Skip to main content

Molecular Modeling of Nanoparticles

  • Chapter
  • First Online:
Computer Aided Pharmaceutics and Drug Delivery

Abstract

In recent years, nanotechnology has opened new horizons in the field of biomedicine by designing and using nanoparticles with different physicochemical properties for clinical diagnosis and therapeutics. To play a role in various biofunctions, nanoparticles need to be transported across the membrane and into the target cell or region. However, it is not clear enough, how the nanoparticles affect the cell, and what kind of interactions are there between cell and nanoparticles. Therefore, it is useful to understand how nanoparticles interact with lipid membranes in order to obtain safe applications in nanobiomedicine. Computer modeling and simulation of nanoparticles quantitatively describes the correlation between particle microstructure and properties. With computational modeling, it is possible to manage each parameter individually and define the mechanisms responsible for the experimental result, so it is a powerful tool compared to experimental constraints. For different conditions, which are not always possible to examine in a laboratory environment, interactions are possible with simulated computerized calculations. Computational approaches, such as molecular dynamics (MD) simulations, as a natural complement to experimental techniques, are among the approaches used in the modeling of nanoparticles by providing various factors such as accessible time scales, the full atomistic description of the system, the dynamic behavior of the system, and the inclusion of environmental influences. In this chapter, the approaches developed for modeling nanoparticles will be explained in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aydın G (2009) Nikel-Rodyum alaşımının bazı termodinamik ve termoelastik özelliklerinin moleküler dinamik simülasyon yöntemi ile incelenmesi Yüksek Lisans Tezi, Ankara

    Google Scholar 

  2. Uğurluoğlu N (2006) Altın ve aliminyumun bazı termoelastik özelliklerinin moleküler dinamik simülasyon tekniği ile incelenmesi: Yüksek lisans tezi, Gazi Üniversitesi

    Google Scholar 

  3. Heermann DW (1990) Computer-simulation methods. Computer simulation methods in theoretical physics. Springer, pp 8–12

    Book  Google Scholar 

  4. Karagöz H (2010) Ni-Au Alaşımlarına Paladyum Katkısının Termodinamik Ve Mekanik Özelliklere Etkisinin Moleküler Dinamik İncelenmesi Yüksek Lisans Tezi, Sakarya Üniversitesi

    Google Scholar 

  5. Kart HH, Tomak M, Uludoğan M, Çağın T (2005) Thermodynamical and mechanical properties of Pd–Ag alloys. Comput Mater Sci 32(1):107–117. https://doi.org/10.1016/j.commatsci.2004.07.003

    Article  CAS  Google Scholar 

  6. Cong H-R, Bian X-F, Zhang J-X, Li H (2002) Structure properties of Cu Ni alloys at the rapid cooling rate using embedded-atom method. Mater Sci Eng A Struct Mater 326(2):343–347. https://doi.org/10.1016/S0921-5093(01)01527-1

    Article  Google Scholar 

  7. Fruio E, Çeviri Çolakoğlu K, Kara C (1997) Moleküler Dinamik El-Kitabı. Springer College in Computational Physics, ICTP, Trieste, p 65

    Google Scholar 

  8. Grujicic M, Dang P (1995) Computer simulation of martensitic transformation in Fe-Ni face-centered cubic alloys. Mater Sci Eng A Struct Mater 201(1–2):194–204. https://doi.org/10.1016/0921-5093(94)09735-6

    Article  Google Scholar 

  9. Catlow C (1990) An introduction to computer modelling of condensed matter. In: Computer modelling of fluids polymers and solids. Springer, pp 1–23

    Google Scholar 

  10. Haile JM (1992) Molecular dynamics simulation: elementary methods. Wiley

    Google Scholar 

  11. Yıldırım H (2012) Bakır metali nanoparçacıkların moleküler dinamik simülasyonu: Pamukkale Üniversitesi Fen Bilimleri Enstitüsü

    Google Scholar 

  12. Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8(2):147–166. https://doi.org/10.1016/j.nano.2011.05.016

    Article  CAS  PubMed  Google Scholar 

  13. Sadjadi S (2016) Dendrimers as nanoreactors. In: Organic nanoreactors. Elsevier, pp 159–201. https://doi.org/10.1016/B978-0-12-801713-5.00006-9

