Skip to main content

Immunomodulatory Properties of Proteins and Peptides: Food Derivatives Approach

  • Chapter
  • First Online:
Book cover Immunomodulators and Human Health

Abstract

Food represents a millennial source of multiple molecules with potential as health enhancers, not only from a nutritional point of view, and proteins are described as one of them. Proteins and their derived peptides could interact in a wide range of biological levels but claim attention as immunomodulating agents. The immunomodulatory system represents a key component to maintain human health, and peptides and protein from exogenous sources could intervene in different immune response stages. This chapter aims to analyze the food-derived proteins’ and peptides’ role in the immune response with an emphasis on their employment as health promoters, the involved mechanisms, and their potential incorporation in products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta J, Roa F, González-Chavarría I et al (2019) In vitro immunomodulatory activities of peptides derived from Salmo salar NK-lysin and cathelicidin in fish cells. Fish Shellfish Immunol 88:587–594

    Article  CAS  PubMed  Google Scholar 

  • Agyei D, Danquah MK (2012) Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities. Trends Food Sci Technol 23(2):62–69

    Article  CAS  Google Scholar 

  • Ahn CB, Je JY, Cho YS (2012) Antioxidant and anti-inflammatory peptide fraction from salmon byproduct protein hydrolysates by peptic hydrolysis. Food Res Int 49(1):92–98

    Article  CAS  Google Scholar 

  • Ahn CB, Cho YS, Je JY (2015) Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate. Food Chem 168:151–156

    Article  CAS  PubMed  Google Scholar 

  • Akbar S, Rahman AU, Hayat M et al (2020) cACP: classifying anticancer peptides using discriminative intelligent model via Chou’s 5-step rules and general pseudo components. Chemom Intell Lab Syst 196:103912

    Article  CAS  Google Scholar 

  • An J, Feng Y, Zheng J, Addy M, Zhang L, Ren D (2020) The immune-enhancing potential of peptide fractions from fermented Spirulina platensis by mixed probiotics. Food Biochem 44(7):1–10

    Article  CAS  Google Scholar 

  • Arias M, Haney EF, Hilchie AL, Corcorean JA, Hyndman ME, Hancock REW, Vogel HJ (2020) Selective anticancer activity of synthetic peptides derived from the host defence peptide tritrpticin. Biochim Biophys Acta 1862(8):183228

    Article  CAS  Google Scholar 

  • Ashaolu TJ, Yanyiam N, Yupanqui CT (2017) Immunomodulatory effects of pepsin-educed soy protein hydrolysate in rats and murine cells. Funct Food Health Dis 7(11):889–900

    Article  CAS  Google Scholar 

  • Beaulieu J, Dubuc R, Beaudet N, Dupont C, Lemieux P (2007) Immunomodulation by a malleable matrix composed of fermented whey proteins and lactic acid bacteria. J Med Food 10(1):67–72

    Article  CAS  PubMed  Google Scholar 

  • Boon ACM, Vos AP, Graus YMF, Rimmelzwaan GF, Osterhaus A (2002) In vitro effect of bioactive compounds on influenza virus specific B- and T-cell responses. Scand J Immunol 55:24–32

    Article  CAS  PubMed  Google Scholar 

  • Booth R (2007) Antibody response. In: Fink G (ed) Encyclopedia of stress, 2nd edn. CRC Press, Boca Raton, pp 199–205

    Chapter  Google Scholar 

  • Brenner S, Miller JH (2001) Encyclopedia of genetics. Academic

    Google Scholar 

  • Buttriss J (2002) Adverse reactions to food the report of the British Nutrition Foundation Taskforce. Blackwell, London

    Google Scholar 

  • Cai B, Pan J, Wu Y, Wan P, Sun H (2013) Immune functional impacts of oyster peptide-based enteral nutrition formula (OPENF) on mice: a pilot study. Chin J Oceanol Limnol 31(4):813–820

