Skip to main content
Book cover

Lectins pp 185–214Cite as

Lectins in Health and Diseases: Mannan-Binding Lectin and Infectious Diseases

  • Chapter
  • First Online:
  • 381 Accesses

Abstract

Mannan-binding lectin (MBL), a pathogen recognition receptor of the innate immune system, plays a key role in all types of infections and diseases. The ability of MBL to recognize pathogens facilitates immune mechanisms to function efficiently for the clearance of disease-causing agents. MBL not only initiates activation of lectin complement pathway but also simultaneously facilitates other effector functions of the immune system, such as proinflammatory responses, generation of reactive oxygen species, and phagocytosis. Thus, appropriate levels of MBL provide protection from the majority of diseases. However, certain intracellular organisms whose phagocytosis is increased due to opsonization with MBL get benefits from higher levels of MBL and thus in such cases MBL becomes a facilitator for these organisms to cause diseases. MBL being protective or increasing the susceptibility to various bacterial, viral, parasitic, and fungal infections has been extensively studied. Few important polymorphic sites in the exon and promoter region of MBL gene have been reported and they cause extensive variations in serum MBL concentration. Association of occurrence of diseases with the genetic variants has also been scientifically proven. Even though the immune system of the host is well equipped, pathogens have evolved to employ various survival strategies and evade immune response to cause disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AIDS:

Acquired Immunodeficiency Syndrome

BBB:

Blood–Brain Barrier

C1–C9:

Complement Proteins C1–C9

CMV:

Cytomegalovirus

COPD:

Chronic Obstructive Pulmonary Disease

CRD:

Carbohydrate Recognition Domain

DV:

Dengue virus

HA:

hemagglutinin

HBV:

Hepatitis B virus

HCV:

Hepatitis C virus

HIV-1:

Human Immunodeficiency Virus 1

IAV:

Influenza A Virus

MAC:

Membrane attack complex

MASPs:

MBL-associated Serine Proteases

MBL:

Mannan-binding Lectin

NA:

Neuraminidase

PAMPs:

Pathogen Associated Molecular Patterns

PID:

Pelvic Inflammatory Diseases

PRR:

Pattern Recognition Receptor

RTI:

Respiratory Tract Infections

SARS-CoV:

Severe Acute Respiratory Syndrome Coronavirus

UTI:

Urinary Tract Infection

WNV:

West Nile Virus

References

  • Al-Ahdal MN, Murugaiah V, Varghese PM, Abozaid SM, Saba I, Al-Qahtani AA et al (2018) Entry inhibition and modulation of pro-inflammatory immune response against influenza a virus by a recombinant truncated surfactant protein D. Front Immunol 30(9):1586

    Article  Google Scholar 

  • Ali YM, Ferrari M, Lynch NJ, Yaseen S, Dudler T, Gragerov S, Demopulos G, Heeney JL, Schwaeble WJ (2021) Lectin pathway mediates complement activation by SARS-CoV-2 proteins. Front Immunol 12:714511. https://doi.org/10.3389/fimmu.2021.714511

  • Alonso DP, Ferreira AF, Ribolla PE, De Miranda Santos IK, Do Socorro Pires E, Cruz M, Aecio DeCarvalho F, Abatepaulo AR, Lamounier Costa D, Werneck GL, Farias TJ, Soares MJ, Costa CH (2007) Genotypes of the mannan-binding lectin gene and susceptibility to visceral leishmaniasis and clinical complications. J Infect Dis 195:1212–1217

    Article  CAS  PubMed  Google Scholar 

  • Ambrosio AR, De Messias-Reason IJT (2005) Leishmania (Viannia) Braziliensis: interaction of Mannose-binding lectin with surface glycoconjugates and complement activation. An antibody-independent defence mechanism. Parasite Immunol 27(9):333–340. https://doi.org/10.1111/j.1365-3024.2005.00782.x

    Article  CAS  PubMed  Google Scholar 

  • Annanea D, Hemingb N, Grimaldi-Bensoudac L et al (2020) Eculizumab as an emergency treatment for adult patients with severe COVID-19 in the intensive care unit: A proof-of-concept study. EClinicalMedicine 28:100590. https://doi.org/10.1016/j.eclinm.2020.100590

    Article  Google Scholar 

  • Antony JS, Ojurongbe O, Van Tong H, Ouf EA, Engleitner T, Akindele AA et al (2013) Mannose-binding lectin and susceptibility to schistosomiasis. J Infect Dis [Internet] 207(11):1675–1683

    Article  CAS  Google Scholar 

  • Areeshi MY, Mandal RK, Akhter N, Dar SA, Jawed A, Wahid M, Mahto H, Panda AK, Lohani M, Haque S (2016) A meta-analysis of MBL2 polymorphisms and tuberculosis risk. Sci Rep 6. https://doi.org/10.1038/srep35728

  • van Asbeck EC, Hoepelman AIM, Scharringa J, Herpers BL, Verhoef J (2008) Mannose binding lectin plays a crucial role in innate immunity against yeast by enhanced complement activation and enhanced uptake of polymorphonuclear cells. BMC Microbiol 8:1–10. https://doi.org/10.1186/1471-2180-8-229

    Article  CAS  Google Scholar 

  • Asgharzadeh M, Mazloumi A, Kafil HS, Ghazanchaei A (2007) Mannose-binding lectin gene and promoter polymorphism in visceral leishmaniasis caused by Leishmania infantum. Pak J Biol Sci 10(11):1850–1854

    Article  CAS  PubMed  Google Scholar 

  • Avirutnan P, Hauhart RE, Marovich MA, Garred P, Atkinson JP, Diamond MS (2011) Complement-Mediated Neutralization of Dengue Virus Requires Mannose-Binding Lectin. mBio [Internet] 2(6) Available from: https://journals.asm.org/doi/10.1128/mBio.00276-11

  • Ballegaard V, Haugaard AK, Garred P, Nielsen SD, Munthe-Fog L (2014) The lectin pathway of complement: Advantage or disadvantage in HIV pathogenesis? Clin Immunol. 154(1):13–25

