Skip to main content

Role of Stem Cells and Reactive Oxygen Species in Cancer

An Insight into Nrf2 Signaling

  • Reference work entry
  • First Online:
Book cover Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

Cancer cells produce excessive reactive oxygen species (ROS) than normal cells because of their increased metabolism and mitochondrial dysfunction. Accumulation of intracellular ROS generation activates proto-oncogenes and inactivates the funtions of tumor suppressor gene. Intracellular ROS act as important signaling molecules to activate cancer cells proliferation and their metastasis. Nuclear factor erythroid 2-related factor 2 (Nrf-2) plays a crucial role by regulating the antioxidant genes expression. Nrf-2 activation intracellularly protects both normal and cancer cells from oxidative damage. Generally, intracellular ROS stimulate Nrf-2 signaling and increase the expression of cytoprotective antioxidant enzymes. In normal cells, enzymic antioxidants protect and nullify the intracellular oxidative imbalance. However, in tumor cells, oncogenic signaling activates Nrf-2 pathway, leading to tumor cells proliferation, drug resistance, stress adaptation, and activation of metabolic reprogramming. Nrf-2 activation has been reported in esophageal, liver, prostate, and breast cancer cells to defend the cancer cells against oxidant-induced cytotoxicity. Therefore, Nrf-2 inhibitors are used in anticancer agents. However, on the other hand, studies have shown that Nrf-2 transient expression is responsible to overcome chemical carcinogenesis. Nrf-2 signaling promotes proliferation, self-renewal, differentiation, and survival of cancer stem cells. On the other hand, stem cells transplantation has been tried for cancer therapy. Nrf-2 activation regulates self-renewal, quiescence, and regenerative potential of adult tissue stem cells and protects them from cellular stress and aging. Therefore, Nrf-2 activators are also reported to act as anticancer agents; however, Nrf2 activation is also a reason for cancer cells chemoresistance. Thus, the role of Nrf-2 signaling in cancer is remain inconclusive. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abijeth B, Ezhilarasan D (2020) Syringic acid induces apoptosis in human oral squamous carcinoma cells through mitochondrial pathway. J Oral Maxillofac Pathol 24(1):40–45

    Article  Google Scholar 

  • Achuthan S, Santhoshkumar TR, Prabhakar J, Nair SA, Pillai MR (2011) Drug-induced senescence generates chemoresistant stemlike cells with low reactive oxygen species. J Biol Chem 286(43):37813–37829

    Article  CAS  Google Scholar 

  • Al Ghrbawy NM, Afify RA, Dyaa N, El Sayed AA (2016) Differentiation of bone marrow: derived mesenchymal stem cells into hepatocyte-like cells. Indian J Hematol Blood Transfus 32(3):276–283

    Article  Google Scholar 

  • Aldinucci A, Rizzetto L, Pieri L, Nosi D, Romagnoli P, Biagioli T, Mazzanti B, Saccardi R, Beltrame L, Massacesi L, Cavalieri D, Ballerini C (2010) Inhibition of immune synapse by altered dendritic cell actin distribution: a new pathway of mesenchymal stem cell immune regulation. J Immunol 185:5102–5110

    Google Scholar 

  • Alkhuriji AF, Alsaiari SG, Alomar SY, Alnafjan AA, Alobaid H, El-Khadragy MF (2021) Effect of mesenchymal stem cells on cytochrome-c release and inflammation in colon cancer induced by 1,2-dimethylhydrazine in Wistar albino rats. Biosci Rep 41(3):BSR20204356

    Google Scholar 

  • Amer MG, Embaby AS, Karam RA, Amer MG (2018) Role of adipose tissue derived stem cells differentiated into insulin producing cells in the treatment of type I diabetes mellitus. Gene 654:87. pii: S0378–1119(18)30125–2

    Article  CAS  Google Scholar 

  • Anirudh BVM, Ezhilarasan D (2021) Reactive oxygen species-mediated mitochondrial dysfunction triggers sodium valproate-induced cytotoxicity in human colorectal adenocarcinoma cells. J Gastrointest Cancer 52(3):899–906

