Skip to main content
Book cover

Anthocyanins pp 279–307Cite as

Anthocyanins in Health Protection

  • Chapter
  • First Online:
  • 615 Accesses

Abstract

Various physical or chemical injuries suffered by the human body in daily life may cause damage to internal organs in certain degrees. This chapter summarizes the protective and repairing effects of anthocyanins on heart injury, liver injury, and lung injury induced by common physical and chemical factors and concludes the protection mechanism of anthocyanins into viscera.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Xianjun M, Dequn S, Lin S, et al. Protective effect of blueberry anthocyanins on cyclophosphamide-induced cardiac injury in rats. Chin J Public Health. 2015;31(2):187–90.

    Google Scholar 

  2. Chargari C, Kirov KM, Bollet MA, Magné N, Védrine L, Cremades S, Beuzeboc P, Fourquet A, Kirova YM. Cardiac toxicity in breast cancer patients: from a fractional point of view to a global assessment. Cancer Treat Rev. 2011;37:321–30.

    Article  CAS  PubMed  Google Scholar 

  3. Hill DL. A review of cyclophosphamide. Springfield, IL: Thomas; 1975.

    Google Scholar 

  4. Motawi TM, Sadik NA, Refaat A. Cytoprotective effects of DL-alpha-lipoic acid or squalene on cyclophosphamide-induced oxidative injury: an experimental study on rat myocardium, testicles and urinary bladder. Food Chem Toxicol. 2010;48:2326–36.

    Article  CAS  PubMed  Google Scholar 

  5. Oboh G, Ogunruku OO. Cyclophosphamide-induced oxidative stress in brain: protective effect of hot short pepper (Capsicum frutescens L. var. abbreviatum). Exp Toxicol Pathol. 2010;62:227–33.

    Article  CAS  PubMed  Google Scholar 

  6. Mills BA, Roberts RW. Cyclophosphamide-induced cardiomyopathy. A report of two cases and review of the English literature. Cancer. 1979;43:2223–6.

    Article  CAS  PubMed  Google Scholar 

  7. Shanmugarajan T, Arunsundar M, Somasundaram I, Krishnakumar E, Sivaraman D, Ravichandiran V. Cardioprotective effect of Ficus hispida Linn. on cyclophosphamide provoked oxidative myocardial injury in a rat model. Int J Pharm. 2008;4:78–87.

    Article  Google Scholar 

  8. Liu H, Wang G, Wu J, et al. Effects of cuttlefish polysaccharides on partial organ injury induced by cyclophosphamide in mice. Chin J Mod Appl Pharmacy. 2012;2:32–5.

    CAS  Google Scholar 

  9. Wang XL, Wang X, Xiong LL, et al. Salidroside improves doxorubicin-induced cardiac dysfunction by suppression of excessive oxidative stress and cardiomyocyte apoptosis: oxorubicin cardiotoxicity inhibited by salidroside. J Cardiovasc Pharmacol. 2013;25. Epub ahead of print.

    Google Scholar 

  10. Shaik AH, Rasool SN, Vikram Kumar Reddy A, et al. Cardioprotective effect of HPLC standardized ethanolic extract of Terminalia pallida fruits against isoproterenol-induced myocardial infarction in albino rats. J Ethnopharmacol. 2012;141(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  11. Wu C, Chen R, Wang XS, et al. Antioxidant and anti-fatigue activities of phenolic extract from the seed coat of Euryale ferox Salisb and identification of three phenolic compounds by LC-ESI-MS/MS. Molecules. 2013;18(9):11003–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen Y, Zhang S, Peng G, et al. Endothelial NO synthase and reactive oxygen species mediated effect of simvastatin on vessel structure and function: pleiotropic and dose-dependent effect on tumor vascular stabilization. Int J Oncol. 2013;42(4):1325–36.

    Article  CAS  PubMed  Google Scholar 

  13. Hao D, Xu X, Feng Z, et al. Effects of acephate on oxidative stress in rat testis. Chin Public Health. 2012;28(2):395–6.

    CAS  Google Scholar 

  14. Yanhui S, Zhu H, Xia D, et al. Effects of flavonoids on oxidative stress in insulin-resistant rats. Chin Public Health. 2011;27(3):1225–6.

    Google Scholar 

  15. Elberry AA, Abdel-Naim AB, Abdel-Sattar EA, et al. Cranberry (Vaccinium macrocarpon) protects against doxorubicin-induced cardiotoxicity in rats. Food Chem Toxicol. 2020;48:1178–84.