    Article  CAS  PubMed  Google Scholar 

  • Bartlomiejczyk MA, Swierzko AS, Brzostek A, Dziadek J, Cedzynski M (2014) Interaction of lectin pathway of complement-activating pattern recognition molecules with mycobacteria. Clin Exp Immunol 178(2):310–319. https://doi.org/10.1111/cei.12416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bathum L, Hansen H, Teisner B, Koch C, Garred P, Rasmussen K, Wang P (2006) Association between combined properdin and mannose-binding lectin deficiency and infection with Neisseria meningitidis. Mol Immunol 43:473–479. https://doi.org/10.1016/j.molimm.2005.02.017

    Article  CAS  PubMed  Google Scholar 

  • Blom AM, Ram S (2008) Contribution of interactions between complement inhibitor C4b-binding protein and pathogens to their ability to establish infection with particular emphasis on Neisseria gonorrhoeae. Vaccine 26:49–55. https://doi.org/10.1016/j.vaccine.2008.11.049

    Article  CAS  Google Scholar 

  • Boldt AB, Messias-Reason IJ, Lell B, Issifou S, Pedroso MLA, Kremsner PG et al (2009) Haplotype specific-sequencing reveals MBL2 association with asymptomatic Plasmodium falciparum infection. Malar J [Internet] 8(1) Available from: https://pubmed.ncbi.nlm.nih.gov/19432958/

  • Boldt ABW, Goeldner I, Stahlke ERS, Thiel S, Jensenius JC, de Messias-Reason IJT (2013) Leprosy association with low MASP-2 levels generated by MASP2 haplotypes and polymorphisms flanking MAp 19 exon 5. Plos One 8(7):e69054. https://doi.org/10.1371/journal.pone.0069054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boldt ABW, de Freitas Oliveira-Toré C, Kretzschmar GC, Mendes HW, Stinghen ST, Andrade FA, Bumiller-Bini V, Gonçalves LB, de Moraes Braga AC, von Rosen Seeling Stahlke E, Velavan TP, Thiel S, de Messias-Reason IJT (2021) Hepatitis B virus infection among leprosy patients: a case for polymorphisms compromising activation of the lectin pathway and complement receptors. Front Immunol 11:574457. https://doi.org/10.3389/fimmu.2020.574457. eCollection 2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown KS, Keogh MJ, Owsianka AM, Adair R, Patel AH, Arnold JN et al (2010) Specific interaction of hepatitis C virus glycoproteins with mannan binding lectin inhibits virus entry. Protein Cell 1(7):664–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brudner M, Karpel M, Lear C, Chen L, Yantosca LM, Scully C et al (2013) Lectin-Dependent Enhancement of Ebola Virus Infection via Soluble and Transmembrane C-type Lectin Receptors. PLoS ONE 8(4):e60838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brummer E, Capilla J, Bythadka L, Stevens DA (2007) Production of IL-6, in contrast to other cytokines and chemokines, in macrophage innate immune responses: effect of serum and fungal (Blastomyces) challenge. Cytokine 39:163–170. https://doi.org/10.1016/j.cyto.2007.07.001

    Article  CAS  PubMed  Google Scholar 

  • Carmolli M, Duggal P, Haque R, Lindow J, Mondal D, Petri WA Jr, Mourningstar P, Larsson CJ, Sreenivasan M, Khan S, Kirkpatrick BD (2009) Deficient Serum Mannose-Binding Lectin Levels and MBL2 Polymorphisms Increase the Risk of Single and Recurrent Cryptosporidium Infections in Young Children. J Infect Dis. 200(10):1540–1547

    Article  CAS  PubMed  Google Scholar 

  • Catano G, Kulkarni H, He W, Marconi VC, Agan BK, Landrum M et al (2008) HIV-1 Disease-Influencing Effects Associated with ZNRD1, HCP5 and HLA-C Alleles Are Attributable Mainly to Either HLA-A10 or HLA-B*57 Alleles. PLoS ONE 3(11):e3636

    Article  PubMed  PubMed Central  Google Scholar 

  • Cestari IDS, Evans-Osses I, Freitas JC, Inal JM, Ramirez MI (2008) Complement C2 receptor inhibitor Trispanning confers an increased ability to resist complement-mediated lysis in Trypanosoma Cruzi. J Infect Dis 198(9):1276–1283. https://doi.org/10.1086/592167

    Article  CAS  Google Scholar 

  • Chang W-C, White MR, Moyo P, McClear S, Thiel S, Hartshorn KL et al (2010) Lack of the pattern recognition molecule mannose-binding lectin increases susceptibility to influenza a virus infection. BMC Immunol 11(1):64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi EH, Zimmerman PA, Foster CB, Zhu S, Kumaraswami V, Nutman TB, Chanock SJ (2001) Genetic polymorphisms in molecules of innate immunity and susceptibility to infection withWuchereria bancrofti in South India. Genes Immun 2:248–253

    Article  CAS  PubMed  Google Scholar 

  • Chong WP, To YF, Ip WK, Yuen MF, Poon TP, Wong WHS et al (2005) Mannose-binding lectin in chronic hepatitis B virus infection. Hepatology 42(5):1037–1045

    Article  CAS  PubMed  Google Scholar 

  • Chong YP, Park KH, Kim ES, Kim MN, Kim SH, Lee SO, Choi SH, Jeong JY, Woo JH, Kim YS (2014) Association of mannose-binding lectin 2 gene polymorphisms with persistent Staphylococcus aureus bacteremia. PLoS One 9:1–7. https://doi.org/10.1371/journal.pone.0089139

    Article  CAS  Google Scholar 

  • Coureuil M, Join-Lambert O, Lécuyer H, Bourdoulous S, Marullo S, Nassif X (2012) Mechanism of meningeal invasion by Neisseria meningitidis. Virulence 3:164–172. https://doi.org/10.4161/viru.18639

    Article  PubMed  PubMed Central  Google Scholar 

  • Crosdale DJ, Poulton KV, Ollier WE, Thomson W, Denning DW(2001) Mannose-binding lectin gene polymorphisms as a susceptibility factor for chronic necrotizing pulmonary aspergillosis. J Infect Dis 184:653–656. https://doi.org/10.1086/322791

  • Davies J, Neth O, Alton E, Klein N (2000) Differential binding of mannose- binding lectin to respiratory pathogens in cystic fibrosis cancer risk in patients on dialysis and after renal transplantation. Lancet 355:1885–1886