    Chapter  Google Scholar 

  14. Singh TG, Sharma N (2016) Nanobiomaterials in cosmetics: current status and future prospects. In: Nanobiomaterials in galenic formulations and cosmetics. Elsevier, pp 149–174. https://doi.org/10.1016/B978-0-323-42868-2.00007-3

    Chapter  Google Scholar 

  15. Garg T, Singh O, Arora S, Murthy R (2011) Dendrimer—a novel scaffold for drug delivery. Int J Pharm Sci Rev Res 7(2):211–220

    CAS  Google Scholar 

  16. Janaszewska A, Lazniewska J, Trzepiński P, Marcinkowska M, Klajnert-Maculewicz B (2019) Cytotoxicity of dendrimers. Biomolecules 9(8):330. https://doi.org/10.3390/biom9080330

    Article  CAS  PubMed Central  Google Scholar 

  17. Ciolkowski M, Rozanek M, Bryszewska M, Klajnert B (2013) The influence of PAMAM dendrimers surface groups on their interaction with porcine pepsin. Biochim Biophys Acta 1834(10):1982–1987. https://doi.org/10.1016/j.bbapap.2013.06.020

    Article  CAS  PubMed  Google Scholar 

  18. Hanafy NA, El-Kemary M, Leporatti S (2018) Micelles structure development as a strategy to improve smart cancer therapy. Cancers 10(7):238. https://doi.org/10.3390/cancers10070238

    Article  CAS  PubMed Central  Google Scholar 

  19. Lu Y, Zhang E, Yang J, Cao Z (2018) Strategies to improve micelle stability for drug delivery. Nano Res 11(10):4985–4998. https://doi.org/10.1007/s12274-018-2152-3

    Article  PubMed  PubMed Central  Google Scholar 

  20. Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A (2016) Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol 44(1):381–391. https://doi.org/10.3109/21691401.2014.953633

    Article  CAS  PubMed  Google Scholar 

  21. Liu X, Huang G (2013) Formation strategies, mechanism of intracellular delivery and potential clinical applications of pH-sensitive liposomes. Asian J Pharm Sci 8(6):319–323. https://doi.org/10.1016/j.ajps.2013.11.002

    Article  Google Scholar 

  22. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S (2015) Advances and challenges of liposome assisted drug delivery. Front Pharmacol 6:286. https://doi.org/10.3389/fphar.2015.00286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN et al (2020) Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules 25(16):3731. https://doi.org/10.3390/molecules25163731

    Article  CAS  PubMed Central  Google Scholar 

  24. Campos PM, Bentley MVLB, Torchilin VP (2016) Nanopreparations for skin cancer therapy. In: Nanobiomaterials in cancer therapy. Elsevier, pp 1–23. https://doi.org/10.1016/B978-0-323-42863-7.00001-3

    Chapter  Google Scholar 

  25. Jawahar N, Meyyanathan S (2012) Polymeric nanoparticles for drug delivery and targeting: a comprehensive review. Int J Health Allied Sci 1(4):217. https://doi.org/10.4103/2278-344X.107832

    Article  Google Scholar 

  26. Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin F-H et al (2019) Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 23(1):1–29. https://doi.org/10.1186/s40824-019-0166-x

    Article  CAS  Google Scholar 

  27. Karimi M, Ghasemi A, Zangabad PS, Rahighi R, Basri SMM, Mirshekari H et al (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45(5):1457–1501. https://doi.org/10.1039/C5CS00798D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Senapati S, Mahanta AK, Kumar S, Maiti P (2018) Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 3(1):1–19. https://doi.org/10.1038/s41392-017-0004-3

    Article  CAS  Google Scholar 

  29. Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2(4):282. https://doi.org/10.4103/0975-7406.72127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Khandel P, Yadaw RK, Soni DK, Kanwar L, Shahi SK (2018) Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J Nanostruct Chem 8(3):217–254. https://doi.org/10.1007/s40097-018-0267-4

    Article  CAS  Google Scholar 

  31. Khodashenas B, Ghorbani HR (2019) Synthesis of silver nanoparticles with different shapes. Arab J Chem 12(8):1823–1838. https://doi.org/10.1016/j.arabjc.2014.12.014

    Article  CAS  Google Scholar 

  32. Ajdary M, Moosavi MA, Rahmati M, Falahati M, Mahboubi M, Mandegary A et al (2018) Health concerns of various nanoparticles: a review of their in vitro and in vivo toxicity. Nanomaterials 8(9):634. https://doi.org/10.3390/nano8090634

