of chitosan nanoparticles for controlled delivery of memantine. J Biomater Appl 34(8):1150–1162

    Article  CAS  PubMed  Google Scholar 

  • Rahman SO, Panda BP, Parvez S, Kaundal M, Hussain S, Akhtar M et al (2019) Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Aβ peptides in animal model of Alzheimer’s disease. Biomed Pharmacother 110:47–58

    Article  CAS  PubMed  Google Scholar 

  • Rajak P et al (2019) Liquid crystals: an approach in drug delivery. Indian J Pharm Sci 81(1):11–21

    Article  CAS  Google Scholar 

  • Rakotoarisoa M, Angelov B, Garamus VM et al (2019) Curcumin- and fish oil-loaded spongosome and cubosome nanoparticles with neuroprotective potential against H2O2-induced oxidative stress in differentiated human SH-SY5Y cells. ACS Omega 4(2):3061–3073

    Article  CAS  Google Scholar 

  • Ramanathan S, Archunan G, Sivakumar M, Tamil Selvan S, Fred AL, Kumar S et al (2018) Theranostic applications of nanoparticles in neurodegenerative disorders. Int J Nanomedicine 13:5561–5576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao SV et al (2018) Formulation, characterisation and in-vitro evaluation of novel ionically cross linked casein nanoparticles for memantine hydrochloride delivery. Int J Pharm Sci Res 9(8):3307–3316

    CAS  Google Scholar 

  • Raval N, Mistry T, Acharya N et al (2015) Development of glutathione-conjugated asiatic acid-loaded bovine serum albumin nanoparticles for brain-targeted drug delivery. J Pharm Pharmacol 67(11):1503–1511

    Article  CAS  PubMed  Google Scholar 

  • Raval N, Barai P, Acharya N et al (2018) Fabrication of peptide-linked albumin nanoconstructs for receptor-mediated delivery of asiatic acid to the brain as a preventive measure in cognitive impairment: optimization, in-vitro and in-vivo evaluation. Nanomed Biotechnol 46(Suppl 3):S832–S846

    CAS  Google Scholar 

  • Ravi G, Gupta NV (2017) Development of solid lipid nanoparticles of rivastigmine tartrate by using full factorial design for the treatment of Alzheimer’s disease. J Pharm Sci Res 9(12):2447–2452

    CAS  Google Scholar 

  • Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K et al (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13(11):1359–1362

    Article  CAS  PubMed  Google Scholar 

  • Rege SD, Geetha T, Griffin GD et al (2014) Neuroprotective effects of resveratrol in Alzheimer disease pathology. Front Aging Neurosci 6:218

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogawski MA, Wenk GL (2003) The neuropharmacological basis for the use of memantine in the treatment of Alzheimer’s disease. CNS Drug Rev 9(3):275–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers SL, Farlow MR, Doody RS et al (1998) A 24 week double blind placebo controlled trial of donepezil in patients with Alzheimer’s disease. Donepezil study group. Neurology 50:136–135

    Article  CAS  PubMed  Google Scholar 

  • Ruby JJ, Pandey VP (2014) Chitosan nanoparticles as a nasal drug delivery for memantine hydrochloride. In: Material science, chemistry conference [cited on 2020 Feb 20]. Available from: https://www.semanticscholar.org/paper/CHITOSAN-NANOPARTICLES-AS-A-NASAL-DRUG-DELIVERY-FOR-Ruby-Pandey/eca1f3b82d4c87d82637c7402111fe877641164d

  • Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR et al (2015) The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 93:134–145

    Article  PubMed  CAS  Google Scholar 

  • Sadowsky CH, Micca JL, Grossberg GT et al (2014) Rivastigmine from capsules to patch: therapeutic advances in the management of Alzheimer’s disease and Parkinson’s disease dementia. Prim Care Companion CNS Disord 16(5). https://doi.org/10.4088/PCC.14r01654

  • Saitou K, Ochiai R, Kozuma K, Sato H, Koikeda T, Osaki N et al (2018) Effect of chlorogenic acids on cognitive function: a randomized, double-blind, placebo-controlled trial. Nutrients 10(10):1337

    Article  PubMed Central  CAS  Google Scholar 

  • Sajjad R, Arif R, Shah AA et al (2018) Pathogenesis of Alzheimer’s disease: role of amyloid-β and hyperphosphorylated tau protein. Indian J Pharm Sci 80(4):581–591