    Article  CAS  Google Scholar 

  • Bouchlaka MN, Moffitt AB, Kim J, Kink JA, Bloom DD, Love C, Dave S, Hematti P, Capitini CM (2017) Human mesenchymal stem cell-educated macrophages are a distinct high IL-6-producing subset that confer protection in graft-versus-host-disease and radiation injury models. Biol Blood Marrow Transplant 23:897–905

    Google Scholar 

  • Brendel C, Kuklick L, Hartmann O, Kim TD, Boudriot U, Schwell D, Neubauer A (2005) Distinct gene expression profile of human mesenchymal stem cells in comparison to skin fibroblasts employing cDNA microarray analysis of 9600 genes. Gene Expr 12(4–6):245–257

    Article  CAS  Google Scholar 

  • Calvo-Ochoa E, Sánchez-Alegría K, Gómez-Inclán C, Ferrera P, Arias C (2017) Palmitic acid stimulates energy metabolism and inhibits insulin/PI3K/AKT signaling in differentiated human neuroblastoma cells: the role of mTOR activation and mitochondrial ROS production. Neurochem Int 110:75–83

    Article  CAS  Google Scholar 

  • Campbell A, Brieva T, Raviv L et al (2015) Concise review: process development considerations for cell therapy. Stem Cells Transl Med 4:1155–1163

    Article  Google Scholar 

  • Česen Mazič M, Girandon L, Kneževič M, Avčin SL, Jazbec J (2018) Treatment of severe steroid-refractory acute-graft-vs.-host disease with mesenchymal stem cells-single center experience. Front Bioeng Biotechnol 6:93

    Article  Google Scholar 

  • Chang CW, Chen YS, Chou SH, Han CL, Chen YJ, Yang CC, Huang CY, Lo JF (2014) Distinct subpopulations of head and neck cancer cells with different levels of intracellular reactive oxygen species exhibit diverse stemness, proliferation, and chemosensitivity. Cancer Res 74(21):6291–6305

    Article  CAS  Google Scholar 

  • Chang CW, Chen YS, Tsay YG, Han CL, Chen YJ, Yang CC, Hung KF, Lin CH, Huang TY, Kao SY, Lee TC, Lo JF (2018) ROS-independent ER stress-mediated NRF2 activation promotes Warburg effect to maintain stemness-associated properties of cancer-initiating cells. Cell Death Dis 9(2):194

    Article  Google Scholar 

  • Chang X, Ma Z, Zhu G, Lu Y, Yang J (2021) New perspective into mesenchymal stem cells: molecular mechanisms regulating osteosarcoma. J Bone Oncol 29:100372

    Article  Google Scholar 

  • Chen WC, Péault B, Huard J (2015) Regenerative translation of human blood-vessel-derived MSC precursors. Stem Cells Int 2015:375187

    Article  Google Scholar 

  • Chio IIC, Tuveson DA (2017) ROS in cancer: the burning question. Trends Mol Med 23:411–429

    Article  CAS  Google Scholar 

  • Christ B, Franquesa M, Najimi M, van der Laan LJW, Dahlke MH (2017) Cellular and molecular mechanisms of mesenchymal stem cell actions. Stem Cells Int 2017:2489041

    Article  Google Scholar 

  • Chu DT, Nguyen TT, Tien NLB, Tran DK, Jeong JH, Anh PG, Thanh VV, Truong DT, Dinh TC (2020) Recent progress of stem cell therapy in cancer treatment: molecular mechanisms and potential applications. Cell 9(3):563

    Article  CAS  Google Scholar 

  • Copelan EA (2006) Hematopoietic stem-cell transplantation. N Engl J Med 354(17):1813–1826

    Article  CAS  Google Scholar 

  • Corselli M, Chen CW, Sun B, Yap S, Rubin JP, Peault B (2012) The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev 21:1299–1308

    Article  CAS  Google Scholar 

  • Dai X, Yan X, Wintergerst KA, Cai L, Keller BB, Tan Y (2020) Nrf2: redox and metabolic regulator of stem cell state and function. Trends Mol Med 26(2):185–200

