Skip to main content

Clinical Approaches in Targeting ROS-Induced Cancer

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

Reactive oxygen species (ROS) results from various metabolic processes and plays a significant role as secondary messengers across multiple signaling pathways. However, any disruption in the delicate balance of optimum ROS levels and regulatory antioxidant molecules can lead to enhanced oxidative stress, proving detrimental to the cell homeostatic functioning. The major repercussion observed in the mammalian system is the pro-tumorigenic impact of the upregulated ROS levels in tumor initiation, progression, and metastasis. Hence, robust diagnostic and prognostic tools need to be developed to screen and target ROS in cancer patients. This chapter highlights the different clinical therapies currently employed to detect and suppress the elevated ROS levels within the tumor cells. These therapies include drug-based therapies, immunotherapies, radiation-based therapies like photodynamic therapy (PDT) and sonodynamic therapy (SDT), inhibitors such as HSP90 and Mn porphyrins, and other targeted remedies like vaccines, monoclonal antibodies, and hydrogen gas application. Summarizing such commonly used clinical practices at a single platform facilitates a comparative analysis for their efficiency and adaptability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aziz AK, Shouman S, El-Demerdash E, Elgendy M, Abdel-Naim AB (2014) Chloroquine synergizes sunitinib cytotoxicity via modulating autophagic, apoptotic, and angiogenic machineries. Chem Biol Interact 217:28–40

    Article  CAS  Google Scholar 

  • Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281

    Article  Google Scholar 

  • Baldea I, Filip AG (2012) Photodynamic therapy in melanoma—an update. J Physiol Pharmacol 63(2):109

    CAS  Google Scholar 

  • Baskaran R, Lee J, Yang SG (2018) Clinical development of photodynamic agents and therapeutic applications. Biomater Res 22(1):1–8

    Article  Google Scholar 

  • Beck R, Dejeans N, Glorieux C, Pedrosa RC, Vásquez D, Valderrama JA et al (2011) Molecular chaperone Hsp90 as a target for oxidant-based anticancer therapies. Curr Med Chem 18(18):2816–2825

    Article  CAS  Google Scholar 

  • Biteghe FAN, Chalomie NET, Mungra N, Vignaux G, Gao N, Vergeade A et al (2020) Antibody-based immunotherapy: alternative approaches for the treatment of metastatic melanoma. Biomedicine 8(9):327

    CAS  Google Scholar 

  • Bobanga ID, Petrosiute A, Huang AY (2013) Chemokines as cancer vaccine adjuvants. Vaccine 1(4):444–462

    Article  Google Scholar 

  • Breinig M, Caldas-Lopes E, Goeppert B, Malz M, Rieker R, Bergmann F et al (2009) Targeting heat shock protein 90 with non-quinone inhibitors: a novel chemotherapeutic approach in human hepatocellular carcinoma. Hepatology 50(1):102–112

    Article  CAS  Google Scholar 

  • Callahan MK, Kluger H, Postow MA, Segal NH, Lesokhin A, Atkins MB et al (2018) Nivolumab plus ipilimumab in patients with advanced melanoma: updated survival, response, and safety data in a phase I dose-escalation study. J Clin Oncol 36(4):391

    Article  CAS  Google Scholar 

  • Celic T, Španjol J, Bobinac M, Tovmasyan A, Vukelic I, Reboucas JS et al (2014) Mn porphyrin-based SOD mimic, MnTnHex-2-PyP5+, and non-SOD mimic, MnTBAP3−, suppressed rat spinal cord ischemia/reperfusion injury via NF-κB pathways. Free Radic Res 48(12):1426–1442

    Article  CAS  Google Scholar 

  • Chio IIC, Tuveson DA (2017) ROS in cancer: the burning question. Trends Mol Med 23(5):411–429

    Article  CAS  Google Scholar 

  • Clement S, Campbell JM, Deng W, Guller A, Nisar S, Liu G et al (2020) Mechanisms for tuning engineered nanomaterials to enhance radiation therapy of cancer. Adv Sci 7(24):2003584

