Skip to main content

Role of Biostimulants in Agriculture

  • Chapter
  • First Online:
Book cover Biostimulants: Exploring Sources and Applications

Part of the book series: Plant Life and Environment Dynamics ((PLED))

Abstract

In agriculture, agrochemicals play a vital role in enhancing yield and productivity of crops under optimal and suboptimal conditions. In recent times, different innovations have been projected to reduce the use of fertilizers and pesticides and enhance sustainable agricultural production. An environment-friendly technique has been proposed which include the use of natural plant biostimulants. Biostimulants boost the growth and development from germination to maturity throughout the life cycle of a crop, increase the plant metabolism efficiency for higher yield and crop quality, increase tolerance against abiotic stresses, facilitates nutrient use efficiency and translocation, improves the quality of produce (colour, total sugar content, fruit seeding), efficient use of water, and improves the physiochemical properties of the soil. Plant bio stimulants include the substances which are applied to soil, plant, or seed in precise formulations to alter the physiological processes which, in turn, enhance the growth and development, fruit set, nutrient uptake, and stress responses in plants. Various extracts from algae or plant, protein hydrolysates, humic acid, fulvic acid, and other mixtures are used as biostimulants in plants. These substances can be directly added to soil in the form of soil preparations or as liquid foliar application products. Plant biostimulants were earlier used only in organic production, but now they are also used in conventional and integrated crop production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Mageed T, Rady SWM, Moringa MM (2017) Leaf extract as biostimulant improves water use efficiency; physio-biochemical attributes of squash plants under deficit irrigation. Agric Water Manag 193:46–54

    Article  Google Scholar 

  • Abdel Late A H, Srivastava AK, Saber H, Alwaleed EA, Tran LSP (2017) Sargassum muticum and Jania rubens regulate amino acid metabolism to improve growth and alleviate salinity in chickpea. Sci Rep 7:1–12

    Google Scholar 

  • Abdel-Razzak HS, El-Sharkawy GA (2013) Effect of biofertilizer and humic acid applications on growth, yield, quality and storability of two garlic (Allium sativum L.). Asian J Crop Sci 5:48–63

    Article  Google Scholar 

  • Adani F, Genevini P, Zaccheo P, Zocchi G (1998) The effect of commercial humic acid on tomato plant growth and mineral nutrition. J Plant Nutr 21:561–575

    Article  CAS  Google Scholar 

  • Ahmad R, Lim CJ, Kwon S-Y (2013) Glycine betaine: a versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. Plant Biotechnol Rep 7:49–57. https://doi.org/10.1007/s11816-012-0266-8

    Article  Google Scholar 

  • Alam MZ, Braun G, Norrie J, Hodges DM (2013) Effect of Ascophyllum extract application on plant growth, fruit yield and soil microbial communities of strawberry. Can J Plant Sci 93:23–36

    Article  Google Scholar 

  • Alberola C, Lichtfouse E, Navarrete M, Debaeke P, Souchère V (2008) Agronomy for sustainable development. Ital J Agron 3:77–78

    Google Scholar 

  • Aminifard MH, Aroiee H, Nemati H, Azizi M, Jaafar HZE (2012) Fulvic acid affects pepper antioxidant activity and fruit quality. Afr J Biotechnol 11:13179–13185

    CAS  Google Scholar 

  • Anjum SA, Wang L, Farooq M, Xue L, Ali S (2011) Fulvic acid application improves the maize performance under well watered and drought conditions. J Agron Crop Sci 197:409–417

    Article  CAS  Google Scholar 

  • Apone F, Tito A, Carola A et al (2010) A mixture of peptides and sugars derived from plant cell walls increases plant defence responses to stress and attenuates ageing associated molecular changes in cultured skin cells. J Biotechnol 145:367–376

    Article  CAS  PubMed  Google Scholar 

  • Arroussi EL H, Benhima R, Elbaouchi A, Sijilmassi B, El Mernissi N, Aafsar A, Meftah-Kadmiri I, Bendaou N, Smouni A (2018) Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). J Appl Phycol 30:2929–2941

    Article  CAS  Google Scholar 

  • Asli S, Neumann PM (2010) Rhizosphere humic acid interacts with root cell walls to reduce hydraulic conductivity and plant development. Plant Soil 336:313–322

    Article  CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42. https://doi.org/10.1007/s005720100097

    Article  Google Scholar 

  • Aydin A, Kant C, Turan M (2012) Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr J Agric Res 7:1073–1086

