Skip to main content

The Role of Cannabis Species on Oxidative Stress in Cancer Cells

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

Many therapeutic mechanisms kill cancer cells through reactive oxygen species (ROS) generation, ROS plays a vital role in cancer cell signaling and metabolism, which is an irony. Cancer therapies can therefore target oxidative stress through varying mechanisms. The cannabis plant consists of many bioactive compounds with multiple beneficial health properties which have been overlooked for decades. It had been limited to illegal recreational use and legal pharmaceutical exploitation for the manufacturing of medicine. Cannabis consists of derivatives known as cannabinoids which target the endocannabinoid system in the body. Alongside its psychoactive effects, most of the cannabinoid compounds have potent therapeutic effects, one of which observed is the induction of oxidative stress in cancer cells, eventually leading to the cell death. This review discusses a brief account of cannabis and its derivatives and how they cause apoptosis in cancer cells by inducing oxidative cellular damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albensi BC. What is nuclear factor kappa B (NF-κB) doing in and to the mitochondrion? Front Cell Dev Biol [Internet]. 2019 [cited 2021 May 24]; 7. Available from: https://www.frontiersin.org/articles/10.3389/fcell.2019.00154/full

  • Alger BE. Getting High on the Endocannabinoid System. Cerebrum Dana Forum Brain Sci [Internet]. 2013 Nov 1 [cited 2021 May 26]; 2013. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3997295/

  • Alonso-Molero J, González-Donquiles C, Fernández-Villa T, de Souza-Teixeira F, Vilorio-Marqués L, Molina AJ et al (2017 Nov 9) Alterations in PGC1α expression levels are involved in colorectal cancer risk: a qualitative systematic review. BMC Cancer 17(1):731

    Google Scholar 

  • Andre CM, Hausman J-F, Guerriero G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front Plant Sci [Internet]. 2016 [cited 2021 May 14]; 7. Available from: https://www.frontiersin.org/articles/10.3389/fpls.2016.00019/full

  • Baron EP, Lucas P, Eades J, Hogue O (2018 May 24) Patterns of medicinal cannabis use, strain analysis, and substitution effect among patients with migraine, headache, arthritis, and chronic pain in a medicinal cannabis cohort. J Headache Pain 19(1):37

    Google Scholar 

  • Basavarajappa BS, Nixon RA, Arancio O (2009 Apr) Endocannabinoid system: emerging role from neurodevelopment to neurodegeneration. Mini Rev Med Chem 9(4):448–462

    CAS  Google Scholar 

  • Bielawiec P, Harasim-Symbor E, Chabowski A. Phytocannabinoids: Useful Drugs for the Treatment of Obesity? Special Focus on Cannabidiol. Front Endocrinol [Internet]. 2020 Mar 4 [cited 2021 May 24]; 11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064444/

  • Borrelli F, Pagano E, Romano B, Panzera S, Maiello F, Coppola D et al (2014 Dec) Colon carcinogenesis is inhibited by the TRPM8 antagonist cannabigerol, a cannabis-derived non-psychotropic cannabinoid. Carcinogenesis 35(12):2787–2797

    CAS  Google Scholar 

  • Cao TT, Ma L, Kandpal G, Warren L, Hess JF, Seabrook GR (2005) Increased nuclear factor-erythroid 2 p45-related factor 2 activity protects SH-SY5Y cells against oxidative damage. J Neurochem 95(2):406–417

    CAS  Google Scholar 

  • Chittiboyina S, Bai Y, Lelièvre SA. Microenvironment-cell nucleus relationship in the context of oxidative stress. Front Cell Dev Biol [Internet]. 2018 [cited 2021 May 5]; 6. Available from: https://www.frontiersin.org/articles/10.3389/fcell.2018.00023/full

  • Demirakca T, Sartorius A, Ende G, Meyer N, Welzel H, Skopp G et al (2011 Apr 1) Diminished gray matter in the hippocampus of cannabis users: possible protective effects of cannabidiol. Drug Alcohol Depend 114(2):242–245

    CAS  Google Scholar 

  • Devinsky O, Cilio MR, Cross H, Fernandez-Ruiz J, French J, Hill C et al (2014) Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 55(6):791–802

    CAS  Google Scholar 

  • Farrimond JA, Whalley BJ, Williams CM (2012 Sep 1) Cannabinol and cannabidiol exert opposing effects on rat feeding patterns. Psychopharmacology (Berl) 223(1):117–129

    CAS  Google Scholar 

  • Fouda MA, Ruben PC. Protein kinases mediate anti-inflammatory effects of cannabidiol and estradiol against high glucose in cardiac sodium channels. Front Pharmacol [Internet]. 2021 [cited 2021 May 25]; 12. Available from: https://www.frontiersin.org/articles/10.3389/fphar.2021.668657/full