    Article  CAS  Google Scholar 

  • Cohen DK, Lee PK (2016) Photodynamic therapy for non-melanoma skin cancers. Cancer 8(10):90

    Article  Google Scholar 

  • Conklin KA (2004) Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther 3(4):294–300

    Article  CAS  Google Scholar 

  • Darvin P, Toor SM, Nair VS, Elkord E (2018) Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 50(12):1–11

    Article  Google Scholar 

  • Delbridge AR, Grabow S, Strasser A, Vaux DL (2016) Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer 16(2):99

    Article  CAS  Google Scholar 

  • Disis ML (2011) Immunologic biomarkers as correlates of clinical response to cancer immunotherapy. Cancer Immunol Immunother 60(3):433–442

    Article  CAS  Google Scholar 

  • Dizdaroglu M, Jaruga P (2012) Mechanisms of free radical-induced damage to DNA. Free Radic Res 46(4):382–419

    Article  CAS  Google Scholar 

  • Franklin C, Livingstone E, Roesch A, Schilling B, Schadendorf D (2017) Immunotherapy in melanoma: recent advances and future directions. Eur J Surg Oncol (EJSO) 43(3):604–611

    Article  CAS  Google Scholar 

  • Gong Z, Dai Z (2021) Design and challenges of sonodynamic therapy system for cancer theranostics: from equipment to sensitizers. Adv Sci 8(10):2002178

    Article  CAS  Google Scholar 

  • Goodman M, Bostick RM, Kucuk O, Jones DP (2011) Clinical trials of antioxidants as cancer prevention agents: past, present, and future. Free Radic Biol Med 51(5):1068–1084

    Article  CAS  Google Scholar 

  • Guikema JE, Amiot M, Eldering E (2017) Exploiting the pro-apoptotic function of NOXA as a therapeutic modality in cancer. Expert Opin Ther Targets 21(8):767–779

    Article  CAS  Google Scholar 

  • He L, He T, Farrar S, Ji L, Liu T, Ma X (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44(2):532–553

    Article  Google Scholar 

  • Hirano SI, Ichikawa Y, Sato B, Yamamoto H, Takefuji Y, Satoh F (2021) Molecular hydrogen as a potential clinically applicable radioprotective agent. Int J Mol Sci 22(9):4566

    Article  CAS  Google Scholar 

  • Hui KF, Lam BH, Ho DN, Tsao SW, Chiang AK (2013) Bortezomib and SAHA synergistically induce ROS-driven caspase-dependent apoptosis of nasopharyngeal carcinoma and block replication of Epstein–Barr virus. Mol Cancer Ther 12(5):747–758

    Article  CAS  Google Scholar 

  • Hussain M, Javeed A, Ashraf M, Al-Zaubai N, Stewart A, Mukhtar MM (2012) Non-steroidal anti-inflammatory drugs, tumour immunity and immunotherapy. Pharmacol Res 66(1):7–18

    Article  CAS  Google Scholar 

  • Jendželovský R, Mikeš J, Souček K, Procházková J, Kello M, Sačková V et al (2009) Drug efflux transporters, MRP1 and BCRP, affect the outcome of hypericin-mediated photodynamic therapy in HT-29 adenocarcinoma cells. Photochem Photobiol Sci 8(12):1716–1723

    Article  Google Scholar 

  • Kale A, Rogers NM, Ghimire K (2021) Thrombospondin-1 CD47 signalling: from mechanisms to medicine. Int J Mol Sci 22(8):4062

    Article  CAS  Google Scholar 

  • Kaplon H, Reichert JM (2019) Antibodies to watch in 2019. In: MAbs, vol 11. Taylor & Francis, pp 219–238

    Google Scholar 

  • Kawczyk-Krupka A, Bugaj AM, Latos W, Zaremba K, Sieroń A (2013) Photodynamic therapy in treatment of cutaneous and choroidal melanoma. Photodiagn Photodyn Ther 10(4):503–509

    Article  CAS  Google Scholar 

  • Kim EG, Kim KM (2015) Strategies and advancement in antibody-drug conjugate optimization for targeted cancer therapeutics. Biomol Ther 23(6):493