    Google Scholar 

  • Aziz RA, Naira A, Moieza A (2013) Effect of plant biostimulants on fruit cracking and quality attributes of pomegranate Cv. Kandhari Kabuli. Sci Res Essays 8:2171–2175

    Article  CAS  Google Scholar 

  • Bacilio M, Rodriguez H, Moreno M, Hernandez JP, Bashan Y (2004) Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biol Fertil Soils 40:188–193

    Article  CAS  Google Scholar 

  • Bae H, Sicher RC, Kim MS et al (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baniaghil N, Arzanesh MH, Ghorbanli M, Shahbazi M (2013) The effect of plant growth promoting rhizobacteria on growth parameters, antioxidant enzymes and microelements of canola under salt stress. J Appl Environ Biol Sci 3:17–27

    Google Scholar 

  • Bashan Y, De-Bashan LE, Prabhu SR, Hernandez J-P (2014) Advances in plant growth-promoting bacterial inoculant technology-formulations and practical perspectives (1998–2013). Plant Soil 378:1–33. https://doi.org/10.1007/s11104-013-1956-x

    Article  CAS  Google Scholar 

  • Battacharyya D, Babgohari MZ, Rathor P, Prithiviraj B (2015) Seaweed extracts as biostimulants in horticulture. Sci Hortic 196:39–48

    Article  CAS  Google Scholar 

  • Befrozfar MR, Habibi D, Asgharzadeh A, Sadeghi-Shoae M, Tookallo MR (2013) Vermicompost, plant growth promoting bacteria and humic acid can affect the growth and essence of basil (Ocimum basilicum L.). Ann Biol Res 4:8–12

    Google Scholar 

  • Berbara RLL, García AC (2014) Humic substances and plant defence metabolism. In: Ahmad P, Wani MR (eds) Physiological mechanisms and adaptation strategies in plants under changing environment, vol 1. Springer Science + Business Media, New York, pp 297–319

    Chapter  Google Scholar 

  • Bocanegra MP, Lobartini JC, Orioli GA (2006) Plant uptake of iron chelated by humic acids of different molecular weights. Commun Soil Sci Plant Anal 37:1–2

    Article  CAS  Google Scholar 

  • Bona E, Todeschin V, Cantamessa S, Cesaro P, Copetta A, Lingua G, Gamalero E, Berta G, Massa N (2018) Combined bacterial and mycorrhizal inocula improve tomato quality at reduced fertilization. Sci Hortic 234:160–165

    Article  CAS  Google Scholar 

  • Brown P, Saa S (2015) Biostimulants in agriculture. Front Plant Sci [Internet] 2015;6. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550782/

  • Brundrett MC (1991a) Mycorrhizas in natural ecosystems. In: Macfayden A, Begoon M, Fitter AH (eds) Advances in ecological research. Academic, London, pp 376–391

    Google Scholar 

  • Brundrett MC (1991b) Mycorrhizas in natural ecosystems. In: Macfayden A, Begoon M, Fitter AH (eds) Advances in ecological research. Academic, London, pp 171–314

    Google Scholar 

  • Bulgari R, Trivellini A, Ferrante A (2019) Effects of two doses of organic extract-based biostimulant on greenhouse lettuce grown under increasing NaCl concentrations. Front Plant Sci 9:1870

    Article  PubMed  PubMed Central  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Canellas LP, Spaccini R, Piccolo A et al (2009) Relationships between chemical characteristics and root growth promotion of humic acids isolated from Brazilian oxisols. Soil Sci 174:611–620

    Article  CAS  Google Scholar 

  • Canellas LP, Dantas DJ, Aguiar NO et al (2011) Probing the hormonal activity of fractionated molecular humic components in tomato auxin mutants. Ann Appl Biol 159:202–211

    Article  CAS  Google Scholar 

  • Casanovas EM, Barassi CA, Sueldo RJ (2002) Azospirillum inoculation mitigates water stress effects in maize seedlings. Cerea Res Commun 30:343–350

    Google Scholar 

  • Castaings L, Marchive C, Meyer C, Krapp A (2011) Nitrogen signalling in Arabidopsis: how to obtain insights into a complex signalling network. J Exp Bot 62:1391–1397

    Article  CAS  PubMed  Google Scholar 

  • Cerdan M, Sánchez-Sánchez A, Jordá DJ, Juárez M, Andreu JS (2013) Effect of commercial amino acids on iron nutrition of tomato plants grown under lime-induced iron deficiency. J Plant Nutr Soil Sci 176:1–8