    Article  CAS  Google Scholar 

  • DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES et al (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475:106–109

    Article  CAS  Google Scholar 

  • Elumalai P, Ezhilarasan D, Raghunandhakumar S (2021) Quercetin inhibits the epithelial to mesenchymal transition through suppressing Akt mediated nuclear translocation of β-catenin in lung cancer cell line. Nutr Cancer. https://doi.org/10.1080/01635581.2021.1957487

  • Emmink BL, Verheem A, Van Houdt WJ, Steller EJ, Govaert KM, Pham TV, Piersma SR, Borel Rinkes IH, Jimenez CR, Kranenburg O (2013) The secretome of colon cancer stem cells contains drug-metabolizing enzymes. J Proteome 91:84–96

    Article  CAS  Google Scholar 

  • Ezhilarasan D (2018) Oxidative stress is bane in chronic liver diseases: clinical and experimental perspective. Arab J Gastroenterol 19(2):56–64

    Article  Google Scholar 

  • Ezhilarasan D, Evraerts J, Brice S, Buc-Calderon P, Karthikeyan S, Sokal E, Najimi M (2016) Silibinin inhibits proliferation and migration of human hepatic stellate LX-2 cells. J Clin Exp Hepatol 6(3):167–174

    Article  Google Scholar 

  • Ezhilarasan D, Kumaran RI, Ramachandran I, Yadav S, Anbalagan M (2020a) Glioblastoma stem cells as a therapeutic target. In: Pathak S, Banerjee A (eds) Cancer stem cells: new horizons in cancer therapies. Springer, Singapore. https://doi.org/10.1007/978-981-15-5120-8_10

  • Ezhilarasan D, Rajeshkumar S, Lakshmi T (2020b) The role of oxidative stress in chronic liver diseases. Springer, Singapore

    Google Scholar 

  • Ezhilarasan D, Anbalagan M, Kumaran RI, Bhaskaran N (2021) Stem cells and aging. Academic, pp 89–101. https://doi.org/10.1016/B978-0-12-820071-1.00006-2

    Book  Google Scholar 

  • Farzaneh M, Rahimi F, Alishahi M, Khoshnam SE (2018) Paracrine mechanisms involved in mesenchymal stem cell differentiation into cardiomyocytes. Curr Stem Cell Res Ther 14:9–13

    Google Scholar 

  • Guo H, Li B, Wang W, Zhao N, Gao H (2018) Mesenchymal stem cells overexpressing IL-35: a novel immunosuppressive strategy and therapeutic target for inducing transplant tolerance. Stem Cell Res Ther 9(1):254

    Article  CAS  Google Scholar 

  • Halliwell B (1996) Antioxidants in human health and disease. Annu Rev Nutr 16:33–50

    Article  CAS  Google Scholar 

  • Harris KM, Lu T, Lim N, Turka LA (2018) Challenges and opportunities for biomarkers of clinical response to AHSCT in autoimmunity. Front Immunol 9:100

    Article  Google Scholar 

  • Hass R, Kasper C, Böhm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9:12

    Article  CAS  Google Scholar 

  • Hmadcha A, Martin-Montalvo A, Gauthier BR, Soria B, Capilla-Gonzalez V (2020) Therapeutic potential of mesenchymal stem cells for cancer therapy. Front Bioeng Biotechnol 8:43

    Article  Google Scholar 

  • Holt CD (2017) Overview of immunosuppressive therapy in solid organ transplantation. Anesthesiol Clin 35:365–380

    Google Scholar 

  • Jia Y, Chen J, Zhu H, Jia ZH, Cui MH (2015) Aberrantly elevated redox sensing factor Nrf2 promotes cancer stem cell survival via enhanced transcriptional regulation of ABCG2 and Bcl-2/Bmi-1 genes. Oncol Rep 34(5):2296–2304

    Article  CAS  Google Scholar 

  • Jiang F, Zhang Y, Dusting GJ (2011) NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 63:218–242