    Article  CAS  PubMed  Google Scholar 

  • Davis AE, Whitehead AS, Harrison RA, Dauphinais A, Bruns GA, Cicardi M, Rosen FS (1986) Human inhibitor of the first component of complement, C1: characterization of cDNA clones and localization of the gene to chromosome 11. Proc Natl Acad Sci U S A 83:3161–3165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Araujo FJ, Mesquita TG, Da Silva LDO, De Almeida SA, De S, Vital W, Chrusciak-Talhari A et al (2015) Functional variations in MBL2 gene are associated with cutaneous leishmaniasis in the Amazonas state of Brazil. Genes Immun [Internet] 16(4):284–288. Available from: https://pubmed.ncbi.nlm.nih.gov/25764115/

    Article  Google Scholar 

  • De Miranda Santos IK, Costa CH, Krieger H, Feitosa MF, Zurakowski D, Fardin B et al (2001) Mannan-binding lectin enhances susceptibility to visceral leishmaniasis. Infect Immun 69(8):5212–5215

    Article  PubMed Central  Google Scholar 

  • Devyatyarova-Johnson M, Rees IH, Robertson BD, Turner MW, Klein NJ, Jack DL (2000) The lipopolysaccharide structures of Salmonella enterica serovar typhimurium and Neisseria gonorrhoeae determine the attachment of human mannose-binding lectin to intact organisms. Infect Immun 68:3894–3899. https://doi.org/10.1128/IAI.68.7.3894-3899.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • do Carmo RF, Neves JRL, Oliveira PRS, Vasconcelos LRS, de Souza CDF (2021) The role of mannose-binding lectin in leprosy: a systematic review. Infect Genet Evol 93:104945. https://doi.org/10.1016/J.MEEGID.2021.104945

    Article  PubMed  Google Scholar 

  • Dommett RM, Klein N, Turner MW, Turner MW (2006) Mannose-binding lectin in innate immunity: past, present and future, pp 193–209. https://doi.org/10.1111/j.1399-0039.2006.00649.x

    Book  Google Scholar 

  • Donders GGG, Babula O, Bellen G, Linhares IM, Witkin SS (2008) Mannose-binding lectin gene polymorphism and resistance to therapy in women with recurrent vulvovaginal candidiasis. BJOG Int J Obstetr Gynaecol 115(10):1225–1231. https://doi.org/10.1111/j.1471-0528.2008.01830.x

    Article  CAS  Google Scholar 

  • Emmerik LCVAN, Kuijper EJ, Fijen CAP, Dankert J, Thiel S, Thiee S (1994) Binding of mannan-binding protein to various bacterial pathogens of meningitis. Clin Expt Immunol 97:411–416. https://doi.org/10.1111/j.1365-2249.1994.tb06103.x

    Article  Google Scholar 

  • Eisen DP, Marshall C, Dean MM, Sasadeusz J, Richards M, Buising K et al (2011) No association between mannose-binding lectin deficiency and H1N1 2009 infection observed during the first season of this novel pandemic influenza virus. Hum Immunol 72(11):1091–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faber J, Schuessler T, Finn A, Murdoch C, Zenz W, Habermehl P, Meyer CU et al (2007) Age-dependent association of human mannose-binding lectin mutations with susceptibility to invasive meningococcal disease in childhood. Pediatr Infect Dis J 26(3):243–246. https://doi.org/10.1097/01.inf.0000256751.76218.7c

    Article  PubMed  Google Scholar 

  • Frank SA (1997) Recognition and polymorphism in host-parasite genetics. In: Hamilton WD, Howard JC (eds) Infection, polymorphism and evolution. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0077-6_2

    Chapter  Google Scholar 

  • García-Laorden MI, Rodríguez De Castro F, Solé-Violán J, Payeras A, Briones ML, Borderías L, Aspa J, Blanquer J, Rajas O, Marcos-Ramos JA, Herrera-Ramos E, García-Bello MA, Noda J, Ferrer JM, Rello J, Rodríguez-Gallego C (2013) The role of mannose-binding lectin in pneumococcal infection. Eur Respir J 41:131–139. https://doi.org/10.1183/09031936.00174111

    Article  CAS  PubMed  Google Scholar 

  • Garred P, Larsen F, Seyfarth J, Fujita R, Madsen HO (2006) Mannose-binding lectin and its genetic variants. Genes Immun 7(2):85–94

    Article  CAS  PubMed  Google Scholar 

  • Garred P, Madsen HO, Balslev U, Hofmann B, Pedersen C, Gerstoft J et al (1997) Susceptibility to HIV infection and progression of AIDS in relation to variant alleles of mannose-binding lectin. Lancet 349(9047):236–240

    Article  CAS  PubMed  Google Scholar 

  • Garred P, Nielsen MA, Kurtzhals JAL, Malhotra R, Madsen HO, Goka BQ et al (2003) Mannose-binding lectin is a disease modifier in clinical malaria and may function as opsonin for Plasmodium falciparum-infected erythrocytes. Infect Immun [Internet] 71(9):5245–5253. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12933871

    Article  CAS  Google Scholar 

  • Ghezzi MC, Raponi G, Angeletti S, Mancini C (1998) Serum-mediated enhancement of TNF-α release by human monocytes stimulated with the yeast form of Candida Albicans. J Infect Dis 178(6):1743–1749. https://doi.org/10.1086/314484

    Article  CAS  PubMed  Google Scholar 

  • Granell M, Urbano-Ispizua A, Suarez B, Rovira M, Fernández-Avilés F, Martínez C, Ortega M, Uriburu C, Gaya A, Roncero JM, Navarro A, Carreras E, Mensa J, Vives J, Rozman C, Montserrat E, Lozano F (2006) Mannan-binding lectin pathway deficiencies and invasive fungal infections following allogeneic stem cell transplantation. Exp Hematol 34:1435–1441. https://doi.org/10.1016/j.exphem.2006.06.005

    Article  CAS  PubMed  Google Scholar 

  • Green PJ, Feizi T, Stoll MS, Thiel S, Mcconville MJ (1994) Recognition of the major cell surface glycoconjugates of Leishmania parasites by the human serum Mannan-binding protein. Mol Biochem Parasitol 66:319–328