    Article  CAS  Google Scholar 

  • Cai J, Li X, Du H, Jiang C, Xu S, Cao Y (2020) Immunomodulatory significance of natural peptides in mammalians: promising agents for medical application. Immunobiology 225(3):151936

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti S, Wu J (2015) Milk-derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro- Pro) promote adipocyte differentiation and inhibit inflammation in 3T3-F442A cells. PLoS One 10(2):1–15

    Article  CAS  Google Scholar 

  • Chalamaiah M, Hemalatha R, Jyothirmayi T, Diwan PV, Uday Kumar P, Nimgulkar C, Dinesh Kumar B (2014) Immunomodulatory effects of protein hydrolysates from rohu (Labeo rohita) egg (roe) in BALB/c mice. Food Res Int 62:1054–1061

    Article  CAS  Google Scholar 

  • Chalamaiah M, Hemalatha R, Jyothirmayi T, Diwan PV, Bhaskarachary K, Vajreswari A, Ramesh Kumar R, Dinesh Kumar B (2015) Chemical composition and immunomodulatory effects of enzymatic protein hydrolysates from common carp (Cyprinus carpio) egg. Nutrition 31(2):388–398

    Article  CAS  PubMed  Google Scholar 

  • Chalamaiah M, Yu W, Wu J (2018) Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: a review. Food Chem 245:205–222

    Article  CAS  PubMed  Google Scholar 

  • Chang HK, Shanahan F (2018) The gastrointestinal immune system. In: McQueen CA (ed) Comprensive toxicology, 2nd edn. Elsevier, Oxford, pp 39–52

    Google Scholar 

  • Chase C, Lunney JK (2019) Immune system. In: Zimmerman JJ, Karriker A, Ramirez A, Schwartz KJ, Stevenson GW (eds) Disease of swine, 10th edn. Wiley, London, pp 264–291

    Chapter  Google Scholar 

  • Chauhan V, Kanwar SS (2019) Bioactive peptides: synthesis, functions and biotechnological applications. In: Verma ML, Chandel AK (eds) Biotechnological production of bioactive compounds. Elsevier, London, pp 107–137

    Google Scholar 

  • Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6):7204–7218

    Article  PubMed  Google Scholar 

  • Dadar M, Shahali Y, Chakraborty S, Prasad M, Tahoori F, Tiwari R, Dhama K (2019) Antiinflammatory peptides: current knowledge and promising prospects. Inflamm Res 68(2):125–145

    Article  CAS  PubMed  Google Scholar 

  • Davies DH (2013) Immune system. eLS. https://doi.org/10.1002/9780470015902.a0000898.pub3

  • De Kok TM, Van Breda SG, Manson MM (2008) Mechanisms of combined action of different chemopreventive dietary compounds. Eur J Nutr 47(2):51–59

    Article  PubMed  CAS  Google Scholar 

  • De Rosa SC, Zaretsky MD, Dubs JG et al (2000) N-acetylcysteine replenishes glutathione in HIV infection. Eur J Clin Invest 30(10):915–929

    Article  PubMed  Google Scholar 

  • del Carmen Millán-Linares M, Bermúdez B, Yust M, Milán F, Pedroche J (2014) Anti-inflammatory activity of lupine (Lupinus angustifolius L.) protein hydrolysates in THP-1-derived macrophages. J Funct Foods 8:224–233

    Article  CAS  Google Scholar 

  • Derek S, Gerasimovskaya E, Irwin D, Dempsey EC, Stenmark K, Karoor V (2019) RhoGTPase in vascular disease. Cell 8(6):551. https://doi.org/10.3390/cells8060551

    Article  CAS  Google Scholar 

  • Descotes J (2014) Immune system. In: Wexler P (ed) Encyclopedia of toxicology. Academic, p 1004–1023

    Google Scholar 

  • Deslouches B, Di YP (2017) Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget 8(28):46635–46651