    Article  Google Scholar 

  16. Aruoma OI. Nutrition and health aspects of free radicals and antioxidants. Food Chem Toxicol. 1994;32:671–83.

    Article  CAS  PubMed  Google Scholar 

  17. Huang P-C, Kuo W-W, Shen C-Y, et al. Anthocyanin attenuates doxorubicin-induced cardiomyotoxicity via estrogen receptor-_/_ and stabilizes HSF1 to inhibit the IGF-IIR apoptotic pathway. Int J Mol Sci. 2016;17:1588–604.

    Article  PubMed Central  Google Scholar 

  18. Ziberna L, Lunder M, Moze S, et al. Acute cardioprotective and cardiotoxic effects of bilberry anthocyanins in ischemia–reperfusion injury: beyond concentration-dependent antioxidant activity. Cardiovasc Toxicol. 2010;10:283–94.

    Article  CAS  PubMed  Google Scholar 

  19. Halliwell B. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys. 2008;476:107–12.

    Article  CAS  PubMed  Google Scholar 

  20. Tarahovsky YS, Muzafarov EN, Kim YA. Rafts making and rafts braking: how plant flavonoids may control membrane heterogeneity. Mol Cell Biochem. 2008;314:65–71.

    Article  CAS  PubMed  Google Scholar 

  21. Li S. Effects of cyanidin-3-O-glucoside on cardiac protection. Master’s thesis, Shandong Normal University; 2016.

    Google Scholar 

  22. Liobikas J, Skemiene K, Trumbeckaite S, Borutaite V. Anthocyanins in cardioprotection: a path through mitochondria. Pharmacol Res. 2016;113:808–15.

    Article  CAS  PubMed  Google Scholar 

  23. Penna C, Perrelli M, Pagliaro P. Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. Antioxid Redox Signal. 2013;18:556–99.

    Article  CAS  PubMed  Google Scholar 

  24. Lopera YE, Fantinelli J, Gonzįlez Arbelįez LF, Rojano B, Rios JL, Schinella G, Mosca S. Antioxidant activity and cardioprotective effect of a nonalcoholic extract of Vaccinium meridionale Swartz during ischemia-reperfusion in rats. Evid Based Complement Alternat Med. 2013;2013:516727.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Quintieri AM, Baldino N, Filice E, Seta L, Vitetti A, Tota B, De Cindio B, Cerra MC, Angelone T. Malvidin, a red wine polyphenol, modulates mammalian myocardial and coronary performance and protects the heart against ischemia/reperfusion injury. J Nutr Biochem. 2012;24:1221–31.

    Article  PubMed  Google Scholar 

  26. Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G, Schulz R. The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther. 2008;120:172–85.

    Article  CAS  PubMed  Google Scholar 

  27. Hausenloy DJ, Lecour S, Yellon DM. Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal. 2011;14:893–907.

    Article  CAS  PubMed  Google Scholar 

  28. Samse K, Hariharan N, Sussman MA. Personalizing cardiac regenerative therapy: at the heart of Pim1 kinase. Pharmacol Res. 2016;103:13–6.

    Article  PubMed  Google Scholar 

  29. Skemiene K, Liobikas J, Borutaite V. Anthocyanins as substrates for mitochondrial. complex I—protective effect against heart ischemic injury. FEBS J. 2015;282:963–71.

    Article  CAS  PubMed  Google Scholar 

  30. Chen Y-F, Shibu MA, Fan M-J, Chen M-C. Purple rice anthocyanin extract protects cardiac function in STZ-induced diabetes rat hearts by inhibiting cardiac hypertrophy and fibrosis. J Nutr Biochem. 2016;31:98–105.

    Article  CAS  PubMed  Google Scholar 

  31. Boyd JH, Mathur S, Wang Y, Bateman RM, Walley KR. Toll-like receptor stimulation in cardiomyocytes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc Res. 2006;72:384–93.

    Article  CAS  PubMed  Google Scholar 

  32. Fuentes-Antras J, Ioan AM, Tunon J, Egido J, Lorenzo O. Activation of toll-like receptors and inflammasome complexes in the diabetic cardiomyopathy associated inflammation. Int J Endocrinol. 2014;2014:847–27.

    Article  Google Scholar 

  33. Bishop-Bailey D, Mitchell JA, Warner TD. COX-2 in cardiovascular disease. Arterioscler Thromb Vasc Biol. 2006;26:956–8.