    Article  CAS  Google Scholar 

  • Salem HF, Kharshoum RM, Abou-Taleb HA et al (2019) Brain targeting of resveratrol through intranasal lipid vesicles labelled with gold nanoparticles: in vivo evaluation and bioaccumulation investigation using computed tomography and histopathological examination. J Drug Target 27(10):1127–1124

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-López E, Ettcheto M, Egea MA, Espina M, Cano A, Calpena AC et al (2018) Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: in vitro and in vivo characterization. J Nanobiotechnol 16:32

    Article  CAS  Google Scholar 

  • Sathesh Kumar S, Felix Joe V (2017) Pharmacokinetics of tacrine loaded MPEG-PCL polymeric nanoparticles. Res J Pharm Tech 10(1):135–140

    Article  Google Scholar 

  • Schneider LS, Mangialasche F, Andreasen N, Feldman H, Giacobini E, Jones R et al (2014) Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014. J Intern Med 275(3):251–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao R, Xiao J (2013) Natural products for treatment of Alzheimer’s disease and related diseases: understanding their mechanism of action. Curr Neuropharmacol 11(4):337

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma N, Singh AN (2016) Exploring biomarkers for Alzheimer’s disease. J Clin Diagn Res 10(7):KE01–KKE6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Javed MN, Pottoo FH, Rabbani SA, Barkat MA, Harshita et al (2019) Bioresponse inspired nanomaterials for targeted drug and gene delivery. Pharm Nanotechnol 7(3):220–233

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Sharma A, Fayaz F et al (2020) Biological signatures of Alzheimer disease. Curr Top Med Chem 20(9):770–781

    Article  CAS  PubMed  Google Scholar 

  • Shimizu H, Tosaki A, Kaneko K et al (2008) Crystal structure of an active form of BACE1, an enzyme responsible for amyloid beta protein production. Mol Cell Biol 28(11):3663–3671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqi KS, Husen A, Sohrab SS et al (2018) Recent status of nanomaterial fabrication and their potential applications in neurological disease management. Nanoscale Res Lett 13(1):231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simonazzi A et al (2018) Nanotechnology applications in drug controlled release. In: Grumezescu AM (ed) Drug targeting and stimuli sensitive drug delivery systems. Elsevier, Amsterdam, pp 81–116

    Chapter  Google Scholar 

  • Singh N (2013) Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models. ACS Chem Neurosci 4(8):1151–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh M, Arseneault M, Sanderson T et al (2008) Challenges for research on polyphenols from foods in Alzheimer’s disease: bioavailability,metabolism, and cellular and molecular mechanisms. J Agric Food Chem 56:4855–4873

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Deb CR, Kakati LN et al (2014) Carbon nanotube assisted drug delivery of donepeziland its derivatives as acetylcholinesteraseenzyme (AChE) inhibitors. Nanomed Nanobiol 2(1):38–32

    Article  Google Scholar 

  • Singh NA et al (2015) Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J 15:60

    Article  CAS  Google Scholar 

  • Singh NA, Bhardwaj V, Ravi C et al (2018) EGCG nanoparticles attenuate aluminum chloride induced neurobehavioral deficits, beta amyloid and Tau pathology in a rat model of Alzheimer’s disease. Front Aging Neurosci 10:244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh AK, Singh SK, Nandi MK, Mishra G, Maurya A, Rai A et al (2019a) Berberine: a plant-derived alkaloid with therapeutic potential to combat Alzheimer’s disease. Cent Nerv Syst Agents Med Chem 19:154

    Article  CAS  PubMed  Google Scholar 

  • Singh AP, Biswas A, Shukla A et al (2019b) Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Sig Transduct Target Ther 4:33

    Article  CAS  Google Scholar 

  • Sivasankarapillai VS, Jose J, Shanavas MS et al (2019) Silicon quantum dots: promising theranostic probes for the future. Curr Drug Targets 20(12):1255–1263