    Article  CAS  Google Scholar 

  • Chen THH, Murata N (2008) Glycine betaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505

    Article  CAS  PubMed  Google Scholar 

  • Cimrin KM, Onder T, Turan M, Burcu T (2010) Phosphorus and humic acid application alleviate salinity stress of pepper seedling. Afr J Biotechnol 9:5845–5851

    CAS  Google Scholar 

  • Clapp CE, Chen Y, Hayes MHB, Cheng HH (2001) Plant growth promoting activity of humic substances. In: Swift RS, Sparks KM (eds) Understanding and managing organic matter in soils, sediments, and waters. International Humic Science Society, Madison, pp 243–255

    Google Scholar 

  • Colla G, Rouphael Y (2015) Biostimulants in horticulture. Sci Hortic 196:1–2. https://doi.org/10.1016/j.scienta.2015.10.044

    Article  Google Scholar 

  • Colla G, Rouphae Y, Canaguier R, Svecova E, Cardarell M (2014) Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front Plant Sci 5:1–6

    Article  Google Scholar 

  • Costa G, Labrousse P, Bodin C et al (2008) Effects of humic substances on the rooting and development of woody plant cuttings. Acta Hortic 779:255–261

    Article  Google Scholar 

  • Cozzolino E, Mola ID, Ottaiano L, El-Nakhel C, Rouphael Y, Mori M (2021) Foliar application of plant-based biostimulants improve yield and upgrade qualitative characteristics of processing tomato. Ital J Agron. https://doi.org/10.4081/ija.2021.1825

  • Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393

    Article  CAS  Google Scholar 

  • Crouch IJ, Beckett RP, van Staden J (1990) Effect of seaweed concentrate on the growth and mineral nutrition of nutrient stressed lettuce. J Appl Phycol 2:269–272

    Article  Google Scholar 

  • da Rocha IMA, Vitorello VA, Silva JS et al (2012) Exogenous ornithine is an effective precursor and the δ-ornithine amino transferase pathway contributes to proline accumulation under high N recycling in salt-stressed cashew leaves. J Plant Physiol 169:41–49

    Article  PubMed  CAS  Google Scholar 

  • Del-Amor FM, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39:82–90

    Article  CAS  PubMed  Google Scholar 

  • Deliopoulos T, Kettlewell PS, Hare MC (2010) Fungal disease suppression by inorganic salts: a review. Crop Prot 29:1059–1075

    Article  CAS  Google Scholar 

  • Denre M, Ghanti G, Sarkar K (2014) Effect of humic acids application on accumulation of mineral nutrition and pungency in garlic (Allium sativum L.). Int J Biotech Mol Biol Res 5:7–12

    Article  CAS  Google Scholar 

  • Dobbss LB, Medici LO, Peres LEP et al (2007) Changes in root development of Arabidopsis promoted by organic matter from oxisosis. Ann Appl Biol 151:199–211

    Article  CAS  Google Scholar 

  • Dobbss LB, Canellas LP, Olivares FL et al (2010) Bioactivity of chemically transformed humic matter from vermicompost on plant root growth. J Agric Food Chem 58:3681–3688

    Article  CAS  PubMed  Google Scholar 

  • dos Reis SP, Lima AM, de Souza CRB (2012) Recent molecular advances on downstream plant responses to abiotic stress. Int J Mol Sci 13:8628–8647

    Article  PubMed  PubMed Central  Google Scholar 

  • du Jardin P (2012) The science of plant biostimulants—a bibliographic analysis. Contract 30-CE0455515/00-96, ad hoc study on bio-stimulants products. http://ec.europa.eu/enterprise/sectors/chemicals/files/fertilizers/final_report_bio_2012_en.pdf

  • Egamberdiyeva D, Höflich G (2004) Effect of plant growth promoting bacteria on growth and nutrient uptake of cotton and pea in a semi-arid region of Uzbekistan. J Arid Environ 56:293–301. https://doi.org/10.1016/S0140-1963(03)00050-8

    Article  Google Scholar 

  • El-Nemr MA, El-Desuki M, El-Bassiony AM, Fawzy ZF (2012) Response of growth and yield of cucumber plants (Cucumis sativus L.) to different foliar applications of humic acid and bio-stimulators. Aust J Basic Appl Sci 6:630–637