    Article  CAS  Google Scholar 

  • Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, Berry JE, McGee S, Lee E, Sun H, Wang J, Jin T, Zhang H, Dai J, Krebsbach PH, Keller ET, Pienta KJ, Taichman RS (2013) Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun 4:1795

    Google Scholar 

  • Kahroba H, Shirmohamadi M, Hejazi MS, Samadi N (2019) The role of Nrf2 signaling in cancer stem cells: from stemness and self-renewal to tumorigenesis and chemoresistance. Life Sci 239:116986

    Article  CAS  Google Scholar 

  • Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–661

    Article  CAS  Google Scholar 

  • Kamihara Y, Takada K, Sato T, Kawano Y, Murase K, Arihara Y, Kikuchi S, Hayasaka N, Usami M, Iyama S, Miyanishi K, Sato Y, Kobune M, Kato J (2016) The iron chelator deferasirox induces apoptosis by targeting oncogenic Pyk2/β-catenin signaling in human multiple myeloma. Oncotarget 7:64330–64341

    Google Scholar 

  • Kanojia D, Balyasnikova IV, Morshed RA, Frank RT, Yu D, Zhang L, Spencer DA, Kim JW, Han Y, Yu D, Ahmed AU, Aboody KS, Lesniak MS (2015) Neural stem cells secreting anti-HER2 antibody improve survival in a preclinical model of HER2 overexpressing breast cancer brain metastases. Stem Cells 33(10):2985–2994

    Article  CAS  Google Scholar 

  • Kansanen E, Kivelä AM, Levonen AL (2009) Regulation of Nrf2-dependent gene expression by 15-deoxy-Delta12,14-prostaglandin J2. Free Radic Biol Med 47(9):1310–1317

    Article  CAS  Google Scholar 

  • Kaundal U, Bagai U, Rakha A (2018) Immunomodulatory plasticity of mesenchymal stem cells: a potential key to successful solid organ transplantation. J Transl Med 16(1):31

    Article  CAS  Google Scholar 

  • Khanh VC, Yamashita T, Ohneda K, Tokunaga C, Kato H, Osaka M, Hiramatsu Y, Ohneda O (2020) Rejuvenation of mesenchymal stem cells by extracellular vesicles inhibits the elevation of reactive oxygen species. Sci Rep 10(1):17315

    Article  CAS  Google Scholar 

  • Kitano Y, Baba Y, Nakagawa S, Miyake K, Iwatsuki M, Ishimoto T, Yamashita YI, Yoshida N, Watanabe M, Nakao M, Baba H (2018) Nrf2 promotes oesophageal cancer cell proliferation via metabolic reprogramming and detoxification of reactive oxygen species. J Pathol 244(3):346–357

    Article  CAS  Google Scholar 

  • Krajka-Kuźniak V, Paluszczak J, Baer-Dubowska W (2017) The Nrf2-ARE signaling pathway: an update on its regulation and possible role in cancer prevention and treatment. Pharmacol Rep 69(3):393–402

    Article  Google Scholar 

  • Lee SR, Yang KS, Kwon J, Lee C, Jeong W, Rhee SG (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277:20336–20342

    Article  CAS  Google Scholar 

  • Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 6:19

    Article  CAS  Google Scholar 

  • Li R, Jia Z, Zhu H (2019) Regulation of Nrf2 signaling. React Oxyg Species (Apex) 8(24):312–322

    CAS  Google Scholar 

  • Lin W, Huang L, Li Y, Fang B, Li G, Chen L, Xu L (2019) Mesenchymal stem cells and cancer: clinical challenges and opportunities. Biomed Res Int 2019:2820853

    Article  Google Scholar 

  • Liu M, Yao XD, Li W, Geng J, Yan Y, Che JP, Xu YF, Zheng JH (2015) Nrf2 sensitizes prostate cancer cells to radiation via decreasing basal ROS levels. Biofactors 41:52–57

    Article  Google Scholar 

  • Lourenco S, Teixeira VH, Kalber T, Jose RJ, Floto RA, Janes SM (2015) Macrophage migration inhibitory factor-CXCR4 is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors. J Immunol 194(7):3463–3474