    Article  CAS  Google Scholar 

  • Kobayashi H, Griffiths GL, Choyke PL (2019) Near-infrared photoimmunotherapy: photoactivatable antibody–drug conjugates (ADCs). Bioconjug Chem 31(1):28–36

    Article  Google Scholar 

  • Letendre P, Monga V, Milhem M, Zakharia Y (2017) Ipilimumab: from preclinical development to future clinical perspectives in melanoma. Future Oncol 13(7):625–636

    Article  CAS  Google Scholar 

  • Li H, Yu C, Jiang J, Huang C, Yao X, Xu Q et al (2016) An anti-HER2 antibody conjugated with monomethyl auristatin E is highly effective in HER2-positive human gastric cancer. Cancer Biol Ther 17(4):346–354

    Article  Google Scholar 

  • Lian J, Yue Y, Yu W, Zhang Y (2020) Immunosenescence: a key player in cancer development. J Hematol Oncol 13(1):1–18

    Article  Google Scholar 

  • Ma S, Li X, Wang X, Cheng L, Li Z, Zhang C et al (2019) Current progress in CAR-T cell therapy for solid tumors. Int J Biol Sci 15(12):2548

    Article  CAS  Google Scholar 

  • Malas S, Harrasser M, Lacy KE, Karagiannis SN (2014) Antibody therapies for melanoma: new and emerging opportunities to activate immunity. Oncol Rep 32(3):875–886

    Article  CAS  Google Scholar 

  • Mapuskar KA, Anderson CM, Spitz DR, Batinic-Haberle I, Allen BG, Oberley-Deegan RE (2019) Utilizing superoxide dismutase mimetics to enhance radiation therapy response while protecting normal tissues. In: Seminars in radiation oncology, vol 29. WB Saunders, pp 72–80

    Google Scholar 

  • Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S et al (2007) Programmed anuclear cell death delimits platelet life span. Cell 128(6):1173–1186

    Article  CAS  Google Scholar 

  • Pasha A, Calvani M, Favre C (2021) β3-adrenoreceptors as ROS balancer in hematopoietic stem cell transplantation. Int J Mol Sci 22(6):2835

    Article  CAS  Google Scholar 

  • Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7(2):97–110

    Article  CAS  Google Scholar 

  • Polson AG, Calemine-Fenaux J, Chan P, Chang W, Christensen E, Clark S et al (2009) Antibody-drug conjugates for the treatment of non-Hodgkin’s lymphoma: target and linker-drug selection. Cancer Res 69(6):2358–2364

    Article  CAS  Google Scholar 

  • Raval RR, Sharabi AB, Walker AJ, Drake CG, Sharma P (2014) Tumor immunology and cancer immunotherapy: summary of the 2013 SITC primer. J Immunother Cancer 2(1):1–11

    Article  Google Scholar 

  • Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF et al (2016) Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med 374(4):311–322

    Article  CAS  Google Scholar 

  • Ryabaya OO, Inshakov AN, Egorova AV, Emelyanova MA, Nasedkina TV, Zasedatelev AS et al (2017) Autophagy inhibitors chloroquine and LY294002 enhance temozolomide cytotoxicity on cutaneous melanoma cell lines in vitro. Anti-Cancer Drugs 28(3):307–315

    Article  CAS  Google Scholar 

  • Sacco A, Battaglia AM, Botta C, Aversa I, Mancuso S, Costanzo F, Biamonte F (2021) Iron metabolism in the tumor microenvironment—implications for anti-cancer immune response. Cell 10(2):303

    Article  CAS  Google Scholar 

  • Sanlorenzo M, Vujic I, Floris A, Novelli M, Gammaitoni L, Giraudo L et al (2018) BRAF and MEK inhibitors increase PD-1-positive melanoma cells leading to a potential lymphocyte-independent synergism with anti–PD-1 antibody. Clin Cancer Res 24(14):3377–3385