    CAS  Google Scholar 

  • Ertani A, Pizzeghelio D, Altissimo A, Nardi S (2013) Use of meat hydrolyzate derived from tanning residues as plant biostimulant for hydroponically grown maize. J Plant Nutr Soil Sci 176:287–296

    Article  CAS  Google Scholar 

  • Ertani A, Pizzeghello D, Francioso O, Sambo P, Sanchez-Cortes S, Nardi S (2014) Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: chemical and metabolomics approaches. Front Plant Sci 5:1–12

    Google Scholar 

  • EU (2019) Regulation of the European parliament and of the council laying down rules on the making available on the market of EU fertilising products and amending regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing regulation (EC) No 2003/2003. https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=OJ:L:2019:170:TOC

  • Eyheraguibel B, Silvestre J, Morard P (2008) Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresour Technol 99:4206–4212

    Article  CAS  PubMed  Google Scholar 

  • Fan D, Hodges DM, Critchley AT, Prithiviraj B (2013) A commercial extract of Brown Macroagla (Ascophyllumnodosum) Plant Soil (2014) 383:3–41 33affects yield and the nutritional quality of spinach in vitro. Commun Soil Sci Plant Anal 44:1873–1884

    Article  CAS  Google Scholar 

  • Fan HM, Wanga XW, Sun X, Li YY, Sun XZ, Zheng CS (2014) Effects of humic acid derived from sediments on growth, photosynthesis and chloroplast ultrastructure in chrysanthemum. Sci Hortic 177:118–123

    Article  CAS  Google Scholar 

  • Fawzy ZF (2012) Response of growth and yield of cucumber plants (Cucumis sativus L.) to different foliar applications of humic acid and bio-stimulators. Int Res J Appl Basic Sci 6:630–637

    Google Scholar 

  • Ferri M, Franceschetti M, Naldrett MJ, Saalbach G, Tasson A (2014) Effects of chitosan on the protein profile of grape cell culture subcellular fractions. Electrophoresis 35:1685–1692

    Article  CAS  PubMed  Google Scholar 

  • Frioni T, Sabbatini P, Tombesi S, Norrie J, Poni S, Gatti M, Palliotti A (2018) Effects of a biostimulant derived from the brown seaweed Ascophyllum nodosum on ripening dynamics and fruit quality of grapevines. Sci Hortic 232:97–106

    Article  Google Scholar 

  • Garcia AC, Berbara RLL, Farías LP et al (2012) Humic acids of vermicompost as an ecological pathway to increase resistance of rice seedlings to water stress. Afr J Biotechnol 11:3125–3134

    Google Scholar 

  • García AC, Santos LA, Izquierdo FG et al (2013) Potentialities of vermicompost humic acids to alleviate water stress in rice plants (Oryza sativa L.). J Geochem Explor 136:48–54

    Article  CAS  Google Scholar 

  • García-Martínez M, Díaz A, Tejada M, Bautista J, Rodríguez B, María CS, Revilla E, Parrado J (2010) Enzymatic production of an organic soil biostimulant from wheat condensed distiller solubles: effects on soil biochemistry and biodiversity. Process Biochem 45:1127–1133

    Article  CAS  Google Scholar 

  • Goñi O, Quille P, O’Connell S (2018) Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiol Biochem 126: 63–73

    Google Scholar 

  • González A, Castro J, Vera J, Moenne A (2013) Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell division. J Plant Growth Regul 32:443–448

    Article  CAS  Google Scholar 

  • Grajkowski J, Ochmian I (2007) Influence of three biostimulants on yielding and fruit quality of three primocane raspberry cultivars. Acta Sci Pol Hortorum Cultus 6:29–36

    Google Scholar 

  • Gu Z, Wang X, Gu X et al (2001) Effects of fulvic acid on the bioavailability of rare earth elements and GOT enzyme activity in wheat (Triticum aestivum). Chemosphere 44:545–551

    Article  CAS  Google Scholar 

  • Hadwiger LA (2013) Multiple effects of chitosan on plant systems: solid science or hype. Plant Sci 208:42–49

    Article  CAS  PubMed  Google Scholar 

  • Haplern M, Bartal A, Ofek M, Minz D, Muller T, Yermiyahu U (2015) The use of biostimulants for enhancing nutrient uptake. Adv Agron 130:141–174