    Article  PubMed  PubMed Central  Google Scholar 

  • Eberhardson M, Tarnawski L, Centa M, Olofsson PS (2020) Neural control of inflammation: bioelectronic medicine in treatment of chronic inflammatory disease. Cold Spring Harb Perspect Med 10(3):a034181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Gohary NS, Shaaban MI (2017) Synthesis, antimicrobial, antiquorum-sensing and antitumor activities of new benzimidazole analogs. European J Med Chem 137:439–449. https://doi.org/10.1016/j.ejmech.2017.05.064

    Article  CAS  Google Scholar 

  • Emery P (2013) Amino acids: chemistry and classification. In: Caballero B (ed) Encyclopedia of human nutrition. Academic, p 64–71

    Google Scholar 

  • Eun-Kyung K, Yon-Suk K, Jin-Woo H, Seo Hee K, Dong-Kug C, Kwang-Ho L, Jung Suck L, Sang-Ho M, Byong-Tae J, Pyo-Jam P (2013) Purification of a novel nitric oxide inhibitory peptide derived from enzymatic hydrolysates of Mytilus coruscus. Fish Shellfish Immunol 34(6):1416–1420

    Article  CAS  Google Scholar 

  • Fan X, Subramaniam R, Weiss MF, Monnier VM (2003) Methylglyoxal–bovine serum albumin stimulates tumor necrosis factor alpha secretion in RAW 264.7 cells through activation of mitogen-activating protein kinase, nuclear factor B and intracellular reactive oxygen species formation. Arch Biochem Biophys 409:274–286

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Pan X, Zhao E, Zhao E, Shi Y, Shen X, Wu J, Pei F, Hu Q, Qiu W (2019) Isolation and identification of immunomodulatory selenium-containing peptides from selenium-enriched rice protein hydrolysates. Food Chem 275:696–702

    Article  CAS  PubMed  Google Scholar 

  • Ferlay J, Shin H-R, Bray F, Forman D, Mathers C, Parkin DM (2008) Estimates of worldwide burden of cancer in 2008. Int J Cancer 127(12):2893–2917

    Article  CAS  Google Scholar 

  • Fernández-Tomé S, Hernández-Ledesma B, Chaparro M, Indiano-Romacho P, Bernardo D, Gisbert JP (2019) Role of food proteins and bioactive peptides in inflammatory bowel disease. Trends Food Sci Technol 88:194–206

    Article  CAS  Google Scholar 

  • Ferrucci L, Fabbri E (2018) Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol 15(9):505–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzmaurice C, Allen C, Barber RM et al (2017) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol 3(4):524–548

    Article  PubMed  Google Scholar 

  • Florean C, Dicato M, Diederich M (2020) Immune-modulating and anti-inflammatory marine compounds against cancer. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2020.02.008

  • Foegeding EA (2015) Food protein functionality-a new model. J Food Sci 80(12):2670–2677

    Article  CAS  Google Scholar 

  • Frenette AP, Dixon B (2019) Adaptive immunity in vertebrate animals. Ref Modul Life Sci. https://doi.org/10.1016/B978-0-12-809633-8.90278-4

  • Furman D, Campisi J, Verdin E et al (2019) Chronic inflammation in the etiology of disease across the life span. Nat Med 25(12):1822–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao S, Hong H, Zhang C, Wang K, Zhang B, Han Q, Liu H, Luo Y (2019) Immunomodulatory effects of collagen hydrolysates from yak (Bos grunniens) bone on cyclophosphamide-induced immunosuppression in BALB/c mice. J Funct Foods Elsevier 60:103420

    Article  CAS  Google Scholar 

  • Gokhale AS, Satyanarayanajois S (2014) Peptides and peptidomimetics as immunomodulators. Immunotherapy 6(6):755–774

    Article  CAS  PubMed  Google Scholar 

  • Gomes A, Sá A, Franco Moreno YM, Mattar Caciofi BA (2020) Plant proteins as high-quality nutritional source for human diet. Trends Food Sci Technol 97:170–184

    Article  CAS  Google Scholar 

  • Görgüç A, Gençdağ E, Yılmaz FM (2020) Bioactive peptides derived from plant origin by-products: biological activities and techno-functional utilizations in food developments—a review. Food Res Int 136:109504