    Article  CAS  PubMed Central  Google Scholar 

  33. Długosz O, Szostak K, Staroń A, Pulit-Prociak J, Banach M (2020) Methods for reducing the toxicity of metal and metal oxide NPs as biomedicine. Materials 13(2):279. https://doi.org/10.3390/ma13020279

    Article  CAS  PubMed Central  Google Scholar 

  34. Bhaviripudi S, Mile E, Steiner SA, Zare AT, Dresselhaus MS, Belcher AM et al (2007) CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J Am Chem Soc 129(6):1516–1517. https://doi.org/10.1021/ja0673332

    Article  CAS  PubMed  Google Scholar 

  35. Chowdhury SM, Lalwani G, Zhang K, Yang JY, Neville K, Sitharaman B (2013) Cell specific cytotoxicity and uptake of graphene nanoribbons. Biomaterials 34(1):283–293. https://doi.org/10.1016/j.biomaterials.2012.09.057

    Article  CAS  Google Scholar 

  36. Lalwani G, Cai X, Nie L, Wang LV, Sitharaman B (2013) Graphene-based contrast agents for photoacoustic and thermoacoustic tomography. Photoacoustics 1(3–4):62–67. https://doi.org/10.1016/j.pacs.2013.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lalwani G, Patel SC, Sitharaman B (2016) Two-and three-dimensional all-carbon nanomaterial assemblies for tissue engineering and regenerative medicine. Ann Biomed Eng 44(6):2020–2035. https://doi.org/10.1007/s10439-016-1623-5

    Article  PubMed  Google Scholar 

  38. Patra JK, Das G, Fraceto LF, Campos EVR, del Pilar Rodriguez-Torres M, Acosta-Torres LS et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):1–33. https://doi.org/10.1186/s12951-018-0392-8

    Article  CAS  Google Scholar 

  39. Friedman AD, Claypool SE, Liu R (2013) The smart targeting of nanoparticles. Curr Pharm Des 19(35):6315–6329

    Article  CAS  Google Scholar 

  40. Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR (2019) Targeting tumor microenvironment for cancer therapy. Int J Mol Sci 20(4):840. https://doi.org/10.3390/ijms20040840

    Article  CAS  PubMed Central  Google Scholar 

  41. Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 58(14):1456–1459. https://doi.org/10.1016/j.addr.2006.09.011

    Article  CAS  PubMed  Google Scholar 

  42. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171. https://doi.org/10.1038/nrc1566

    Article  CAS  PubMed  Google Scholar 

  43. ud Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S et al (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed 12:7291. https://doi.org/10.2147/IJN.S146315

    Article  CAS  Google Scholar 

  44. Janeway Jr CA, Travers P, Walport M, Shlomchik MJ (2001) The interaction of the antibody molecule with specific antigen. Immunobiology: the immune system in health and disease, 5th edn. Garland Science

    Google Scholar 

  45. Kraitchman DL, Bulte JW (2008) Imaging of stem cells using MRI. Basic Res Cardiol 103(2):105–113. https://doi.org/10.1007/s00395-008-0704-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen N, Wang H, Huang Q, Li J, Yan J, He D et al (2014) Long-term effects of nanoparticles on nutrition and metabolism. Small 10(18):3603–3611. https://doi.org/10.1002/smll.201303635

    Article  CAS  PubMed  Google Scholar 

  47. Kumar V, Sharma N, Maitra S (2017) In vitro and in vivo toxicity assessment of nanoparticles. Int Nano Lett 7(4):243–256. https://doi.org/10.1007/s40089-017-0221-3

    Article  CAS  Google Scholar 

  48. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71. https://doi.org/10.1116/1.2815690

    Article  PubMed  Google Scholar 

  49. Nash JA, Kwansa AL, Peerless JS, Kim HS, Yingling YG (2017) Advances in molecular modeling of nanoparticle–nucleic acid interfaces. Bioconjug Chem 28(1):3–10. https://doi.org/10.1021/acs.bioconjchem.6b00534

    Article  CAS  PubMed  Google Scholar 

  50. Casalini T, Limongelli V, Schmutz M, Som C, Jordan O, Wick P et al (2019) Molecular modeling for nanomaterials–biology interactions: opportunities, challenges and perspectives. Front Bioeng Biotechnol 7:268. https://doi.org/10.3389/fbioe.2019.00268