    Article  CAS  Google Scholar 

  • Santos LL, Oliveira J, Monteiro E, Santos J, Sarmento C (2018) Treatment of head and neck cancer with photodynamic therapy with redaporfin: a clinical case report. Case Rep Oncol 11(3):769–776

    Article  Google Scholar 

  • Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P, Bergo MO (2014) Antioxidants accelerate lung cancer progression in mice. Sci Transl Med 6(221):221ra15

    Article  Google Scholar 

  • Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, Irie HY et al (2009) Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461(7260):109–113

    Article  CAS  Google Scholar 

  • Seledtsov VI, Goncharov AG, Seledtsova GV (2015) Clinically feasible approaches to potentiating cancer cell-based immunotherapies. Hum Vaccines & Immunother 11(4):851–869

    Article  CAS  Google Scholar 

  • Sharma KV, Davids LM (2012) Hypericin-PDT-induced rapid necrotic death in human squamous cell carcinoma cultures after multiple treatment. Cell Biol Int 36(12):1261–1266

    Article  CAS  Google Scholar 

  • Shrestha R, Johnson E, Byrne FL (2021) Exploring the therapeutic potential of mitochondrial uncouplers in cancer. Mol Metab 51:101222

    Article  CAS  Google Scholar 

  • Solit DB, Osman I, Polsky D, Panageas KS, Daud A, Goydos JS et al (2008) Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma. Clin Cancer Res 14(24):8302–8307

    Article  CAS  Google Scholar 

  • Sommer A, Kopitz C, Schatz CA, Nising CF, Mahlert C, Lerchen HG et al (2016) Preclinical efficacy of the auristatin-based antibody–drug conjugate BAY 1187982 for the treatment of FGFR2-positive solid tumors. Cancer Res 76(21):6331–6339

    Article  CAS  Google Scholar 

  • Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J et al (2013) ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 19(2):202–208

    Article  CAS  Google Scholar 

  • Stock S, Schmitt M, Sellner L (2019) Optimizing manufacturing protocols of chimeric antigen receptor T cells for improved anticancer immunotherapy. Int J Mol Sci 20(24):6223

    Article  CAS  Google Scholar 

  • Tovmasyan A, Sampaio RS, Boss MK, Bueno-Janice JC, Bader BH, Thomas M et al (2015) Anticancer therapeutic potential of Mn porphyrin/ascorbate system. Free Radic Biol Med 89:1231–1247

    Article  CAS  Google Scholar 

  • Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME et al (2014) Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344(6184):641–645

    Article  CAS  Google Scholar 

  • Trojaniello C, Festino L, Vanella V, Ascierto PA (2019) Encorafenib in combination with binimetinib for unresectable or metastatic melanoma with BRAF mutations. Expert Rev Clin Pharmacol 12(3):259–266

    Article  CAS  Google Scholar 

  • Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K (2016) Redox-and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 90(1):1–37

    Article  CAS  Google Scholar 

  • Van Straten D, Mashayekhi V, De Bruijn HS, Oliveira S, Robinson DJ (2017) Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancer 9(2):19

    Article  Google Scholar 

  • Wang H, Liu X, Long M, Huang Y, Zhang L, Zhang R et al (2016) NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis. Sci Transl Med 8(334):334ra51

    Article  Google Scholar 

  • Yin L, Kufe T, Avigan D, Kufe D (2014) Targeting MUC1-C is synergistic with bortezomib in downregulating TIGAR and inducing ROS-mediated myeloma cell death. Blood 123(19):2997–3006

    Article  CAS  Google Scholar 

  • Zhang LH, Yang AJ, Wang M, Liu W, Wang CY, Xie XF et al (2016) Enhanced autophagy reveals vulnerability of P-gp mediated epirubicin resistance in triple negative breast cancer cells. Apoptosis 21(4):473–488

    Article  CAS  Google Scholar 

  • Zou Z, Chang H, Li H, Wang S (2017) Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis 22(11):1321–1335

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sengar, A., Sengar, M., Mann, Z., Raghav, P.K. (2022). Clinical Approaches in Targeting ROS-Induced Cancer. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-5422-0_256

Download citation

Publish with us

Policies and ethics