    Article  PubMed  CAS  Google Scholar 

  • Grazioso TP, Brandt M, Djouder N (2019) Diet, microbiota, and colorectal cancer. Iscience 21:168–187

    Article  PubMed  PubMed Central  Google Scholar 

  • Guha S, Majumder K (2018) Structural-features of food-derived bioactive peptides with anti-inflammatory activity: a brief review. J Food Biochem 43(1):e12531

    Article  PubMed  CAS  Google Scholar 

  • Haney EF, Hancock REW (2013) Peptide design for antimicrobial and immunomodulatory applications. Biopolymers 100(6):572–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haque A, Prasad Timilsena Y, Adhikari B (2016) Food proteins, structure, and function. Ref Modul Food Sci. https://doi.org/10.1016/B978-0-08-100596-5.03057-2

  • Harris F, Dennison SR, Singh J, Phoenix DA (2009) The effect of C-terminal amidation on the efficacy and selectivity of antimicrobial and anticancer peptides. Mol Cell Chem 332(1):43–50

    Google Scholar 

  • Hartmann R, Meisel H (2007) Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol 18(2):163–169

    Article  CAS  PubMed  Google Scholar 

  • Harun NH, Septama AW, Ahmad WANW, Suppian R (2020) Immunomodulatory effects and structure-activity relationship of botanical pentacyclic triterpenes: a review. Chinese Herb Med 12(2):118–124

    Article  Google Scholar 

  • He XQ, Cao WH, Pan GK, Yang L, Zhang CH (2015) Enzymatic hydrolysis optimization of Paphia undulata and lymphocyte proliferation activity of the isolated peptide fractions. J Sci Food Agric 95(7):1544–1553

    Article  CAS  PubMed  Google Scholar 

  • He R, Wang Y, Yang Y, Wang Z, Ju X, Yuan J (2019) Rapeseed protein-derived ACE inhibitory peptides LY, RALP and GHS show antioxidant and anti-inflammatory effects on spontaneously hypertensive rats. J Funct Foods 55:211–219

    Article  CAS  Google Scholar 

  • Hernández-Almanza A, Muñiz-Márquez DB, de la Rosa O, Navarro V, Martínez-Medina G, Rodríguez Herrera R, Aguilar CN (2017) Microbial production of bioactive pigments, oligosaccharides, and peptides. In: Grumezescu AM, Holban AM (eds) Food biosynthesis handbook of food bioengineering, vol. 1. Elsevier, pp 95–134

    Google Scholar 

  • Herrera-Ponce AL, Alarcón-Rojo AD, Salmeron I, Rodriguez Figueroa JC (2019) Efectos fisiológicos de los péptidos bioactivos derivados de las proteínas del lactosuero en la salud: Una revisión. Rev Chil Nutr 46(2):205–214

    Article  Google Scholar 

  • Horiguchi N, Horiguchi H, Suzuki Y (2005) Effect of wheat gluten hydrolysate on the immune system in healthy human subjects. Biosci Biotechnol Biochem 69(12):2445–2449

    Article  CAS  PubMed  Google Scholar 

  • Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. BBA 1778(2):357–375

    Article  CAS  PubMed  Google Scholar 

  • Hosseini SV, Abodrab EAM, Khazraei H, Zamani M, Mokhtarri M (2020) Effect of egg white and honey enema on ulcerative colitis in an animal model. Comp Clin Pathol 29:61–68

    Article  CAS  Google Scholar 

  • Hou H, Fan Y, Li B, Xue C, Yu G, Zhang Z, Zhao X (2012) Purification and identification of immunomodulating peptides from enzymatic hydrolysates of Alaska Pollock frame. Food Chem 134(2):821–828

    Article  CAS  PubMed  Google Scholar 

  • Jakaitis BM, Denning PW (2015) Human breast milk and the gastrointestinal innate immune system. Clin Perinatol 41(2):423–435