    Article  PubMed  PubMed Central  Google Scholar 

  51. Braun E, Gilmer J, Mayes HB, Mobley DL, Monroe JI, Prasad S et al (2019) Best practices for foundations in molecular simulations [Article v1. 0]. Living J Comput Mol Sci 1(1):5957. https://doi.org/10.33011/livecoms.1.1.5957

    Article  PubMed  Google Scholar 

  52. Allen MP (2004) Introduction to molecular dynamics simulation. Computational soft matter: from synthetic polymers to proteins. 23(1):1–23

    Google Scholar 

  53. Case D, Ben-Shalom I, Brozell S, Cerutti D, Cheatham T III, Cruzeiro V et al (2018) AMBER 2018. University of California, San Francisco

    Google Scholar 

  54. Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66:27–85. https://doi.org/10.1016/S0065-3233(03)66002-X. Elsevier

    Article  CAS  PubMed  Google Scholar 

  55. MacKerell AD Jr, Banavali N, Foloppe N (2000) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56(4):257–265. https://doi.org/10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  56. Jorgensen WL, Tirado-Rives J (1988) The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110(6):1657–1666

    Article  CAS  Google Scholar 

  57. van Gunsteren WF, Berendsen HJ (1987) Groningen molecular simulation (GROMOS) library manual. Biomos, Groningen 24(682704):13

    Google Scholar 

  58. Halitoğlu S (2008) Poliimid Gaz Ayırma Membranlarının Moleküler Simülasyonu: Fen Bilimleri Enstitüsü

    Google Scholar 

  59. Kotelyanskii M, Theodorou DN (2004) Simulation methods for polymers. CRC Press

    Google Scholar 

  60. Bernardi RC, Melo MC, Schulten K (2015) Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim Biophys Acta 1850(5):872–877. https://doi.org/10.1016/j.bbagen.2014.10.019

    Article  CAS  PubMed  Google Scholar 

  61. Lie HC, Quer J (2017) Some connections between importance sampling and enhanced sampling methods in molecular dynamics. J Chem Phys 147(19):194107. https://doi.org/10.1063/1.4989495

    Article  CAS  PubMed  Google Scholar 

  62. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  Google Scholar 

  63. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    Article  CAS  Google Scholar 

  64. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci 99(20):12562–12566. https://doi.org/10.1073/pnas.202427399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Musiani F, Giorgetti A (2017) Protein aggregation and molecular crowding: perspectives from multiscale simulations. Int Rev Cell Mol Biol 329:49–77. https://doi.org/10.1016/bs.ircmb.2016.08.009. Elsevier

    Article  CAS  PubMed  Google Scholar 

  66. Zheng L, Alhossary AA, Kwoh C-K, Mu Y (2019) Molecular dynamics and simulation. Academic Press, pp 550-566.

    Google Scholar 

  67. Levitt M (2014) Birth and future of multiscale modeling for macromolecular systems (Nobel Lecture). Angew Chem Int Ed 53(38):10006–10018. https://doi.org/10.1002/anie.201403691

    Article  CAS  Google Scholar 

  68. Levitt M, Warshel A (1975) Computer simulation of protein folding. Nature 253(5494):694–698. https://doi.org/10.1038/253694a0

    Article  CAS  PubMed  Google Scholar 

  69. Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103(2):227–249. https://doi.org/10.1016/0022-2836(76)90311-9

    Article  CAS  PubMed  Google Scholar 

  70. Ingólfsson HI, Lopez CA, Uusitalo JJ, de Jong DH, Gopal SM, Periole X et al (2014) The power of coarse graining in biomolecular simulations. Wiley Interdiscip Rev Comput Mol Sci 4(3):225–248. https://doi.org/10.1002/wcms.1169

    Article  CAS  PubMed  Google Scholar 

  71. Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A (2016) Coarse-grained protein models and their applications. Chem Rev 116(14):7898–7936

    Article  CAS  Google Scholar 

  72. Potoyan DA, Savelyev A, Papoian GA (2013) Recent successes in coarse-grained modeling of DNA. Wiley Interdiscip Rev Comput Mol Sci 3(1):69–83. https://doi.org/10.1002/wcms.1114