    Article  CAS  PubMed  Google Scholar 

  • Gulla KC, Gupta K, Krarup A, Gal P, Sim RB, O’Connor CD, Hajela K (2010) Activation of mannan-binding lectin-associated serine proteases leads to generation of a fibrin clot. Immunology 129(4):482–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo N, Mogues T, Weremowicz S, Morton CC, Sastry KN (1998) Expressed pseudogene that localizes to chromosome 10. J Biol Chem 249:246–249

    Google Scholar 

  • Hair PS, Gronemus JQ, Crawford KB, Salvi VP, Cunnion KM, Thielens NM, Arlaud GJ, Rawal N, Krishna NK (2010) Human Astrovirus coat protein binds C1q and MBL and inhibits the classical and lectin pathways of complement activation. Mol Immunol 47(4):792–798. https://doi.org/10.1016/j.molimm.2009.10.006

    Article  CAS  PubMed  Google Scholar 

  • Hajela K, Kojima M, Ambrus G, Wong KHN, Moffatt BE, Ferluga J, Hajela S, Gál P, Sim RB (2002) The biological functions of MBL-associated serine protease(MASPs). Immunobiology 205:467–475

    Article  CAS  PubMed  Google Scholar 

  • Hamvas RMJ, Johnson M, Vlieger AM, Ling C, Sherriff A, Wade A, Klein NJ, Turner MW, Alspac T, Team S, Webster ADB (2005) Role for mannose binding lectin in the prevention of mycoplasma. Infection 73:5238–5240. https://doi.org/10.1128/IAI.73.8.5238

    Article  CAS  Google Scholar 

  • Hartshorn KL, Sastry K, White MR, Anders EM, Super M, Ezekowitz RA et al (1993) Human mannose-binding protein functions as an opsonin for influenza a viruses. J Clin Invest 91(4):1414–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Héja D, Kocsis A, Dobó J, Szilágyi K, Szász R, Závodszky P, Pál G, Gál P (2012) Revised mechanism of complement lectin-pathway activation revealing the role of serine protease MASP-1 as the exclusive activator of MASP-2. Proc Natl Acad Sci 109(26):10498–10503. https://doi.org/10.1073/pnas.1202588109

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271–280.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmberg V, Schuster F, Dietz E, Sagarriga Visconti JC, Anemana SD, Bienzle U, Mockenhaupt FP (2008) Mannose-binding lectin variant associated with severe malaria in young African children. Microbes Infect 10:342–348

    Article  CAS  PubMed  Google Scholar 

  • Hovingh ES, van den Broek B, Jongerius I (2016) Hijacking complement regulatory proteins for bacterial immune evasion. Front Microbiol 7(DEC):1–20. https://doi.org/10.3389/fmicb.2016.02004

    Article  Google Scholar 

  • Huang SH, Stins MF, Kim KS (2000) Bacterial penetration across the blood-brain barrier during the development of neonatal meningitis. Microbes Infect 2(10):1237–1244. https://doi.org/10.1016/s1286-4579(00)01277-6.2

    Article  CAS  PubMed  Google Scholar 

  • Inal JM, Sim RB (2000) A Schistosoma protein, Sh-TOR, is a novel inhibitor of complement which binds human C2. FEBS Lett 470(2):131–134. https://doi.org/10.1016/S0014-5793(00)01304-1

    Article  CAS  PubMed  Google Scholar 

  • Ip WKE, Chan KH, Law HKW, Tso GHW, Kong EKP, Wong WHS et al (2005) Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection. J Infect Dis 191(10):1697–1704

    Article  CAS  PubMed  Google Scholar 

  • Ip WK, Lau YL (2004) Role of Mannose-binding lectin in the innate defense against Candida Albicans: enhancement of complement activation, but lack of opsonic function, in phagocytosis by human dendritic cells. J Infect Dis 190(3):632–640. https://doi.org/10.1086/422397

    Article  CAS  PubMed  Google Scholar 

  • Jack DL, Lee ME, Turner MW, Klein NJ, Read RC (2005) Mannose-binding lectin enhances phagocytosis and killing of Neisseria meningitidis by human macrophages. J Leukoc Biol 77(3):328–336

    Article  CAS  PubMed  Google Scholar 

  • Jha AN, Sundaravadivel P, Singh VK et al (2014) MBL2 variations and malaria susceptibility in Indian populations. Infect Immun 82(1):52–61. https://doi.org/10.1128/IAI.01041-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji X, Olinger GG, Aris S, Chen Y, Gewurz H, Spear GT (2005) Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization. J Gen Virol 86(9):2535–2542

    Article  CAS  PubMed  Google Scholar 

  • Job ER, Deng Y-M, Tate MD, Bottazzi B, Crouch EC, Dean MM et al (2010) Pandemic H1N1 influenza a viruses are resistant to the antiviral activities of innate immune proteins of the collectin and pentraxin superfamilies. J Immunol 185(7):4284–4291

    Article  CAS  PubMed  Google Scholar 

  • Jusko M, Potempa J, Mizgalska D, Bielecka E, Ksiazek M, Riesbeck K, Garred P, Eick S, Blom AM (2015) A metalloproteinase Mirolysin of Tannerella forsythia inhibits all pathways of the complement system. J Immunol 195(5):2231–2240. https://doi.org/10.4049/jimmunol.1402892

    Article  CAS  PubMed  Google Scholar 

  • Jusko M, Potempa J, Karim AY, Ksiazek M, Riesbeck K, Garred P, Eick S, Blom AM (2012) A metalloproteinase Karilysin present in the majority of Tannerella forsythia isolates inhibits all pathways of the complement system. J Immunol 188(5):2338–2349. https://doi.org/10.4049/jimmunol.1101240

    Article  CAS  PubMed  Google Scholar 

  • Kalia N, Singh J, Kaur M (2021) The ambiguous role of Mannose-binding lectin (MBL) in human immunity. Open Medicine (Poland) 16(1):299–310. https://doi.org/10.1515/med-2021-0239