    Article  Google Scholar 

  • Jørgensen ALW, Juul-Madsen HR, Stagsted J (2010) Colostrum and bioactive, colostral peptides differentially modulate the innate immune response of intestinal epithelial cells. J Pept Sci 16(1):21–30

    Article  PubMed  CAS  Google Scholar 

  • Kang H, Lee H, Seo C, Park Y (2019) Antimicrobial and immunomodulatory properties and applications of marine-derived proteins. Mar Drugs 17(6):350–375

    Article  CAS  PubMed Central  Google Scholar 

  • Kiewiet MBG, Dekkers R, Gros M, Joost van Neerven RJ, Groeneveld A, de Vos P, Faas M (2017) Toll-like receptor mediated activation is possibly involved in immunoregulating properties of cow’s milk hydrolysates. PLoS One 12(6):1–17

    Article  CAS  Google Scholar 

  • Kiewiet MBG, Faas MM, de Vos P (2018) Immunomodulatory protein hydrolysates and their application. Nutrients 10(7):1–22

    Article  CAS  Google Scholar 

  • Kitts DD, Weiler K (2003) Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des 9(16):1309–1323

    Article  CAS  PubMed  Google Scholar 

  • Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16(9):945–960

    Article  CAS  Google Scholar 

  • Lee JH, Paik HD (2019) Anticancer and immunomodulatory activity of egg proteins and peptides: a review. Poult Sci 98(12):6505–6516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh SJ, Morris MJ (2020) Diet, inflammation and the gut microbiome: mechanisms for obesity-associated cognitive impairment. Biochim Biophys Acta Mol Basis Dis 1866(6):165767

    Article  CAS  PubMed  Google Scholar 

  • Levy EM (2004) Cells of the immune system. In: Pier GB, Lyczak JB, Wetzler LM (eds) Immunology, infection and immunity. ASM Press, Washington, DC, pp 47–65

    Google Scholar 

  • Li P, Wen J, Ma X, Fengying L, Zhao J, Bing D (2018) Structural, functional properties and immunomodulatory activity of isolated Inca peanut (Plukenetia volubilis L.) seed albumin fraction. Int J Biol Macromol 118:1931–1941

    Article  CAS  PubMed  Google Scholar 

  • Li W, Ye S, Zhang Z et al (2019) Purification and characterization of a novel Pentadecapeptide from protein hydrolysates of Cyclina sinensis and its immunomodulatory effects on RAW264.7 cells. Mar Drugs 17(1):30–46

    Article  CAS  PubMed Central  Google Scholar 

  • Lohmueller J, Finn OJ (2017) Current modalities in cancer immunotherapy: immunomodulatory antibodies, CARs and vaccines. Pharmacol Ther 178:31–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozano-Ojalvo D, Molina E, López-Fandiño R (2016) Hydrolysates of egg white proteins modulate T- and B-cell responses in mitogen-stimulated murine cells. Food Funct 7(2):1048–1056

    Article  CAS  PubMed  Google Scholar 

  • Maestri E, Marmiroli M, Marmiroli N (2016) Bioactive peptides in plant-derived foodstuffs. J Proteome 147:140–155

    Article  CAS  Google Scholar 

  • Mao R, Wu L, Zhu N, Liu X, Hao Y, Liu R, Du Q, Li Y (2020) Immunomodulatory effects of walnut (Juglans regia L.) oligopeptides on innate and adaptive immune responses in mice. J Funct Foods 73:104068

    Article  CAS  Google Scholar 

  • Martínez-Medina GA, Barragán AP, Ruiz HA, Ilyina A, Martínez Hernández JL, Rodriguez-Jasso RM, Hoyos-Concha JL, Aguilar-González CN (2018) Fungal proteases and production of bioactive peptides for the food industry. In: Kuddus M (ed) Enzymes in food biotechnology, production application and future prospects. https://doi.org/10.1016/B978-0-12-813280-7.09989-8

  • Masotti AI, Buckley N, Champagne CP, Green-Johnson J (2011) Immunomodulatory bioactivity of soy and milk ferments on monocyte and macrophage models. Food Res Int 44(8):2475–2481