    Article  CAS  PubMed  Google Scholar 

  34. Breyer MD. Getting to the heart of COX-2 inhibition. Cell Metab. 2005;2:149–50.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang YB, Liu Y, Tong C, et al. Protective effect of blueberry anthocyanins to radioactive cardiac injury. J Clin Emerg (China). 2014;15(11):647–50.

    CAS  Google Scholar 

  36. Wang Z. Effect of blueberry anthocyanin on cardiovascular damage caused by fine particulate matter and its mechanism. Master’s thesis, Guangxi Medical University; 2017.

    Google Scholar 

  37. Tang CC, Huang HP, Lee YJ, et al. Hepatoprotective effect of mulberry water extracts on ethanol-induced liver injury via anti-inflammation and inhibition of lipogenesis in C57BL/6J mice. Food Chem Toxicol. 2013;62:786–96.

    Article  CAS  PubMed  Google Scholar 

  38. Tang CC, Lin WL, Lee YJ, et al. Polyphenol-rich extract of Nelumbo nucifera leaves inhibits alcohol-induced steatohepatitis via reducing hepatic lipid accumulation and anti-inflammation in C57BL /6J mice. Food Funct. 2014;5(4):678–87.

    Article  CAS  PubMed  Google Scholar 

  39. Cai Z, Song L, Qian B, Xu W, Ren J, et al. Understanding the effect of anthocyanins extracted from purple sweet potatoes on alcohol-induced liver injury in mice. Food Chem. 2018;245:463–70.

    Article  CAS  PubMed  Google Scholar 

  40. Jiang Z, Chen C, Wang J, Xie W, et al. Purple potato (Solanum tuberosum L.) anthocyanins attenuate alcohol-induced hepatic injury by enhancing antioxidant defense. J Nat Med. 2016;70:45–53.

    Article  CAS  PubMed  Google Scholar 

  41. Lu Y, Wu D, Wang X, Ward SC, Cederbaum AI. Chronic alcohol-induced liver injury and oxidant stress are decreased in cytochrome P4502E1 knockout mice and restored in humanized cytochrome P4502E1 knock-in mice. Free Radic Biol Med. 2010;49:1406–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin X, Zhang S, Huang R, Wei L, Tan S, Liang S, Tian Y, Wu X, Lu Z, Huang Q. Helenalin attenuates alcohol-induced hepatic fibrosis by enhancing ethanol metabolism, inhibiting oxidative stress and suppressing HSC activation. Fitoterapia. 2014;95:203–13.

    Article  CAS  PubMed  Google Scholar 

  43. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88:125–72.

    Article  CAS  PubMed  Google Scholar 

  44. Choi JH, Hwang YP, Park BH, et al. Anthocyanins isolated from the purple-fleshed sweet potato attenuate the proliferation of hepatic stellate cells by blocking the PDGF receptor. Environ Toxicol Pharmacol. 2011;31(1):212–9.

    Article  CAS  PubMed  Google Scholar 

  45. Choi JH, Hwang YP, Choi CY, et al. Anti-fibrotic effects of the anthocyanins isolated from the purple-fleshed sweet potato on hepatic fibrosis induced by dimethylnitrosamine administration in rats. Food Chem Toxicol. 2010;48(11):3137–43.

    Article  CAS  PubMed  Google Scholar 

  46. Friedman SL. Liver fibrosis—from bench to bedside. J Hepatol. 2003;38(1):38–53.

    Article  Google Scholar 

  47. Marra F, Gentilini A, Pinzani M, Choudhury GG, Parola M, Herbst H, Dianzani MU, Laffi G, Abboud HE, Gentilini P. Phosphatidylinositol 3-kinase is required for platelet-derived growth factor’s actions on hepatic stellate cells. Gastroenterology. 1997;112:1297–306.

    Article  CAS  PubMed  Google Scholar 

  48. Marra F, Arrighi MC, Fazi M, Caligiuri A, Pinzani M, Romanelli RG, Efsen E, Laffi G, Gentilini P. Extracellular signal-regulated kinase activation differentially regulates platelet-derived growth factor’s actions in hepatic stellate cells, and is induced by in vivo liver injury in the rat. Hepatology. 1999;30:951–8.