    Article  CAS  Google Scholar 

  • Kase S, Kawai S, Ohtani E et al (1999) Human mannan-binding lectin inhibits the infection of influenza a virus without complement. Immunology 97(3):385–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur S, Gupta VK, Thiel S, Sarma PU, Madan T (2007) Protective role of Mannan-binding lectin in a murine model of invasive pulmonary aspergillosis. Clin Exp Immunol 148(2):382–389. https://doi.org/10.1111/j.1365-2249.2007.03351.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawasaki N, Kawasaki T, YAMASHINA I. (1983) Isolation and characterization of a mannan-binding protein from human serum. J Biochem 94(3):937–947

    Article  CAS  PubMed  Google Scholar 

  • Keizer MP, Wouters D, Schlapbach LJ, Kuijpers TW (2014 Oct) Restoration of MBL-deficiency: redefining the safety, efficacy and viability of MBL-substitution therapy. Mol Immunol 61(2):174–184. https://doi.org/10.1016/j.molimm.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  • Kilpatrick DC (2002) Mannan-Binding Lectin and Its Role in Innate Immunity. Transfus Med 12:335–352

    Article  CAS  PubMed  Google Scholar 

  • Klabunde J, Uhlemann AC, Tebo AE, Kimmel J, Schwarz RT, Kremsner PG, Kun JF (2002) Recognition of Plasmodium falciparum proteins by mannan-binding lectin, a component of the human innate immune system. Parasitol Res 88:113–117

    Article  PubMed  Google Scholar 

  • Koneti A, Linke MJ, Brummer E, Stevens DA (2008) Evasion of innate immune responses: evidence for Mannose binding lectin inhibition of tumor necrosis factor alpha production by macrophages in response to blastomyces dermatitidis. Infect Immun 76(3):994–1002. https://doi.org/10.1128/IAI.01185-07

    Article  CAS  PubMed  Google Scholar 

  • Krarup A, Gulla KC, Gál P, Hajela K, Sim RB (2008) The action of MBL-associated serine protease 1 (MASP1) on factor XIII and fibrinogen. Biochim Biophys Acta 1784(9):1294–1300

    Article  CAS  PubMed  Google Scholar 

  • Kuhlman M, Joiner K, Ezekowitz R (1989) The human mannose binding protein functions as an opsonin. J Exp Med 169(5):1733–1745

    Article  CAS  PubMed  Google Scholar 

  • Kwakkel-van Erp JM, Paantjens AWM, van Kessel DA, Grutters JC, van den Bosch JMM, van de Graaf EA et al (2011 Sep) Mannose-binding lectin deficiency linked to cytomegalovirus (CMV) reactivation and survival in lung transplantation: MBL deficiency and clinical outcome. Clin Exp Immunol 165(3):410–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lathem WW, Bergsbaken T, Welch RA (2004) Potentiation of C1 esterase inhibitor by StcE, a metalloprotease secreted by Escherichia Coli O157:H7. J Exp Med 199(8):1077–1087. https://doi.org/10.1084/jem.20030255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letko M, Marzi A, Munster V (2020) Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 5:562–569. https://doi.org/10.1038/s41564-020-0688-y

    Article  CAS  PubMed  Google Scholar 

  • Lewis LA, Ram S (2014) Meningococcal disease and the complement system. Virulence 5(1):98–126. https://doi.org/10.4161/viru.26515

    Article  PubMed  Google Scholar 

  • Li D, Dong B, Tong Z, Wang Q, Liu W, Wang Y, Liu W et al (2012) MBL-mediated Opsonophagocytosis of Candida Albicans by Human Neutrophils Is Coupled with Intracellular Dectin-1-Triggered ROS Production. PLoS ONE 7(12):9–13. https://doi.org/10.1371/journal.pone.0050589

    Article  CAS  Google Scholar 

  • Lillegard JB, Sim RB, Thorkildson P, Gates MA, Kozel TR (2006) Recognition of Candida Albicans by Mannan-binding lectin in vitro and in vivo. J Infect Dis 193(11):1589–1597. https://doi.org/10.1086/503804

    Article  CAS  PubMed  Google Scholar 

  • Lipscombe RJ, Sumiya M, Hill AVS, Lau YL, Levinsky RJ, Summerfield JA, Turner MW (1993) High frequencies in African and non-African populations of independent mutation in the Mannose binding protein gene. Hum Mol Genet 2(3):342. https://doi.org/10.1093/hmg/2.3.342

    Article  CAS  Google Scholar 

  • Logan PG, Bissett, Gordon D (2014) 基因的改变NIH public access. Bone 23(1):1–7. https://doi.org/10.4049/jimmunol.1401600.The

    Article  Google Scholar 

  • Luty AJ, Kun JF, Kremsner PG (1998) Mannose-binding lectin plasma levels and gene polymorphisms in Plasmodium falciparum malaria. J Infect Dis 178:1221–1224

    Article  CAS  PubMed  Google Scholar 

  • Luz PR, Miyazaki MI, Chiminacio Neto N, Padeski MC, Barros ACM, Boldt ABW et al (2016) Genetically determined MBL deficiency is associated with protection against chronic cardiomyopathy in Chagas disease. PLoS Negl Trop Dis [Internet] 10(1):e0004257

    Article  Google Scholar 

  • Ma Y, Uemura K, Oka S, Kozutsumi Y, Kawasaki N, Kawasaki T (1999) Antitumor activity of mannan-binding protein in vivo as revealed by a virus expression system: mannan binding proteindependent cell-mediated cytotoxicity. Proc Natl Acad Sci 96(2):371–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madan T, Kaur S, Saxena S, Singh M, Kishore U, Thiel S, Reid KBM, Sarma PU (2005) Role of Collectins in innate immunity against aspergillosis. Med Mycol 43(SUPPL.1):155–163. https://doi.org/10.1080/13693780500088408

    Article  CAS  Google Scholar 

  • Madsen HO, Satz ML, Hogh B, Svejgaard A, Garred P (1998) Different molecular events result in low protein levels of Mannan- binding lectin in populations from Southeast Africa and South America. J Immunol 161(6):3169–3175

    Article  CAS  PubMed  Google Scholar 

  • Madsen HO, Garred P, Kurtzhals JAL, Lamm LU, Ryder LP, Thiel S, Svejgaard A (1994) “A new frequent allele is the mi”ssing link in the structural polymorphism of the human Mannan-binding protein. Immunogenetics 40(1):37–44. https://doi.org/10.1007/BF00163962