    Article  Google Scholar 

  • Harper SM, Edwards DG, Kerven GL, Asher CJ (1995) Effects of organic acid fractions extracted from Eucalyptus camaldulensis leaves on root elongation of maize (Zea mays) in the presence and absence of aluminium. Plant Soil 171:189–192

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Jannin L, Arkoun M, Etienne P et al (2013) Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. J Plant Growth Regul 32:31–52

    Article  CAS  Google Scholar 

  • Jardin PD (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196:3–14

    Article  CAS  Google Scholar 

  • Jeannin I, Lescure JC, Morot-Gaudry JF (1991) The effects of aqueous seaweed sprays on the growth of maize. Bot Mar 334:469–473

    Google Scholar 

  • Jindo K, Martim SA, Navarro EC et al (2012a) Root growth promotion by humic acids from composted and noncomposted urban organic wastes. Plant Soil 353:209–220

    Article  CAS  Google Scholar 

  • Jindo K, Martim SA, Navarro EC et al (2012b) Root growth promotion by humic acids from composted and non composted urban organic wastes. Plant Soil 353:209–220

    Article  CAS  Google Scholar 

  • Jithesh MN, Wally OSD, Manfield I et al (2012) Analysis of seaweed extract-induced transcriptime leads to identification of a negative regulator of salt tolerance in Arabidopsis. Hortscience 47:704–709

    Article  CAS  Google Scholar 

  • KaÅ‚uzewicz A, KrzesiÅ„ski W, Spizewski T, Zaworska A (2017) Effect of biostimulants on several physiological characteristics and chlorophyll content in broccoli under drought stress and re-watering. Not Bot Horti Agrobot Cluj-Napoca 45:197–202

    Article  CAS  Google Scholar 

  • Karakurt Y, Unlu H, Unlu H, Padem H (2009) The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Acta Agric Scand Sect B 59:233–237

    CAS  Google Scholar 

  • Karlidag H, Turan M, Pehluvan M, Donmez F (2013) Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria×ananassa). Hort Sci 48:563–567

    CAS  Google Scholar 

  • Kauffman GL III, Kneival DP, Watschke TL (2007) Effects of biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop Sci 47:261–267

    Article  CAS  Google Scholar 

  • Kelleher BP, Simpson AJ (2006) Humic substances in soils: are they really chemically distinct? Environ Sci Technol 40:4605–4611

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Arshad M, Kahir ZA (2004) Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. Appl Soil Ecol 96:473–480

    CAS  Google Scholar 

  • Khan W, Hiltz D, Critchley AT, Prithiviraj B (2011a) Bioassay to detect Ascophyllum nodosum extract-induced cytokinin-like activity in Arabidopsis thaliana. J Appl Phycol 23:409–414

    Article  Google Scholar 

  • Khan ZH, Kahn MA, Aftab T, Idrees M, Naeem M (2011b) Influence of alginate oligosaccharides on growth, yield and alkaloid production of opium poppy (Papaver somniferum L.). Front Agric China 5:122–127

    Article  Google Scholar 

  • Khan W, Zhai R, Souleimanov A et al (2012) Commercial extract of Ascophyllum nodosum improves root colonization of alfalfa by its bacterial symbiont Sinorhizobium meliloti. Commun Soil Sci Plant Anal 43:2425–2436

    Article  CAS  Google Scholar 

  • Khan W, Palanisamy R, Critchley AT, Smith DL, Papadopoulos Y, Prithiviraj AT (2013) Ascophyllum nodosum extract and its organic fractions stimulate rhizobium root nodulation and growth of Medicago sativa (Alfalfa). Commun Soil Sci Plant Anal 44:900–908

    Article  CAS  Google Scholar 

  • Kirn A, Kashif SR, Yaseen M (2010) Using indigenous humic acid from lignite to increase growth and yield of okra (Abelmoschus esculentus L.). Soil Environ 29:187–191

    CAS  Google Scholar 

  • Kocira A, Swieca M, Kocira S, ZÅ‚ote U, Jakubczyk A (2018) Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi J Biol Sci 25:563–571

    Article  CAS  PubMed  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldan A (2008) Plant growth- promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water stressed plants. Funct Plant Biol 35:141–151

    Article  CAS  PubMed  Google Scholar 

  • Koukounararas A, Tsouvaltzis P, Siomos AS (2013) Effect of root and foliar application of amino acids on the growth and yield of greenhouse tomato in different fertilization levels. J Food Agric Environ 11:644–648