    Article  CAS  PubMed  Google Scholar 

  49. Houa F, Zhanga R, Zhanga M, Sua D, Weia Z, Denga Y, Zhanga Y, Chia J, Tanga X. Hepatoprotective and antioxidant activity of anthocyanins in black rice bran on carbon tetrachloride-induced liver injury in mice. J Funct Foods. 2013;5:1705–13.

    Article  Google Scholar 

  50. Chen J, Zhao Y, Tao X-y, Zhang M, Sun A-d. Protective effect of blueberry anthocyanins in a CCL4-induced liver cell model. LWT Food Sci Technol. 2015;60:1105–12.

    Article  CAS  Google Scholar 

  51. Sun J, Wu Y, Long C, He P, Junying G, et al. Anthocyanins isolated from blueberry ameliorates CCl4 induced liver fibrosis by modulation of oxidative stress, inflammation and stellate cell activation in mice. Food Chem Toxicol. 2018;120:491–9.

    Article  CAS  PubMed  Google Scholar 

  52. Li S, Hong M, Tan HY, Wang N, Feng Y. Insights into the role and interdependence of oxidative stress and inflammation in liver diseases. Oxid Med Cell Longev. 2016;2016:4234061.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wynn TA, Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis. 2010;30:245–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Docherty AJ, O’Connell J, Crabbe T, Angal S, Murphy G. The matrix metalloproteinases and their natural inhibitors: prospects for treating degenerative tissue diseases. Trends Biotechnol. 1992;10:200–7.

    Article  CAS  PubMed  Google Scholar 

  55. Wang W, Li J, Wang Z, Gao H, Li S, et al. Oral Hepatoprotective ability evaluation of purple sweet potato anthocyanins on acute and chronic chemical liver injuries. Cell Biochem Biophys. 2014;69:539–48.

    Article  CAS  PubMed  Google Scholar 

  56. Miao N. Study on extraction, co-pigments and protective effect on acute liver injury induced by APAP in mice of anthocyanins from Lycium ruthenicum Murr. Master’s thesis, Shaanxi Normal University; 2018.

    Google Scholar 

  57. Lin S, Liu Y-e, Tan D-h, Yan T-c. et al, Blueberry anthocyanins ameliorate cyclophosphamide-induced liver damage in rats by reducing inflammation and apoptosis. J Funct Foods. 2014:71–81.

    Google Scholar 

  58. Wang Y. Study on the inhibitory mechanism and effects of Lonicera caerulea berry anthocyanin extracts on hepatitis induced by lipopolysaccharide. Doctor’s thesis, Shenyang Agriculture University; 2017.

    Google Scholar 

  59. Lin H, Li Y, Bai W, Li Y, Wang L. Protective effects of cyanidin-3-glucoside on lead-induced liver and kidneys damage in rats. Sci Technol Eng. 2016;16(02):88–93.

    Google Scholar 

  60. Rhind N, Russell P. Chk1 and Cds1: linchpins of the DNA damage and replication checkpoint pathways. J Cell Sci. 2000;113:3889–96.

    Article  CAS  PubMed  Google Scholar 

  61. Soares JP, Cortinhas A, Bento T, Leitao JC, Collins AR, Gaivao I, Mota MP. Aging and DNA damage in humans: a meta analysis study. Aging. 2014;6:432–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sheedfar F, Di Biase S, Koonen D, Vinciguerra M. Liver diseases and aging: friends or foes? Aging Cell. 2013;12:950–4.

    Article  CAS  PubMed  Google Scholar 

  63. Maynard S, Fang EF, Scheibye-Knudsen M, Croteau DL, Bohr VA. DNA damage, DNA repair, aging, and neurodegeneration. CSH Perspect Med. 2015;5:a025130.

    Google Scholar 

  64. Soares JP, Cortinhas A, Bento T, Leitao JC, Collins AR, Gaivao I, Mota MP. Aging and DNA damage in humans: a metaanalysis study. Aging. 2014;6:432–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wei J, Zhang G, Zhang X, Xu D, Gao J, Fan J. Anthocyanins delay ageing-related degenerative changes in the liver. Plant Foods Hum Nutr. 2017;72:425–31.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang P, Chen F, Dili WL, Guo H. A CONSORT-compliant, randomized, double-blind, placebo-controlled pilot trial of purified anthocyanin in patients with nonalcoholic fatty liver disease. Medicine. 2015;94:1–8.

    Google Scholar 

  67. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89:331–40.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang BB, Zhou G, Li C. AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab. 2009;9:407–16.