    Article  CAS  Google Scholar 

  • McCarthy AL, O’Callaghan YC, Connolly A, Piggott CO, Fitzgerald RJ, O’Brien NM (2013) In vitro antioxidant and anti-inflammatory effects of brewers’ spent grain protein rich isolate and its associated hydrolysates. Food Res Int 50(1):205–212

    Article  CAS  Google Scholar 

  • Moriber N (2014) Innate and adaptive immunity. In: Grossman S, Mathson Porth C (eds) Porth’s pathophysiology: concepts altered health states, 9th edn. Wolters Kluwer Health, Philadelphia, pp 276–305

    Google Scholar 

  • Moronta J, Smaldini PL, Fossati CA, Añon MC, Docena GH (2016) The anti-inflammatory SSEDIKE peptide from Amaranth seeds modulates IgE-mediated food allergy. J Funct Foods 25:579–587

    Article  CAS  Google Scholar 

  • Morris HJ, Carrillo OV, Almarales Á, Bermúdez R, Alonso ME, Borges L, Quintana MM, Fontaine R, Llaruado G, de la Caridad Hernández M (2009) Protein hydrolysates from the alga Chlorella vulgaris 87/1 with potentialities in immunonutrition. Biotechnol Appl 26(2):162–165

    Google Scholar 

  • Nunes A (2020) Introductory chapter: overview of the cellular and molecular basis of inflammatory process. In: Nunes A (ed) Translational studies. Intech open, London, pp 1–4

    Google Scholar 

  • O’Keeffe MB, Fitzgerald RJ (2015) Identification of short peptide sequences in complex milk protein hydrolysates. Food Chem 184:140–146

    Article  PubMed  CAS  Google Scholar 

  • Onwulata C, Qi PX (2004) Food proteins: interactions and functionality. In: Meyers R (ed) Encyclopedia of molecular cell biology and molecular medicine, 2nd edn. Wiley, Weinheim, pp 506–516

    Google Scholar 

  • Oyama M, Van Hung T, Yoda K, He F, Suzuki T (2017) A novel whey tetrapeptide IPAV reduces interleukin-8 production induced by TNF-α in human intestinal Caco-2 cells. J Funct Foods 35:376–383

    Article  CAS  Google Scholar 

  • Pahwa R, Goyal A, Bansal P, Jialal I (2020) Chronic inflammation. StatPearls Publishing, 2021:29630225

    Google Scholar 

  • Parnham MJ, Nijkamp FP (eds) (2019) Nijkamp and Parnham’s principles of Immunopharmacology. Springer

    Google Scholar 

  • Pawar VK, Gopal Meher J, Singh Y, Chaurasia M, Surendar B, Chourasia MK (2014) Targeting of gastrointestinal tract for amended delivery of protein/peptide therapeutics: strategies and industrial perspectives. J Control Release 196:168–183

    Article  CAS  PubMed  Google Scholar 

  • Qian B, Zhao X, Yang Y, Tian C (2020) Antioxidant and anti-inflammatory peptide fraction from oyster soft tissue by enzymatic hydrolysis. Food Sci Nutr 8(7):3947–3956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redondo N, Nova E, Gomez-Martínez S, Díaz-Prieto LE, Marcos A (2018) Diet, nutrition and the immune system. In: Ferranti P, Berry E, Anderson JR (eds) Encyclopedia of food security and sustainability. Elsevier, p 250–255. https://doi.org/10.1016/B978-0-08-100596-5.22047-7

  • Ren D, Wang M, Shen M, Liu C, Liu W, Min W, Liu J (2015) In vivo assessment of immunomodulatory activity of hydrolysed peptides from Corylus heterophylla Fisch. J Sci Food Agric 96(10):3508–3514

    Article  PubMed  CAS  Google Scholar 

  • Rieber EP (2011) Immune system. In: Michal G, Schomburg D (eds) Biochemical pathways: an atlas of biochemistry and molecular biology, 2nd edn. Wiley, Hoboken, pp 58–65