    Article  CAS  PubMed  Google Scholar 

  • Mangano A, Rocco C, Marino SM, Mecikovsky D, Genre F, Aulicino P et al (2008 Sep) Detrimental effects of Mannose-binding lectin (MBL2) promoter genotype XA/XA on HIV-1 vertical transmission and AIDS progression. J Infect Dis 198(5):694–700

    Article  CAS  PubMed  Google Scholar 

  • Man-kupisinska A, Swierzko AS, Maciejewska A, Hoc M, Rozalski A, Siwinska M, Lugowski C, Cedzynski M, Lukasiewicz J (2018) Interaction of mannose-binding lectin with lipopolysaccharide outer core region and its biological consequences. Front Immunol 9:1498. https://doi.org/10.3389/fimmu.2018.01498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manuel O, Pascual M, Trendelenburg M, Meylan PR (2007) Association between mannose-binding lectin deficiency and cytomegalovirus infection after kidney transplantation. Transplantation 83(3):359–362

    Article  CAS  PubMed  Google Scholar 

  • Marr N, Luu RA, Fernandez RC (2007) Bordetella pertussis binds human C1 esterase inhibitor during the virulent phase, to evade complement-mediated killing. J Infect Dis 195(4):585–588. https://doi.org/10.1086/510913

    Article  CAS  PubMed  Google Scholar 

  • Mason CP, Tarr AW (2015) Human lectins and their roles in viral infections. Molecules (Basel, Switzerland) 20(2):2229–2271. https://doi.org/10.3390/molecules20022229

    Article  CAS  Google Scholar 

  • Matsushita M, Fujita T (1992) Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease. J Exp Med 176(6):1497–1502

    Article  CAS  PubMed  Google Scholar 

  • Mcbride MO, Mcclure MO, Weber JN, Fischer PB, Turner MW, Summerfield JA et al (1998) Mannose-binding protein in HIV-seropositive patients does not contribute to disease progression or bacterial infections. Int J STD AIDS 9(11):683–688

    Article  CAS  PubMed  Google Scholar 

  • Mendes HW, Boldt ABW, von Rosen E, Stahlke S, Jensenius JC, Thiel S, Taborda IJ, Messias-Reason. (2020) Adding Masp1 to the lectin pathway—leprosy association puzzle: hints from gene polymorphisms and protein levels. PLoS Negl Trop Dis 14(4):1–20. https://doi.org/10.1371/journal.pntd.0007534

    Article  CAS  Google Scholar 

  • Meyrowitsch DW, Simonsen PE, Garred P, Dalgaard M, Magesa SM, Alifrangis M (2010 Jan) Association between mannose-binding lectin polymorphisms and Wuchereria bancrofti infection in two communities in north-eastern Tanzania. Am J Trop Med Hyg 82(1):115–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milanese M, Segat L, De Seta F, Pirulli D, Fabris A, Morgutti M, Crovella S (2008) MBL2 genetic screening in patients with recurrent vaginal infections. Am J ReprodImmunol 59(2):146–151. https://doi.org/10.1111/j.1600-0897.2007.00549.x

    Article  CAS  Google Scholar 

  • Mishra A, Antony JS, Gai P, Sundaravadivel P, Hoang van T, Jha AN, Singh L, Velavan TP, Thangaraj K (2015) Mannose-binding lectin (MBL) as a susceptible host factor influencing Indian visceral Leishmaniasis. Parasitol Int 64:591–596. https://doi.org/10.1016/j.parint.2015.08.003

    Article  CAS  PubMed  Google Scholar 

  • Mogues T, Ota T, Tauber AI, Sastry KN (1996) Characterization of two Mannose-binding protein CDNAs from rhesus monkey (Macaca Mulatta): structure and evolutionary implications. Glycobiology 6(5):543–550. https://doi.org/10.1093/glycob/6.5.543

    Article  CAS  PubMed  Google Scholar 

  • Mullighan CG, Heatley SL, Danner S, Dean MM, Doherty K, Hahn U, Bradstock KF et al (2008) Mannose-binding lectin status is associated with risk of major infection following Myeloablative sibling allogeneic hematopoietic stem cell transplantation. Blood 112(5):2120–2128. https://doi.org/10.1182/blood-2007-07-100222

    Article  CAS  PubMed  Google Scholar 

  • Murugaiah V, Tsolaki AG, Kishore U (2020) Collectins: innate immune pattern recognition molecules, advances in experimental medicine and biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1580-4_4

  • Nassif X, Bourdoulous S, Eugene E, Oliver Couraud O (2002) How do extracellular pathogens cross the blood–brain barrier? Trends Microbiol 10(5):227–232. https://doi.org/10.1016/s0966-842x(02)02349-1

  • Nauta AJ, Raaschou-Jensen N, Roos A, Daha MR, Madsen HO, Borrias-Essers MC et al (2003) Mannose-binding lectin engagement with late apoptotic and necrotic cells. Eur J Immunol 33(10):2853–2863

    Article  CAS  PubMed  Google Scholar 

  • Nedovic B, Posteraro B, Leoncini E et al (2014) Mannose-Binding Lectin Codon 54 gene polymorphism and vulvovaginal candidiasis: a systematic review and meta-analysis. BioMed Res Int 2014:738298. https://doi.org/10.1155/2014/738298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neth O, Jack DL, Dodds AW, Holzel H, Klein NJ, Turner MW (2000) Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect Immun 68(2):688–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng DK, Lau WF, Chan KK, Pau BC, Lam YY, Chan EY, Ho JC (2005) Severe acute respiratory syndrome coronavirus infection in children. Pediatr Int 47:452–455. https://doi.org/10.1111/j.1442-200x.2005.02092.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen SL, Andersen PL, Koch C, Jensenius JC, Thiel S (1995) The level of the serum opsonin, mannan-binding protein in HIV-1 antibody-positive patients. Clin Exp Immunol 100(2):219–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pant S, Goel A, Gangwar PK, Agarwal J, Singh AK, Sankhwar SN, Gupta P (2019) Genetic association of MBL-2 gene polymorphisms with filarial chyluria. Bioinformation 15(11):806–811