    Article  CAS  Google Scholar 

  73. Baron R, Trzesniak D, de Vries AH, Elsener A, Marrink SJ, van Gunsteren WF (2007) Comparison of thermodynamic properties of coarse-grained and atomic-level simulation models. ChemPhysChem 8(3):452–461. https://doi.org/10.1002/cphc.200600658

    Article  CAS  PubMed  Google Scholar 

  74. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, De Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111(27):7812–7824. https://doi.org/10.1021/jp071097f

    Article  CAS  PubMed  Google Scholar 

  75. Marrink SJ, De Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108(2):750–760. https://doi.org/10.1021/jp036508g

    Article  CAS  Google Scholar 

  76. de Jong DH, Singh G, Bennett WD, Arnarez C, Wassenaar TA, Schäfer LV et al (2013) Improved parameters for the martini coarse-grained protein force field. J Chem Theory Comput 9(1):687–697. https://doi.org/10.1021/ct300646g

    Article  CAS  PubMed  Google Scholar 

  77. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink S-J (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4(5):819–834. https://doi.org/10.1021/ct700324x

    Article  CAS  PubMed  Google Scholar 

  78. Uusitalo JJ, Ingólfsson HI, Akhshi P, Tieleman DP, Marrink SJ (2015) Martini coarse-grained force field: extension to DNA. J Chem Theory Comput 11(8):3932–3945. https://doi.org/10.1021/acs.jctc.5b00286

    Article  CAS  PubMed  Google Scholar 

  79. Hoogerbrugge P, Koelman J (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3):155

    Article  Google Scholar 

  80. Koelman J, Hoogerbrugge P (1993) Dynamic simulations of hard-sphere suspensions under steady shear. Europhys Lett 21(3):363

    Article  CAS  Google Scholar 

  81. Espanol P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. Europhys Lett 30(4):191

    Article  CAS  Google Scholar 

  82. Sevink G, Fraaije J (2014) Efficient solvent-free dissipative particle dynamics for lipid bilayers. Soft Matter 10(28):5129–5146. https://doi.org/10.1039/C4SM00297K

    Article  CAS  PubMed  Google Scholar 

  83. Tang Y-H, Li Z, Li X, Deng M, Karniadakis GE (2016) Non-equilibrium dynamics of vesicles and micelles by self-assembly of block copolymers with double thermoresponsivity. Macromolecules 49(7):2895–2903. https://doi.org/10.1021/acs.macromol.6b00365

    Article  CAS  Google Scholar 

  84. Harmandaris V, Kalligiannaki E, Katsoulakis M, Plechác P (eds) (2017) From atomistic to systematic coarse-grained models for molecular systems. Eccomas Proc UNCECOMP 394–405. https://doi.org/10.7712/120217.5378.17211

  85. Levy RM, Gallicchio E (1998) Computer simulations with explicit solvent: recent progress in the thermodynamic decomposition of free energies and in modeling electrostatic effects. Annu Rev Phys Chem 49(1):531–567

    Article  CAS  Google Scholar 

  86. Berendsen HJ, Postma JP, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. Intermolecular forces. Springer, pp 331–342

    Google Scholar 

  87. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91(24):6269–6271

    Article  CAS  Google Scholar 

  88. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  89. Jorgensen WL, Madura JD (1985) Temperature and size dependence for Monte Carlo simulations of TIP4P water. Mol Phys 56(6):1381–1392

    Article  CAS  Google Scholar 

  90. Mahoney MW, Jorgensen WL (2000) A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys 112(20):8910–8922. https://doi.org/10.1063/1.481505

    Article  CAS  Google Scholar 

  91. Joung IS, Cheatham TE III (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112(30):9020–9041. https://doi.org/10.1021/jp8001614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  CAS  Google Scholar 

  93. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE III, DeBolt S et al (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91(1–3):1–41

    Article  CAS  Google Scholar 

  94. Lindahl E, Hess B, Van Der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7(8):306–317. https://doi.org/10.1007/s008940100045

    Article  CAS  Google Scholar 

  95. Kökcü Y (2018) Antitümör ve Antioksidant Özellikli Tripeptid Yüklü Polimerik Nanopartiküllerin Geliştirilmesi: Yüksek lisans tezi, İstanbul Üniversitesi

    Google Scholar 

  96. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  97. Mercan Tez Ö (2014) Dengede olmayan biyolojik sistemler için crooks teoremi yardımıyla serbest enerji hesaplamasının uygulanması: Doktora tezi, Süleyman Demirel Üniversitesi