    Article  CAS  PubMed  Google Scholar 

  • Smith AJ, Kavuru P, Arora KK, Kesani S, Tan J, Zaworotko MJ et al (2013) Crystal engineering of green tea epigallocatechin-3-gallate (EGCg) cocrystals and pharmacokinetic modulation in rats. Mol Pharm 10(8):2948–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soldatia PP, Poloninia HC, Paesa CQ et al (2018) Controlled release of resveratrol from lipid nanoparticles improves antioxidant effect. IFAC-PapersOnLine 51(27):16–21

    Article  Google Scholar 

  • Stegemann S, Leveiller F, Franchi D et al (2007) When poor solubility becomes an issue: from early stage to proof of concept. Eur J Pharm Sci 31(5):249–261

    Article  CAS  PubMed  Google Scholar 

  • Stojanovic-Radic Z, Pejcic M, Dimitrijevic M, Aleksic A, Anil Kumar NV, Salehi B et al (2019) Piperine-a major principle of black pepper: a review of its bioactivity and studies. Appl Sci 270:1–29

    Google Scholar 

  • Summerlin N, Soo E, Thakur S et al (2015) Resveratrol nanoformulations: challenges and opportunities. Int J Pharm 479(2):282–290

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Li N, Zhang W, Zhao Z, Mou Z, Huang D et al (2016) Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Colloids Surf B Biointerfaces 148:116–129

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Jiang G, Shigemori H et al (2019) Inhibitory activity on amyloid aggregation of rosmarinic acid and its substructures from Isodon japonicas. Nat Prod Commun 14(5):1–5

    Google Scholar 

  • Sunena, et al. (2019) Nose to brain delivery of galantamine loaded nanoparticles: in-vivo pharmacodynamic and biochemical study in mice. Curr Drug Deliv 16(1):51–58

    Article  CAS  Google Scholar 

  • Swerdlow RH (2007) Pathogenesis of Alzheimer’s disease. Clin Interv Aging 2(3):347–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szoka F Jr, Papahadjopoulos D (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A 75(9):4194–4198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takooree H, Aumeeruddy MZ, Rengasamy KRR, Venugopala KN, Jeewon R, Zengin G et al (2019) A systematic review on black pepper (Piper nigrum L.): from folk uses to pharmacological applications. Crit Rev Food Sci 59(Supp;l 1):S210–S243

    Article  CAS  Google Scholar 

  • Tamba BI, Streinu V, Foltea G, Neagu AN, Dodi G, Zlei M et al (2018) Tailored surface silica nanoparticles for blood-brain barrier penetration: preparation and in-vivo investigation. Arab J Chem 11:981–990

    Article  CAS  Google Scholar 

  • Tamilselvan N, Raghavan CV, Balakumar K et al (2014) Brain targeted delivery of rivastigmine polymeric nanoparticles through oral administration to treat Alzheimer’s disease. Int J Res Pharm Nano Sci 3(6):536–551

    CAS  Google Scholar 

  • Tang M, Taghibiglou C (2017) The mechanisms of action of curcumin in Alzheimer’s disease. J Alzheimers Dis 58(4):1003–1016

    Article  CAS  PubMed  Google Scholar 

  • Tao X, Li Y, Hu Q, Zhu L, Huang Z, Yi J et al (2018) Preparation and drug release study of novel nanopharmaceuticals with polysorbate 80 surface adsorption. Appl Nanomater Bioeng 2018:4718045. https://doi.org/10.1155/2018/4718045

    Article  CAS  Google Scholar 

  • Taram F, Ignowski E, Duval N et al (2018) Neuroprotection comparison of rosmarinic acid and carnosic acid in primary cultures of cerebellar granule neurons. Molecules 23(11):2956

    Article  PubMed Central  Google Scholar 

  • Teleanu DM, Negut I, Grumezescu V et al (2019) Nanomaterials for drug delivery to the central nervous system. Nanomaterials (Basel, Switzerland) 9(3):371

    Article  CAS  Google Scholar 

  • Testa G, Gamba P, Badilli U, Gargiulo S, Maina M, Guina T et al (2014) Loading into nanoparticles improves quercetin’s efficacy in preventing neuroinflammation induced by oxysterols. PLoS One 9(5):e96795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thies W, Bleiler L (2013) Alzheimer’s disease facts and figures. Alzheimers Dement 9(2):208–245

    Google Scholar 

  • Tiwari SK, Agarwal S, Seth B et al (2013) Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 8(1):76–103