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel PK, Hindala M, Kohli B, Hajela K (2015) Divalent metal ions binding properties of goat serum mannose binding lectin. Int J Biol Macromol 80:324–327. https://doi.org/10.1016/j.ijbiomac.2015.06.049

  • Pellis V, De Seta F, Crovella S, Bossi F, Bulla R, Guaschino S, Radillo O, Garred P, Tedesco F (2005) Mannose binding lectin and C3 act as recognition molecules for infectious agents in the vagina. Clin Exp Immunol 139(1):120–126. https://doi.org/10.1111/j.1365-2249.2005.02660.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polotsky VY, Belisle JT, Mikusova K, Ezekowitz RAB, Joiner KA (1997) Interaction of human mannose-binding protein with mycobacterium avium. J Infect Disease 175:1159–1168

    Article  CAS  Google Scholar 

  • Polycarpou A, Howard M, Farrar CA, Greenlaw R, Fanelli G, Wallis R, Klavinskis LS et al (2020) Rationale for targeting complement in COVID-19. EMBO Mol Med 12:12642. https://doi.org/10.15252/emmm.202012642

    Article  CAS  Google Scholar 

  • Pong A, Bradley JS (1999) Bacterial meningitis and the newborn infant. Infect Dis Clin N Am 13(3):711–733. https://doi.org/10.1016/S0891-5520(05)70102-1

    Article  CAS  Google Scholar 

  • Presanis JS, Hajela K, Ambrus G, Gál P, Sim RB (2004) Differential substrate and inhibitor profiles for human. Mol Immunol 40:921–929. https://doi.org/10.1016/j.molimm.2004.10.013

  • Prohászka Z, Thiel S, Ujhelyi E, Szlávik J, Bánhegyi D, Füst G (1997) Mannan-binding lectin serum concentrations in HIV-infected patients are influenced by the stage of disease. Immunol Lett 58(3):171–175

    Article  PubMed  Google Scholar 

  • Rappleye CA, Eissenberg LG, Goldman WE (2007) Histoplasma capsulatum α-(1,3)-glucan blocks innate immune recognition by the β-glucan receptor. Proc Natl Acad Sci U S A 104:1366–1370. https://doi.org/10.1073/pnas.0609848104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reading PC, Morey LS, Crouch EC, Anders EM (1997 Nov) Collectin-mediated antiviral host defense of the lung: evidence from influenza virus infection of mice. J Virol 71(11):8204–8212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosbjerg A, Genster N, Pilely K, Garred P (2017) Evasion mechanisms used by pathogens to escape the lectin complement pathway. Front Microbiol 8:1–7. https://doi.org/10.3389/fmicb.2017.00868

    Article  Google Scholar 

  • Rutendo BL, Zinyama-Gutsire, Chasela C, Madsen HO, Rusakaniko S, Christiansen PKM, Gomo E, Ullum H, Erikstrup C, Munyati S, Urewa EN, Stray-Pedersen B, Garred P, Mduluza T (2015) Role of mannose-binding lectin deficiency in HIV-1 and schistoma infection in rural and schistosoma infections in a rural adult population. In: Hsieh ZS-L (ed) Lectin in host defense against microbial infections. Springer, Singapore

    Google Scholar 

  • Saifuddin M, Hart ML, Gewurz H, Zhang Y, Spear GT (2000) Interaction of mannose-binding lectin with primary isolates of human immunodeficiency virus type 1. J Gen Virol 81:949–955. https://doi.org/10.1099/0022-1317-81-4-949

    Article  CAS  PubMed  Google Scholar 

  • Sahly H, Keisari Y, Ofek I (2009) Manno(Rhamno)biose-containing capsular polysaccharides of Klebsiella Pneumoniae enhance Opsono-stimulation of human Polymorphonuclear leukocytes. J Innate Immun 1(2):136–144. https://doi.org/10.1159/000154812

    Article  CAS  PubMed  Google Scholar 

  • Santos IK, Costa CH, Krieger H, Feitosa MF, Zurakowski D, Fardin B, Gomes RB, Weiner DL, Harn DA, Ezekowitz RA, Epstein JE (2001) Mannan-binding lectin enhances susceptibility to visceral leishmaniasis. Infect Immun 69(8):5212–5215

    Article  CAS  PubMed  Google Scholar 

  • Sastry K, Herman GA, Day L, Deignan E, Bruns G, Morton CC, Ezekowitz RAB (1989) The human Mannose-binding protein gene. Exon structure reveals its evolutionary relationship to a human pulmonary surfactant gene and Localization to chromosome 10. J Exp Med 170(4):1175–1189. https://doi.org/10.1084/jem.170.4.1175

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CQ, Lambris JD, Ricklin D (2016) Protection of host cells by complement regulators. Immunol Rev 118(24):6072–6078. https://doi.org/10.1111/imr.12475.Protection

    Article  Google Scholar 

  • Schut ES, de Gans J, van de Beek D (2008) Community-acquired bacterial meningitis in adults. Pract Neurol 8(1):8–23. https://doi.org/10.1136/jnnp.2007.139725

    Article  PubMed  Google Scholar 

  • Seppänen M, Lokki M-L, Lappalainen M, Hiltunen-Back E, Rovio AT, Kares S et al (2009) Mannose-binding lectin 2 gene polymorphism in recurrent herpes simplex virus 2 infection. Hum Immunol 70(4):218–221

    Article  PubMed  Google Scholar 

  • Shao S, Sun X, Chen Y, Zhan B, Zhu X (2019) Complement evasion: an effective strategy that parasites utilize to survive in the host. Front Microbiol 10:532. Published 2019 Mar 20. https://doi.org/10.3389/fmicb.2019.00532

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva, E. L., Pestana, A. L., Monteiro, S. G., Caldas, A. J. M., Patrício, F. J. B., Santos, M. D. C.,et al. (2019). Polymorphisms of the mannose binding lectin (MBL2) gene are related to protein plasma levels but not with visceral leishmaniasis in a northeastern brazilian population. Genetics and Molecular Research, 18(2). gmr18148

    Google Scholar 

  • Søborg C, Madsen HO, Andersen ÅB, Lillebaek T, Kok-Jensen A, Garred P (2003) Mannose-binding lectin polymorphisms in clinical tuberculosis. J Infect Dis 188(5):777–782. https://doi.org/10.1086/377183