    Article  PubMed  Google Scholar 

  69. Lee MS, Kim D, Jo K, Hwang JK. Nordihydroguaiaretic acid protects against high-fat diet-induced fatty liver by activating AMP-activated protein kinase in obese mice. Biochem Biophys Res Commun. 2010;401:92–7.

    Article  CAS  PubMed  Google Scholar 

  70. Kim YW, Kim YM, Yang YM, Kim TH, Hwang SJ, Lee JR. Inhibition of SREBP-1c–mediated hepatic steatosis and oxidative stress by sauchinone, an AMPK-activating lignan in Saururus chinensis. Free Radic Biol Med. 2010;48:567–78.

    Article  CAS  PubMed  Google Scholar 

  71. Lee YK, Lee WS, Kim GS, Park OJ. Anthocyanins are novel AMPKα1 stimulators that suppress tumor growth by inhibiting mTOR phosphorylation. Oncol Rep. 2010;24:1471–7.

    PubMed  Google Scholar 

  72. Viollet B, Foretz M, Guigas B, Horman S, Dentin R, Bertrand L, et al. Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Physiol. 2006;574:41–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hwang YP, Choi JH, Han EH, Kim HG, Wee J-H, Jung KO, et al. Purple sweet potato anthocyanins attenuate hepatic lipid accumulation through activating adenosine monophosphate–activated protein kinase in human HepG2 cells and obese mice. Nutr Res. 2011;31:896–906.

    Article  CAS  PubMed  Google Scholar 

  74. Yunhe F, Zhou E, Wei Z, Wang W. Cyanidin-3-O-ß-glucoside ameliorates lipopolysaccharide-induced acute lung injury by reducing TLR4 recruitment into lipid rafts. Biochem Pharmacol. 2014;90(2):126–34.

    Article  Google Scholar 

  75. Ma M, Li Y, Liu X, Zhu W, Ren X, Kong G, et al. Cyanidin-3-O-glucoside ameliorates lipopolysaccharide-induced injury both in vivo and in vitro suppression of NF-κB and MAPK pathways. Inflammation. 2015;38(4):1669–82.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang Y, Breevoort SR, Angdisen J, Fu MG, Schmidt DR, Holmstrom SR, Kliewer SA, Mangelsdorf DJ, Schulman IG. Liver LXR alpha expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. J Clin Investig. 2012;122:1688–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang N, Ranalletta M, Matsuura F, Peng F, Tall AR. LXR-induced redistribution of ABCG1 to plasma membrane in macrophages enhances cholesterol mass efflux to HDL. Arteriosc Throm Vasc Biol. 2006;26:1310–6.

    Article  CAS  Google Scholar 

  78. Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, Tontonoz P. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci U S A. 2000;97:12097–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kennedy MA, Barrera GC, Nakamura K, Baldan A, Tarr P, Fishbein MC, Frank J, Francone OL, Edwards PA. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab. 2005;1:121–31.

    Article  CAS  PubMed  Google Scholar 

  80. Schmitz G, Langmann T, Heimerl S. Role of ABCG1 and other ABCG family members in lipid metabolism. J Lipid Res. 2001;42:1513–20.

    Article  CAS  PubMed  Google Scholar 

  81. Peng Y, Cordiner SB, Sawyer GM, McGhie TK, Espley RV, et al. Kiwifruit with high anthocyanin content modulates NF-κB activation and reduces CCL11 secretion in human alveolar epithelial cells. J Funct Foods. 2020;65:103734.

    Article  CAS  Google Scholar 

  82. Liu Y, Tan D, Tong C, Zhang Y, Xu Y, et al. Blueberry anthocyanins ameliorate radiation-induced lung injury through the protein kinase RNA-activated pathway. Chem Biol Interact. 2015;242:363–71.

    Article  CAS  PubMed  Google Scholar 

  83. Liu X, Bennett RL, Cheng X, Byrne M, Reinhard MK, May WS. PKR regulates proliferation, differentiation, and survival of murine hematopoietic stem/progenitor cells. Blood. 2013;121:3364–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang X, Chan C. Repression of PKR mediates palmitate-induced apoptosis in HepG2 cells through regulation of Bcl-2. Cell Res. 2009;19:469–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, B., Wang, L., Bai, W., Chen, W., Chen, F., Shu, C. (2021). Anthocyanins in Health Protection. In: Anthocyanins. Springer, Singapore. https://doi.org/10.1007/978-981-16-7055-8_14

Download citation

Publish with us

Policies and ethics