    Google Scholar 

  • Kumaraswamy RV, Kumari S, Choudhary RC, Sharma SS, Pal A, Raliya R, Biswas P, Saharan V (2019) Salicylic acid functionalized chitosan nanoparticle: a sustainable biostimulant for plant. Int J Biol Macromol 123:59–69

    Article  CAS  PubMed  Google Scholar 

  • Liang XW, Zhang L, Natarajan SK, Beckker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19:998–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucini L, Rouphael Y, Cardarelli M, Canaguier R, Kumar P, Colla G (2015) The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci Hortic (Amst.) 182:124–133

    Article  CAS  Google Scholar 

  • Lulakis MD, Petsas SI (1995) Effect of humic substances from vine-canes mature compost on tomato seedling growth. Bioresour Technol 54:179–182

    Article  CAS  Google Scholar 

  • Luziatelli F, Ficca AG, Colla G, Baldassarre Å vecová E, Ruzzi M (2019) Foliar application of vegetal-derived bioactive compounds stimulates the growth of beneficial bacteria and enhances microbiome biodiversity in lettuce. Front Plant Sci 10:60

    Article  PubMed  PubMed Central  Google Scholar 

  • MacDonald JE, Hacking J, Weng Y, Norrie J (2012) Root growth of containerized lodgepole pine seedlings in response to Ascophyllum nodosum extract application during nursery culture. Can J Plant Sci 92:1207–1212

    Article  Google Scholar 

  • Mahnert A, Haratani M, Schmuck M, BergEnriching E (2018) Beneficial microbial diversity of indoor plants and their surrounding built environment with biostimulants. Front Microbiol 9:2985

    Article  PubMed  PubMed Central  Google Scholar 

  • Mancuso S, Azzarello E, Mugnai S, Briand X (2006) Marine bioactive substances (IPA extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Adv Hortic Sci 20:156–161

    Google Scholar 

  • Marulanda A, Barea J-M, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124. https://doi.org/10.1007/s00344-009-9079-6

    Article  CAS  Google Scholar 

  • Mattner SW, Wite D, Riches DA, Porter IJ, Arioli T (2013) The effect of kelp extract on seedling establishment of broccoli on contrasting soil types in southern Victoria, Australia. Biol Agric Hortic 29:258–270

    Article  Google Scholar 

  • Mazhar AAM, Shedeed SI, Abdel-Aziz NG, Mahgoub MH (2012) Growth, flowering and chemical constituents of Chrysanthemum indicum L. plant in response to different levels of humic acid and salinity. J Appl Sci Res 8:3697–3706

    CAS  Google Scholar 

  • Milton RF (1952) Improvements in or relating to horticultural and agricultural fertilizers. The Patent Office London, No. 663, 989. 2 pp

    Google Scholar 

  • Moghaddam ARL, Soleimani A (2012) Compensatory effects of humic acid on physiological characteristics of pistachio seedlings under salinity stress. Acta Hortic 940:252–255

    Google Scholar 

  • Mora V, Bacaicoa E, Zamarreño A-M et al (2010) Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. J Plant Physiol 167:633–642

    Article  CAS  PubMed  Google Scholar 

  • Morales-Payan JP, Stall WM (2003) Papaya (Carica papaya) response to foliar treatments with organic complexes of peptides and amino acids. Proc Fla State Hortic Soc 116:30–32

    Google Scholar 

  • Morard P, Eyheraguibel B, Morard M, Silvestre J (2011) Direct effects of humic-like substance on growth, water, and mineral nutrition of various species. J Plant Nutr 34:46–59

    Article  CAS  Google Scholar 

  • Mugnai S, Azzarello E, Pandolfi C et al (2008) Enhancement of ammonium and potassium root influxes by the application of marine bioactive substances positively affects Vitis vinifera plant growth. J Appl Phycol 20:177–182

    Article  CAS  Google Scholar 

  • Murillo JM, Madejón E, Madejón P, Cabrera F (2005) The response of wild olive to the addition of a fulvic acid-rich amendment to soils polluted by trace elements (SW Spain). J Arid Environ 63:284–303

    Article  Google Scholar 

  • Nair P, Kandasamy S, Zhang J et al (2012) Transcriptional and metabolomics analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genomics 13:643. https://doi.org/10.1186/1471-2164-13-643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nardi S, Carletti P, Pizzeghello D, Muscolo A (2009) Biological activities of humic substances. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural non living organic matter in environmental systems. Wiley, Hoboken, pp 305–339