    Article  PubMed  Google Scholar 

  • Spear GT, Zariffard MR, Xin J, Saifuddin M (2003 Sep) Inhibition of DC-SIGN-mediated trans infection of T cells by mannose-binding lectin. Immunology 110(1):80–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumiya M, Tabona P, Arai T, Summerfield JA, Super M, Levinsky RJ, Turner MW (1991) Molecular basis of opsonic defect in Immunodeficient children. Lancet 337(8757):1569–1570. https://doi.org/10.1016/0140-6736(91)93263-9

    Article  CAS  PubMed  Google Scholar 

  • Svejgaakd, A. 1994. “D u a l role of MANNAN-binding protein in infections: another CASE O f HETEROSIS?” 125–31

    Google Scholar 

  • Swanson AF, Ezekowitz RAB, Lee AMY, Mmun INI (1998) Human mannose-binding protein inhibits infection of HeLa cells by chlamydia trachomatis infect. Immun 66:1607–1612

    CAS  Google Scholar 

  • Takahashi K, Ezekowitz RAB (2005) The role of the Mannose-binding lectin in innate immunity. Clin Infect Dis 41(Supplement_7):S440–S444

    Article  CAS  PubMed  Google Scholar 

  • Taylor ME, Brickell PM, Craig RK, Summerfield JA (1989) Structure and evolutionary origin of the gene encoding a human serum Mannose-binding protein. Biochem J 262(3):763–771. https://doi.org/10.1042/bj2620763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokunaga H, Ushirogawa H, Ohuchi M (2011) The pandemic (H1N1) 2009 influenza virus is resistant to mannose-binding lectin. Virol J 8(1):50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Townsend R, Read RC, Turner MW, Klein NJ, Jack DL (2001) Differential recognition of obligate anaerobic bacteria by human mannose-binding lectin. Clin Expt Immunol 124(2):223–228. https://doi.org/10.1046/j.1365-2249.2001.01549.x

    Article  CAS  Google Scholar 

  • Turner MW (2003) The role of mannose-binding lectin in health and disease. Mol Immunol 40:423–429. https://doi.org/10.1016/S0161-5890(03)00155-X

    Article  CAS  PubMed  Google Scholar 

  • Vaid M, Kaur S, Sambatakou H, Madan T, Denning DW, Sarma PU (2007) Distinct alleles of mannose-binding lectin (MBL) and surfactant proteins A (SP-A) in patients with chronic cavitary pulmonary aspergillosis and allergic bronchopulmonary aspergillosis. Clin Chem Lab Med 45:183–186. https://doi.org/10.1515/CCLM.2007.033

    Article  CAS  PubMed  Google Scholar 

  • Vallinoto ACR, Menezes-Costa MR, Alves AEM, Machado LFA, Azevedo VN, Souza LLB de, et al. Mannose-binding lectin gene polymorphism and its impact on human immunodeficiency virus 1 infection. Mol Immunol 2006 43(9):1358–1362

    Google Scholar 

  • Van De Wetering JK, Van Golde LMG, Batenburg JJ (2004) Collectins: players of the innate immune system. Eur J Biochem 271(7):1229–1249. https://doi.org/10.1111/j.1432-1033.2004.04040.x

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Wang F, Yang J, Zhao D, Wang H, Shao F, Wang W et al (2013) Mannan-binding lectin inhibits Candida Albicans-induced cellular responses in PMA-activated THP-1 cells through toll-like receptor 2 and toll-like receptor 4. PLoS One 8(12). https://doi.org/10.1371/journal.pone.0083517

  • Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X et al (2003) Antibody neutralization and escape by HIV-1. Nature 422(6929):307–312

    Article  CAS  PubMed  Google Scholar 

  • Williams DL (1997) Overview of (1→3)-β-D-glucan immunobiology. Mediat Inflamm 6:247–250. https://doi.org/10.1080/09629359791550

    Article  CAS  Google Scholar 

  • Xu H, Zhao M, Wan T, Song G, He J, Chen Z (2013) Association between Mannose-Binding Lectin Gene Polymorphisms and Hepatitis B Virus Infection: A Meta-Analysis. PLoS ONE 8(10):e75371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying H, Ji X, Hart ML, Gupta K, Saifuddin M, Zariffard MR et al (2004 Mar) Interaction of Mannose-binding lectin with HIV type 1 is sufficient for virus Opsonization but not neutralization. AIDS Res Hum Retrovir 20(3):327–335

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhou G, Zhi L, Yang H, Zhai Y, Dong X, Zhang X, Gao X, Zhu Y, He F (2005) Association between mannose-binding lectin gene polymorphisms and susceptibility to severe acute respiratory syndrome coronavirus infection. Oct J Infect Dis 192(8):1355–1361

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Kai L, Pfefferle S, Bertram S, Glowacka I, Drosten C, Pöhlmann S, Simmons G (2010) A single asparagine-linked glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms. J Virol 84:8753–8764. https://doi.org/10.1128/JVI.00554-10

  • Zhou J, Hu M, Li J, Liu Y, Luo J, Zhang L et al (2019) Mannan-binding lectin regulates inflammatory cytokine production, proliferation, and cytotoxicity of human peripheral natural killer cells. Mediat Inflamm 2019:6738286

    Google Scholar 

  • Zimmerman PE, Voelker DR, McCormack FX, Paulsrud JR, Martin WJ (1992) 120-KD surface glycoprotein of pneumocystis Carinii is a ligand for surfactant protein a. J Clin Investig 89(1):143–149. https://doi.org/10.1172/JCI115554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This chapter is dedicated to Dr. R. B.Sim. MRC Immunochemistry Unit. Dept of Biochemistry, University of Oxford, Oxford, UK.

We acknowledge the financial support from Indian Council of Medical Research, New Delhi -110029, India in the form of a research grant to SS,KH (IRIS ID- 2020-0812).

Conflict of Interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnan Hajela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S. et al. (2021). Lectins in Health and Diseases: Mannan-Binding Lectin and Infectious Diseases. In: Elumalai, P., Lakshmi, S. (eds) Lectins. Springer, Singapore. https://doi.org/10.1007/978-981-16-7462-4_10

Download citation

Publish with us

Policies and ethics