    Article  PubMed  CAS  Google Scholar 

  • Tu S, Okamoto S, Lipton SA et al (2014) Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease. Mol Neurodegener 9:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tumiatti V, Minarini A, Bolognesi ML et al (2010) Tacrine derivatives and Alzheimer’s disease. Curr Med Chem 17(17):1825–1838

    Article  CAS  PubMed  Google Scholar 

  • Vijaykumar O et al (2014) Formulation and evaluation of rivastigmine loaded polymeric nanoparticles. J Chem Pharm Res 6(10):556–565

    Google Scholar 

  • Vitorino C, Carvalho FA, Almeida AJ et al (2011) The size of solid lipid nanoparticles: an interpretation from experimental design. Colloids Surf B Biointerfaces 84(1):117–130

    Article  CAS  PubMed  Google Scholar 

  • Wadhwa S, Singhal S, Rawat S et al (2014) Bioavailability enhancement by piperine: a review. Asian J Biomed Pharm Sci 4(36):1–8

    Google Scholar 

  • Wang R, Tang XC (2005) Neuroprotective effects of huperzine A. a natural cholinesterase inhibitor for the treatment of Alzheimer’s disease. Neurosignals 14(1–2):71–82

    Article  CAS  PubMed  Google Scholar 

  • Wang R et al (2006) Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol Sin 27:1–26

    Article  PubMed  CAS  Google Scholar 

  • Weller J, Budson A (2018) Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res 7:1161. https://doi.org/10.12688/f1000research.14506.1

    Article  CAS  Google Scholar 

  • Williams RJ et al (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36:838–849

    Article  CAS  PubMed  Google Scholar 

  • Wilson B, Samanta MK, Santhi K et al (2008) Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm 70(1):75–74

    Article  CAS  PubMed  Google Scholar 

  • Wilson B, Samanta MK, Santhi K et al (2010) Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine. Nanomedicine 6(1):144–152

    Article  CAS  PubMed  Google Scholar 

  • Wilson B et al (2011) Design and evaluation of chitosan nanoparticles as novel drug carrier for the delivery of rivastigmine to treat Alzheimer’s disease. Ther Deliv 2(5):599–609

    Article  CAS  PubMed  Google Scholar 

  • Xu SS, Cai ZY, Qu ZW, Yang RM, Cai YL, Wang GQ et al (1999) Huperzine-A in capsules and tablets for treating patients with Alzheimer disease. Acta Pharmacol Sin 20(6):486–490

    CAS  Google Scholar 

  • Yang L, Wang N, Zheng G et al (2018) Enhanced effect of combining chlorogenic acid on selenium nanoparticles in inhibiting amyloid β aggregation and reactive oxygen species formation in vitro. Nanoscale Res Lett 13:303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yusuf M, Khan M, Khan RA et al (2013) Preparation, characterization, in vivo and biochemical evaluation of brain targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s disease model. J Drug Target 21(3):300–311

    Article  CAS  PubMed  Google Scholar 

  • Zaplatic E, Bule M, Shah SZA et al (2019) Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci 224:109–119

    Article  CAS  PubMed  Google Scholar 

  • Zetterberg H, Burnham SC (2019) Blood-based molecular biomarkers for Alzheimer’s disease. Mol Brain 12:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Zhou X, Yu Q, Yang L, Sun D, Zhou Y et al (2014) Epigallocatechin-3-Gallate (EGCG)-stabilized selenium nanoparticles coated with Tet-1 peptide to reduce amyloid-β aggregation and cytotoxicity. ACS Appl Mater Interfaces 6(11):8475–8487

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Wan X, Zheng X et al (2014a) Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials 35(1):456–465

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Chen J, Feng C et al (2014b) Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease. Int J Pharm 461(1–2):192–202

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z (2013) Liposome formulation of fullerene-based molecular diagnostic and therapeutic agents. Pharmaceutics 5(4):525–541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, P., Mishra, G., Pottoo, F.H., Zeleke, M.M., Ewunetei, A. (2022). Nanotechnological Applications in the Diagnosis and Treatment of Alzheimer’s Dementia. In: Ashraf, G.M., Uddin, M.S. (eds) Current Thoughts on Dementia. Springer, Singapore. https://doi.org/10.1007/978-981-16-7606-2_22

Download citation

Publish with us

Policies and ethics