    Chapter  Google Scholar 

  • Pandeya SB, Singh AK, Dhar P (1998) Influence of fulvic acid on transport of iron in soils and uptake by paddy seedlings. Plant Soil 198:117–125

    Article  CAS  Google Scholar 

  • Peng A, Xu Y, Wang ZJ (2001) The effect of fulvic acid on the dose effect of selenite on the growth of wheat. Biol Trace Elem Res 83:275–279

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    Article  CAS  PubMed  Google Scholar 

  • Pokluda R, SÄ™kara A, Jezdinský A, Kalisz A, Neugebauerová J, Grabowska A (2016) The physiological status and stress biomarker concentration of Coriandrum sativum L. plants subjected to chilling are modified by biostimulant application. Biol Agric Hortic 32:258–268

    Article  Google Scholar 

  • Rady MM, Varma B, Howladar SM (2013) Common bean (Phaseolus vulgaris L.) seedlings overcome NaCl stress as a result of presoaking in Moringa oleifera leaf extract. Sci Hortic (Amst.) 162:63–70

    Article  CAS  Google Scholar 

  • Rauthan BS, Schnitzer M (1981) Effects of a soil fulvic acid on the growth and nutrient content of cucumber (Cucumis sativus) plants. Plant Soil 63:491–495

    Article  CAS  Google Scholar 

  • Rayirath P, Benkel B, Hodges DM et al (2009) Lipophilic components of the brown seaweed, Ascophyllum nodosum, enhance freezing tolerance in Arabidopsis thaliana. Planta 230:135–147

    Article  CAS  PubMed  Google Scholar 

  • Rayorath P, Jithesh MN, Farid A, Khan W, Palanisamy R, Hankins SD, Critchley AT, Prithiviraj B (2008) Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllumnodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh. J Appl Phycol 20:423–429

    Article  CAS  Google Scholar 

  • Rice JA, Mac Carthy P (1990) A model of humin. Environ Sci Technol 24:1875–1877

    Article  CAS  Google Scholar 

  • Romero AMD, Correa S (2014) Azospirillum brasilense mitigates water stress imposed by a vascular disease by increasing xylem vessel area and stem hydraulic conductivity in tomato. Appl Soil Ecol 82, 38–43

    Google Scholar 

  • Rose MT, Patti AF, Little KR, Brown AL, Jackson WR, Cavagnaro TR (2014) A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. In: DL Sparks (ed) Advances in agronomy, vol 124. Academic Press, New York, pp 37–89

    Google Scholar 

  • Sánchez-Gómez R, Zalacain A, Pardo F, Alonso GL, Salinas MR (2017) Moscatel vine-shoot extracts as a grapevine biostimulant to enhance wine quality. Food Res Int 98:40–49

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Sánchez A, Sánchez-Andreu J, Juárez M, Jordá J, Bermúdez D (2002) Humic substances and amino acids improve effectiveness of chelate FeEDDHA in lemon trees. J Plant Nutr 25:2433–2442

    Article  CAS  Google Scholar 

  • Schiavon M, Pizzeghello D, Muscolo A, Vaccoro S, Francioso O, Nardi S (2010) High molecular size humic substances enhance phylpropanoid metabolism in maize (Zea mays L.). J Chem Ecol 36:662–669

    Article  CAS  PubMed  Google Scholar 

  • Selim EM, Shaymaa IS, Asaad FF, El-Neklawy AS (2012) Interactive effects of humic acid and water stress on chlorophyll and mineral nutrient contents of potato plants. J Appl Sci Res 8:531–537

    CAS  Google Scholar 

  • Semida WM, Abd El-Mageed TA, Hemida K, Rady MM (2019) Natural bee-honey based biostimulants confer salt tolerance in onion via modulation of the antioxidant defence system. J Hortic Sci Biotechnol:1–11

    Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir Z (2008) Fertilizer dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155. https://doi.org/10.1007/s00253-008-1419-0

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Dumat C, Silvestre J, Pinelli E (2012) Effect of fulvic acids on lead-induced oxidative stress to metal sensitive Vicia faba L. plant. Biol Fertil Soils 48:689–697

    Article  CAS  Google Scholar 

  • Sharma SHS, Lyons G, McRoberts C (2012) Biostimulant activity of brown seaweed species from Strangford Lough: compositional analyses of polysaccharides and bioassay of extracts using mung bean (Vigno mungo L.) and pakchoi (Brassica rapachinensis L.). J Appl Phycol 24:1081–1091