  • Garces de los Fayos Alonso I, Liang H-C, Turner SD, Lagger S, Merkel O, Kenner L. The Role of Activator Protein-1 (AP-1) Family Members in CD30-Positive Lymphomas. Cancers [Internet]. 2018 Mar 28 [cited 2021 May 24]; 10(4). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5923348/

  • Gorrini C, Harris IS, Mak TW (2013 Dec) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12(12):931–947

    CAS  Google Scholar 

  • Greenhough A, Patsos HA, Williams AC, Paraskeva C (2007 Nov 15) The cannabinoid delta(9)-tetrahydrocannabinol inhibits RAS-MAPK and PI3K-AKT survival signalling and induces BAD-mediated apoptosis in colorectal cancer cells. Int J Cancer 121(10):2172–2180

    CAS  Google Scholar 

  • Grotenhermen F, Müller-Vahl K (2012 Jul) The therapeutic potential of cannabis and cannabinoids. Dtsch Ärztebl Int 109(29–30):495–501

    Google Scholar 

  • HanuÅ¡ LO, Meyer SM, Muñoz E, Taglialatela-Scafati O, Appendino G (2016 Nov 23) Phytocannabinoids: a unified critical inventory. Nat Prod Rep 33(12):1357–1392

    Google Scholar 

  • Hayes JD, Dinkova-Kostova AT, Tew KD (2020 Aug 10) Oxidative stress in cancer. Cancer Cell 38(2):167–197

    CAS  Google Scholar 

  • Hazekamp A, Fischedick JT (2012) Cannabis – from cultivar to chemovar. Drug Test Anal 4(7–8):660–667

    CAS  Google Scholar 

  • Jeong S, Yun HK, Jeong YA, Jo MJ, Kang SH, Kim JL et al (2019 Apr 10) Cannabidiol-induced apoptosis is mediated by activation of Noxa in human colorectal cancer cells. Cancer Lett 447:12–23

    CAS  Google Scholar 

  • Ji Z, Yang G, Shahzidi S, Tkacz-Stachowska K, Suo Z, Nesland JM et al (2006 Dec 8) Induction of hypoxia-inducible factor-1α overexpression by cobalt chloride enhances cellular resistance to photodynamic therapy. Cancer Lett 244(2):182–189

    CAS  Google Scholar 

  • Karin M (2006 May) Nuclear factor-κB in cancer development and progression. Nature 441(7092):431–436

    CAS  Google Scholar 

  • Marinho HS, Real C, Cyrne L, Soares H, Antunes F (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2:535–562

    CAS  Google Scholar 

  • Massi P, Vaccani A, Ceruti S, Colombo A, Abbracchio MP, Parolaro D (2004 Mar) Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines. J Pharmacol Exp Ther 308(3):838–845

    CAS  Google Scholar 

  • Massi P, Vaccani A, Bianchessi S, Costa B, Macchi P, Parolaro D (2006 Sep 1) The non-psychoactive cannabidiol triggers caspase activation and oxidative stress in human glioma cells. Cell Mol Life Sci CMLS 63(17):2057–2066

    CAS  Google Scholar 

  • Massi P, Valenti M, Solinas M, Parolaro D (2010 Jun) Molecular mechanisms involved in the antitumor activity of cannabinoids on gliomas: role for oxidative stress. Cancer 2(2):1013–1026

    CAS  Google Scholar 

  • Monti P, Menichini P, Speciale A, Cutrona G, Fais F, Taiana E, et al. Heterogeneity of TP53 Mutations and P53 Protein Residual Function in Cancer: Does It Matter? Front Oncol [Internet]. 2020 [cited 2021 May 24]; 10. Available from: https://www.frontiersin.org/articles/10.3389/fonc.2020.593383/full

  • Nallathambi R, Mazuz M, Namdar D, Shik M, Namintzer D, Vinayaka AC et al (2018 Jun 1) Identification of synergistic interaction between cannabis-derived compounds for cytotoxic activity in colorectal cancer cell lines and colon polyps that induces apoptosis-related cell death and distinct gene expression. Cannabis Cannabinoid Res 3(1):120–135

    CAS  Google Scholar 

  • Nieto MA, Huang RY-J, Jackson RA, Thiery JP (2016 Jun 30) EMT: 2016. Cell 166(1):21–45

    CAS  Google Scholar 

  • Pellati F, Borgonetti V, Brighenti V, Biagi M, Benvenuti S, Corsi L (2018 Dec 4) Cannabis sativa L. and Nonpsychoactive Cannabinoids: Their Chemistry and Role against Oxidative Stress, Inflammation, and Cancer. Biomed Res Int 2018:e1691428

    Google Scholar 

  • Pertwee RG (2006 Jan) Cannabinoid pharmacology: the first 66 years. Br J Pharmacol 147(Suppl 1):S163–S171

    CAS  Google Scholar 

  • Piomelli D (2005 Jul) The endocannabinoid system: a drug discovery perspective. Curr Opin Investig Drugs Lond Engl 2000 6(7):672–679

    CAS  Google Scholar 

  • Puigserver P, Spiegelman BM (2003 Feb) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24(1):78–90