    Article  CAS  Google Scholar 

  • Lu L, Chen G, Yang J, Ma Z, Yang Y, Hu Y, Lu Y, Cao Z, Wang Y, Wang X (2019) Bone marrow mesenchymal stem cells suppress growth and promote the apoptosis of glioma U251 cells through downregulation of the PI3K/AKT signaling pathway. Biomed Pharmacother 112:108625

    Article  CAS  Google Scholar 

  • Mirzaei S, Mohammadi AT, Gholami MH, Hashemi F, Zarrabi A, Zabolian A, Hushmandi K, Makvandi P, Samec M, Liskova A, Kubatka P, Nabavi N, Aref AR, Ashrafizadeh M, Khan H, Najafi M (2021) Nrf2 signaling pathway in cisplatin chemotherapy: potential involvement in organ protection and chemoresistance. Pharmacol Res 167:105575

    Article  CAS  Google Scholar 

  • Mohammadzadeh M, Halabian R, Gharehbaghian A, Amirizadeh N, Jahanian-Najafabadi A, Roushandeh AM, Roudkenar MH (2012) Nrf-2 overexpression in mesenchymal stem cells reduces oxidative stress-induced apoptosis and cytotoxicity. Cell Stress Chaperones 17(5):553–565

    Article  CAS  Google Scholar 

  • Mushahary D, Spittler A, Kasper C, Weber V, Charwat V (2018) Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A 93(1):19–31

    Article  CAS  Google Scholar 

  • Najar M, Krayem M, Meuleman N, Bron D, Lagneaux L (2017) Mesenchymal stromal cells and toll-like receptor priming: a critical review. Immune Netw 17(2):89–102

    Article  Google Scholar 

  • Nandhini JT, Ezhilarasan D, Rajeshkumar S (2020) An ecofriendly synthesized gold nanoparticles induces cytotoxicity via apoptosis in HepG2 cells. Environ Toxicol. https://doi.org/10.1002/tox.23007

  • Ohkouchi S, Block GJ, Katsha AM, Kanehira M, Ebina M, Kikuchi T, Saijo Y, Nukiwa T, Prockop DJ (2012) Mesenchymal stromal cells protect cancer cells from ROS-induced apoptosis and enhance the Warburg effect by secreting STC1. Mol Ther 20(2):417–423

    Article  CAS  Google Scholar 

  • Oka S, Nakabeppu Y (2011) DNA glycosylase encoded by MUTYH functions as a molecular switch for programmed cell death under oxidative stress to suppress tumorigenesis. Cancer Sci 102:677–682

    Article  CAS  Google Scholar 

  • Panieri E, Saso L (2019) Potential applications of NRF2 inhibitors in cancer therapy. Oxidative Med Cell Longev 2019:8592348

    Article  Google Scholar 

  • Perillo B, Di Donato M, Pezone A et al (2020) ROS in cancer therapy: the bright side of the moon. Exp Mol Med 52:192–203

    Article  CAS  Google Scholar 

  • Papait A, Stefani FR, Cargnoni A, Magatti M, Parolini O, Silini AR (2020) The multifaceted roles of MSCs in the tumor microenvironment: interactions with immune cells and exploitation for therapy. Front Cell Dev Biol 8:447

    Google Scholar 

  • Raj RK, Ezhilarasan D, Rajeshkumar S (2020) β-Sitosterol-assisted silver nanoparticles activates Nrf2 and triggers mitochondrial apoptosis via oxidative stress in human hepatocellular cancer cell line. J Biomed Mater Res A 108(9):1899–1908

    Article  Google Scholar 

  • Rithanya P, Ezhilarasan D (2021) Sodium valproate, a histone deacetylase inhibitor, provokes reactive oxygen species-mediated cytotoxicity in human hepatocellular carcinoma cells. J Gastrointest Cancer 52(1):138–144

    Article  CAS  Google Scholar 

  • Sarkar R, Mukherjee S, Biswas J, Roy M (2016) Phenethyl isothiocyanate, by virtue of its antioxidant activity, inhibits invasiveness and metastatic potential of breast cancer cells: HIF-1alpha as a putative target. Free Radic Res 50:84–100