    Article  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  PubMed  Google Scholar 

  • Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson WA (1974) Seaweed in agriculture & horticulture, 3rd edn, B and G Rateaver (eds). Pauma Valley

    Google Scholar 

  • Subramanian P, Mageswari A, Kim K, Lee Y, Sa T (2015) Psychrotolerant endophytic pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum lycopersicum Mill.) by activation of their antioxidant capacity. Mol. Plant Microbe Inter 28:1073–1081

    Article  CAS  Google Scholar 

  • Subramanian P, Kim K, Krishnamoorthy R, Mageswari A, Selvakumar G, Sa T (2016) Cold stress tolerance in psychrotolerant soil bacteria and their conferred chilling resistance in tomato (solanum lycopersicum Mill.) under low temperatures. PLoS One 11:e0161592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tahir MM, Khurshid M, Khan MZ, Abbasi MK, Hazmi MH (2011) Lignite-derived humic acid effect on growth of wheat plants in different soils. Pedosphere 2:124–131

    Article  Google Scholar 

  • Tarakhovskaya ER, Maslov YI, Shishova MF (2007) Phytohormones in algae. Russ J Plant Physiol 54:163–170

    Article  CAS  Google Scholar 

  • Tarantino A, Lops F, Disciglio G, Lopriore G (2018) Effects of plant biostimulants on fruit set, growth, yield and fruit quality attributes of ‘Orange Rubis®’ Apricot (Prunus armeniaca L.) cultivar in two consecutive years. Sci Hortic 239:26–34

    Article  CAS  Google Scholar 

  • Tejada M, Rodríguez-Morgado B, Gómez I, Parrado J (2016) Degradation of chlorpyrifos using different biostimulants/biofertilizers: effects on soil biochemical properties and microbial community. Appl Soil Ecol 84:158–165. https://doi.org/10.1016/j.apsoil.2014.07.007

    Article  Google Scholar 

  • Trevisan S, Francioso O, Quaggiotti S, Nardi S (2010) Humic substances biological activity at the plant-soil interface. Plant Signal Behav 5:635–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206(4):1196–1206

    Article  PubMed  Google Scholar 

  • Varanini Z, Pinton R (2001) Direct versus indirect effects of soil humic substances on plant growth and nutrition. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Marcel Dekker, Basel, pp 141–158

    Google Scholar 

  • Verma VC, Singh SK, Prakash S (2011) Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. J Basic Microbiol 51:550–556. https://doi.org/10.1002/jobm.201000155

    Article  CAS  PubMed  Google Scholar 

  • Vernieri P, Borghesi E, Ferrante A, Magnani G (2005) Application of biostimulants in floating system for improving rocket quality. J Food Agric Environ 3:86–88

    Google Scholar 

  • Vranova V, Rejsek K, Skene KR, Formanck P (2011) Non-protein amino acids: plant, soil and acosystem interactions. Plant Soil 342:31–48

    Article  CAS  Google Scholar 

  • Weber N, Schmitzer V, Jakopic J, Stampar F (2018) First fruit in season: seaweed extract and silicon advance organic strawberry (Fragaria ananassa Duch.) fruit formation and yield. Sci Hortic 242:103–109

    Article  Google Scholar 

  • Wilson HT, Amirkhani M, Taylor AG (2018) Evaluation of gelatin as a biostimulant seed treatment to improve plant performance. Front Plant Sci 9:1006

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu SC, Caob ZH, Lib ZG, Cheunga KC, Wonga MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xu C, Leskovar DI (2015) Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Sci Hortic 183:39–47

    Article  Google Scholar 

  • Yildrim E (2007) Foliar and soil fertilization of humic acid affect productivity and quality of tomato. Acta Agric Scand 57:182–186, Sect. B

    Google Scholar 

  • Zodape ST, Gupta A, Bhandari SC (2011) Foliar application of seaweed sap as biostimulant for enhancement of yield and quality of tomato (Lycopersicon esculentum Mill.). J Sci Ind Res 70:215–219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhardwaj, N., Kaur, M., Kaur, J. (2022). Role of Biostimulants in Agriculture. In: Ramawat, N., Bhardwaj, V. (eds) Biostimulants: Exploring Sources and Applications. Plant Life and Environment Dynamics. Springer, Singapore. https://doi.org/10.1007/978-981-16-7080-0_10

Download citation

Publish with us

Policies and ethics