    CAS  Google Scholar 

  • Reczek CR, Chandel NS (2018 Jun 11) ROS promotes cancer cell survival through calcium Signaling. Cancer Cell 33(6):949–951

    CAS  Google Scholar 

  • Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Vitoretti LB, Mariano-Souza DP, Quinteiro-Filho WM et al (2012 Mar 5) Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: role for the adenosine A2A receptor. Eur J Pharmacol 678(1):78–85

    CAS  Google Scholar 

  • Rieder CR (2020 Mar 24) Cannabidiol in Parkinson’s disease. Braz J Psychiatry 42(2):126–127

    Google Scholar 

  • Russo EB (2008 Feb) Cannabinoids in the management of difficult to treat pain. Ther Clin Risk Manag 4(1):245–259

    CAS  Google Scholar 

  • Sarfaraz S, Afaq F, Adhami VM, Mukhtar H (2005 Mar 1) Cannabinoid receptor as a novel target for the treatment of prostate cancer. Cancer Res 65(5):1635–1641

    CAS  Google Scholar 

  • Seltzer ES, Watters AK, MacKenzie D, Granat LM, Zhang D (2020 Nov) Cannabidiol (CBD) as a promising anti-cancer drug. Cancer 12(11):3203

    CAS  Google Scholar 

  • Shrivastava A, Kuzontkoski PM, Groopman JE, Prasad A (2011 Jul 1) Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy. Mol Cancer Ther 10(7):1161–1172

    CAS  Google Scholar 

  • Stahl V, Vasudevan K (2020 Jan 29) Comparison of efficacy of cannabinoids versus commercial oral care products in reducing bacterial content from dental plaque: a preliminary observation. Cureus 12(1):e6809

    Google Scholar 

  • Thapa D, Cairns EA, Szczesniak A-M, Toguri JT, Caldwell MD, Kelly MEM (2018 Feb 1) The cannabinoids Δ8THC, CBD, and HU-308 Act via distinct receptors to reduce corneal pain and inflammation. Cannabis Cannabinoid Res 3(1):11–20

    CAS  Google Scholar 

  • Tomida I, Pertwee RG, Azuara-Blanco A (2004 May) Cannabinoids and glaucoma. Br J Ophthalmol 88(5):708–713

    CAS  Google Scholar 

  • Velasco G, Hernández-Tiedra S, Dávila D, Lorente M (2016a Jan 4) The use of cannabinoids as anticancer agents. Prog Neuropsychopharmacol Biol Psychiatry 64:259–266

    CAS  Google Scholar 

  • Velasco G, Hernández-Tiedra S, Dávila D, Lorente M (2016b Jan 4) The use of cannabinoids as anticancer agents. Prog Neuropsychopharmacol Biol Psychiatry 64:259–266

    CAS  Google Scholar 

  • Warnatz H-J, Schmidt D, Manke T, Piccini I, Sultan M, Borodina T et al (2011 Jul 1) The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle *. J Biol Chem 286(26):23521–23532

    CAS  Google Scholar 

  • Yun S-H, Han S-H, Park J-I (2018 Jan 21) Peroxisome proliferator-activated receptor γ and PGC-1α in cancer: dual actions as tumor promoter and suppressor. PPAR Res 2018:e6727421

    Google Scholar 

  • Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA (2004 Jan 15) Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev 18(2):157–169

    CAS  Google Scholar 

  • Zhang Q, Chen X, Guo H, Trindade LM, Salentijn EMJ, Guo R, et al. Latitudinal adaptation and genetic insights into the origins of Cannabis sativa L. Front Plant Sci [Internet]. 2018 [cited 2021 Mar 24]; 9. Available from: https://www.frontiersin.org/articles/10.3389/fpls.2018.01876/full

  • Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA, Miri SR (2021 May 1) The nuclear factor kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis 8(3):287–297

    CAS  Google Scholar 

  • Zou S, Kumar U. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int J Mol Sci [Internet]. 2018 Mar 13 [cited 2021 May 26]; 19(3). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5877694/

Download references

Acknowledgments

The authors sincerely thank the University of Johannesburg, the National Laser Centre, and the National Research Foundation – South African Research Chairs Initiative (NRF-SARChI) for their financialgrant support. The authors sincerely thank the University of Johannesburg, the National Laser Centre, and the University of Johannesburg GES 4.0 PDF Fellowship for their financial grant support.

Conflicts of Interest

The authors declare no conflict of interest. This manuscript is based on our original research and has neither been published, nor is being considered elsewhere for publication. Additionally, all the authors note that they do not have any relationships that they believe could be construed as a conflict of interest with regards to manuscript review process.

Funding

This research was funded by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa, grant number 98337.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Abrahamse .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mokoena, D., George, B.P., Abrahamse, H. (2022). The Role of Cannabis Species on Oxidative Stress in Cancer Cells. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-5422-0_201

Download citation

Publish with us

Policies and ethics