    Google Scholar 

  • Rodríguez Hernández G, Rentería Monterrubio A, Rodríguez Figueroa J, Chávez-Martínez A (2014) Biopéptidos en la leche y sus derivados: funcionamiento y beneficios a la salud. Ecosist y Recur Agropecu 1(3):281–294

    Google Scholar 

  • Rojas W, Anaya JM, Cano LE, Aristizábal BH, Gómez LM, Lopera D (2007) Inmunología de Rojas. CIB Fondo Editorial

    Google Scholar 

  • Sánchez-Sánchez ML, García-Vigara A, Hidalgo-Mora JJ, García Pérez MA, Tarín J, Cano A (2020) Mediterranean diet and health: a systematic review of epidemiological studies and intervention trials. Maturitas 136:25–37

    Article  PubMed  Google Scholar 

  • Schweizer F (2009) Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol 625(1–3):190–194

    Article  CAS  PubMed  Google Scholar 

  • Schwingshackl L, Morze J, Hoffmann G (2020) Mediterranean diet and health status: active ingredients and pharmacological mechanisms. Br J Pharmacol 177(6):1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Seung Rak L, Hyung-Soo R, Lee S, Hyun Bong P, Tae SJ, Yoon-Joo K, Kwan-Hyuck B, Ki Hyun K (2018) Bioactivity-guided isolation and chemical characterization of antiproliferative constituents from morel mushroom (Morchella esculenta) in human lung adenocarcinoma cells. J Funct Foods 40:249–260

    Article  CAS  Google Scholar 

  • Shah R, Makarem N, Emin M, Liao M, Jelix S, Aggarwal B (2020) Mediterranean diet components are linked to greater endothelial function and lower inflammation in a pilot study of ethnically diverse women. Nutr Res 75:77–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spadaro KC, Provident IM (2020) Health benefits of mindful meditation. In: Uribarri J, Vassalotti J (eds) Nutrition, fitness, and mindfulness. Nutrition and health. Humana Press, Cham. https://doi.org/10.1007/978-3-030-30892-6_11

    Chapter  Google Scholar 

  • Stewart G (2004) The immune system. Chelsea House, Philadelphia

    Google Scholar 

  • Sun X, Chakrabarti S, Fang J, Yin Y, Wu J (2016) Low molecular-weight fractions of Alcalase hydrolyzed egg Ovomucin extract exert anti-inflammatory activity in human dermal fibroblasts through the inhibition of TNF mediated NF-κB pathway. Nutr Res 36(7):648–657

    Article  CAS  PubMed  Google Scholar 

  • Tang Y (2016) Artificial immune system. In: Tang Y (ed) Artificial immune system: applications in computer security, 1st edn. Wiley, Hoboken, pp 1–25

    Google Scholar 

  • Thundimadathil J (2012) Cancer treatment using peptides: current therapies and future prospects. J Amino Acids 2012:967347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toche P (2012) Panoramic vision of the immune system. Inmunol Unidad Med Dep Clínica 23(4):446–457

    Google Scholar 

  • Tong L-T, Ju Z, Wang L, Qiu J, Liu L, Zhou X, Liand T, Geng D, Zhou S (2019) Peptides derived from rice α-globulin reduce atherosclerosis in apolipoprotein E-deficient mice by inhibiting TNF-α-induced vascular endothelial cells injury. J Funct Foods 63:103582

    Article  CAS  Google Scholar 

  • Udenigwe CC, Lu Y, Han C, Hou W, Aluko RE (2009) Flaxseed protein-derived peptide fractions : antioxidant properties and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages. Food Chem 116(1):277–284

    Article  CAS  Google Scholar 

  • Ustunol Z (2015a) Amino acids, peptides, and proteins. In: Ustunol Z (ed) Applied food protein chemistry. Wiley Online Library, p 11–21

    Google Scholar 

  • Ustunol Z (2015b) Protein properties. In: Ustunol Z (ed) Applied food protein chemistry. Wiley Online Library, p 1–11