    Article  CAS  Google Scholar 

  • Shathviha PC, Ezhilarasan D, Rajeshkumar S, Selvaraj J (2021) β-Sitosterol mediated silver nanoparticles induce cytotoxicity in human colon cancer HT-29 cells. Avicenna J Med Biotechnol 13(1):42–46

    Google Scholar 

  • Sohaib M, Ezhilarasan D (2020) Carbamazepine, a histone deacetylase inhibitor induces apoptosis in human colon adenocarcinoma cell line HT-29. J Gastrointest Cancer 51(2):564–570

    Article  CAS  Google Scholar 

  • Sporn MB, Liby KT (2012) NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer 12:564–571

    Article  CAS  Google Scholar 

  • Starkov AA (2008) The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 1147:37–52

    Article  CAS  Google Scholar 

  • Süntar I, Çetinkaya S, Panieri E, Saha S, Buttari B, Profumo E, Saso L (2021) Regulatory role of Nrf2 signaling pathway in wound healing process. Molecules 26(9):2424

    Article  Google Scholar 

  • Takayama Y, Kusamori K, Tsukimori C, Shimizu Y, Hayashi M, Kiyama I, Katsumi H, Sakane T, Yamamoto A, Nishikawa M (2021) Anticancer drug-loaded mesenchymal stem cells for targeted cancer therapy. J Control Release 329:1090–1101

    Article  CAS  Google Scholar 

  • Telkoparan-Akillilar P, Panieri E, Cevik D, Suzen S, Saso L (2021) Therapeutic targeting of the NRF2 signaling pathway in cancer. Molecules 26(5):1417

    Article  CAS  Google Scholar 

  • Ullah I, Subbarao RB, Rho GJ (2015) Human mesenchymal stem cells – current trends and future prospective. Biosci Rep 35(2):e00191

    Article  Google Scholar 

  • Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26:1–14

    Article  CAS  Google Scholar 

  • Via AG, Frizziero A, Oliva F (2012) Biological properties of mesenchymal Stem Cells from different sources. Muscles Ligaments Tendons J 2(3):154–162

    Google Scholar 

  • Yan X, Fu X, Jia Y, Ma X, Tao J, Yang T, Ma H, Liang X, Liu X, Yang J, Wei J (2019) Nrf2/Keap1/ARE signaling mediated an antioxidative protection of human placental mesenchymal stem cells of fetal origin in alveolar epithelial cells. Oxidative Med Cell Longev 2019:2654910

    Article  Google Scholar 

  • Yu Y, Zhang Q, Ma C, Yang X, Lin R, Zhang H, Liu Y, Han Z, Cheng J (2018) Mesenchymal stem cells recruited by castration-induced inflammation activation accelerate prostate cancer hormone resistance via chemokine ligand 5 secretion. Stem Cell Res Ther 9(1):242

    Article  CAS  Google Scholar 

  • Yuan Z, Zhang J, Huang Y, Zhang Y, Liu W, Wang G, Zhang Q, Wang G, Yang Y, Li H, Chen G (2017) NRF2 overexpression in mesenchymal stem cells induces stem-cell marker expression and enhances osteoblastic differentiation. Biochem Biophys Res Commun 491(1):228–235

    Article  CAS  Google Scholar 

  • Zhang M, Zhang C, Zhang L, Yang Q, Zhou S, Wen Q, Wang J (2015) Nrf2 is a potential prognostic marker and promotes proliferation and invasion in human hepatocellular carcinoma. BMC Cancer 15:531

    Article  Google Scholar 

  • Zuo L, Zhou T, Pannell BK, Ziegler AC, Best TM (2015) Biological and physiological role of reactive oxygen species – the good, the bad and the ugly. Acta Physiol 214:329–348

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anbalagan Muralidharan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ezhilarasan, D., Elumalai, P., Anandan, B., Muralidharan, A. (2022). Role of Stem Cells and Reactive Oxygen Species in Cancer. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-5422-0_103

Download citation

Publish with us

Policies and ethics