    Google Scholar 

  • Vaezi Z, Bortolotti A, Luca V, Perilli G, Mangone ML, Khosravi-Far R, Bobone S, Stella L (2020) Aggregation determines the selectivity of membrane-active anticancer and antimicrobial peptides: the case of killer FLIP. Biochim Biophys Acta Biomembr 1862(2):183107

    Article  CAS  PubMed  Google Scholar 

  • Vo TS, Ryu BM, Kim SK (2013) Purification of novel anti-inflammatory peptides from enzymatic hydrolysate of the edible microalgal Spirulina maxima. J Funct Foods 5(3):1336–1346

    Article  CAS  Google Scholar 

  • Vinderola G, Matar C, Perdigón G (2007) Milk fermentation products of L. helveticus R389 activate calcineurin as a signal to promote gut mucosal immunity. BMC Immunol 8(1):1–10. https://doi.org/10.1186/1471-2172-8-19

    Article  CAS  Google Scholar 

  • Wada Y, Lönnerdal B (2014) Bioactive peptides derived from human milk proteins—mechanisms of action. J Nutr Biochem 25(5):503–514

    Article  CAS  PubMed  Google Scholar 

  • Waldron KW (2009) Handbook of waste management and co-product recovery in food processing. Woodhead, Sawston

    Book  Google Scholar 

  • Wang X, Zhao Y, Yao Y, Xu M, Du H, Zhang M, Tu Y (2017) Anti-inflammatory activity of di-peptides derived from ovotransferrin by simulated peptide-cut in TNF- a -induced Caco-2 cells. J Funct Foods 37:424–432

    Article  CAS  Google Scholar 

  • Wong EB, Mallet J, Duarte J, Matar C, Ritz BW (2014) Bovine colostrum enhances natural killer cell activity and immune response in a mouse model of influenza infection and mediates intestinal immunity through toll-like receptors 2 and 4. Nutr Res 34(4):318–325

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Zhang M, Sun C, Brennan M, Li H, Wang G, Lai F, Wu H (2016) Enzymatic preparation of immunomodulatory hydrolysates from defatted wheat germ (Triticum Vulgare) globulin. Int J Food Sci Technol 51(12):2556–2566

    Article  CAS  Google Scholar 

  • Xu Q, Hong H, Wu J, Yan X (2019) Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: a review. Trends Food Sci Technol 86:399–411

    Article  CAS  Google Scholar 

  • Yi HC, You ZH, Zhou X, Cheng L, Li X, Jiang TH, Chen ZH (2019) ACP-DL: a deep learning long short-term memory model to predict anticancer peptides using high-efficiency feature representation. Mol Ther Nucleic Acids Ltd 17:1–9

    Article  CAS  Google Scholar 

  • Yi G, Li H, Liu M, Ying Z, Zhang J, Liu X (2020) Soybean protein-derived peptides inhibit inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPK-JNK and NF-kappa B activation. J Food Biochem 44(8):e13289

    Article  CAS  PubMed  Google Scholar 

  • Yu F, He K, Dong X, Zhang Z, Wang F, Tang Y, Chen Y, Ding G (2020) Immunomodulatory activity of low molecular-weight peptides from Nibea japonica skin in cyclophosphamide-induced immunosuppressed mice. J Funct Foods 68(2):103888

    Article  CAS  Google Scholar 

  • Yuan B, Zhao C, Cheng C, Huang D, Cheng S, Cao C, Chen G (2019) A peptide-Fe(II) complex from Grifola frondosa protein hydrolysates and its immunomodulatory activity. Food Biosci 32:100459

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mónica L. Chávez-González or Cristobal N. Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martínez-Medina, G.A. et al. (2022). Immunomodulatory Properties of Proteins and Peptides: Food Derivatives Approach. In: Kesharwani, R.K., Keservani, R.K., Sharma, A.K. (eds) Immunomodulators and Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-16-6379-6_14

Download citation

Publish with us

Policies and ethics