    Google Scholar 

  98. Tavanti F, Pedone A, Menziani MC (2015) Competitive binding of proteins to gold nanoparticles disclosed by molecular dynamics simulations. J Phys Chem C 119(38):22172–22180. https://doi.org/10.1021/acs.jpcc.5b05796

    Article  CAS  Google Scholar 

  99. Tavanti F, Pedone A, Menziani MC (2015) A closer look into the ubiquitin corona on gold nanoparticles by computational studies. New J Chem 39(4):2474–2482. https://doi.org/10.1039/C4NJ01752H

    Article  CAS  Google Scholar 

  100. Yu G, Zhou J (2016) Understanding the curvature effect of silica nanoparticles on lysozyme adsorption orientation and conformation: a mesoscopic coarse-grained simulation study. Phys Chem Chem Phys 18(34):23500–23507. https://doi.org/10.1039/C6CP01478J

    Article  CAS  PubMed  Google Scholar 

  101. Ding HM, Ma YQ (2014) Computer simulation of the role of protein corona in cellular delivery of nanoparticles. Biomaterials 35(30):8703–8710. https://doi.org/10.1016/j.biomaterials.2014.06.033

    Article  CAS  PubMed  Google Scholar 

  102. Ge C, Du J, Zhao L, Wang L, Liu Y, Li D et al (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci 108(41):16968–16973. https://doi.org/10.1073/pnas.1105270108

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gu Z, Yang Z, Chong Y, Ge C, Weber JK, Bell DR, Zhou R (2015) Surface curvature relation to protein adsorption for carbon-based nanomaterials. Sci Rep 5:10886. https://doi.org/10.1038/srep10886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lopez H, Lobaskin V (2015) Coarse-grained model of adsorption of blood plasma proteins onto nanoparticles. J Chem Phys 143(24):243138. https://doi.org/10.1063/1.4936908

    Article  CAS  PubMed  Google Scholar 

  105. Quan X, Peng C, Zhao D, Li L, Fan J, Zhou J (2017) Molecular understanding of the penetration of functionalized gold nanoparticles into asymmetric membranes. Langmuir 33(1):361–371. https://doi.org/10.1021/acs.langmuir.6b02937

    Article  CAS  PubMed  Google Scholar 

  106. Laasonen K, Panizon E, Bochicchio D, Ferrando R (2013) Competition between icosahedral motifs in AgCu, AgNi, and AgCo nanoalloys: a combined atomistic–DFT study. J Phys Chem C 117(49):26405–26413. https://doi.org/10.1021/jp410379u

    Article  CAS  Google Scholar 

  107. Mozaffari S, Li W, Dixit M, Seifert S, Lee B, Kovarik L et al (2019) The role of nanoparticle size and ligand coverage in size focusing of colloidal metal nanoparticles. Nanoscale Adv 1(10):4052–4066. https://doi.org/10.1039/C9NA00348G

    Article  CAS  Google Scholar 

  108. Demir B, Chan K-Y, Yang D, Mouritz A, Lin H, Jia B et al (2019) Epoxy-gold nanoparticle nanocomposites with enhanced thermo-mechanical properties: an integrated modelling and experimental study. Compos Sci Technol 174:106–116. https://doi.org/10.1016/j.compscitech.2019.02.020

    Article  CAS  Google Scholar 

  109. Kamiński M, Jurkiewicz K, Burian A, Bródka A (2020) The structure of gold nanoparticles: molecular dynamics modeling and its verification by X-ray diffraction. J Appl Crystallogr 53(1). https://doi.org/10.11071/S1600576719014511

  110. Al Hasan N (ed) (2018) Prediction of mechanical properties of EPON 862 (DGEBF) cross-linked with curing agent (TETA) and SiO2 nanoparticle based on materials studio. In: Proceedings of the 1st international conference on materials engineering and science (IConMEAS), Istanbul, Turkey

    Google Scholar 

  111. Mofradnia SR, Tavakoli Z, Yazdian F, Rashedi H, Rasekh B (2018) Fe/starch nanoparticle-Pseudomonas aeruginosa: bio-physiochemical and MD studies. Int J Biol Macromol 117:51–61. https://doi.org/10.1016/j.ijbiomac.2018.04.191

    Article  CAS  PubMed  Google Scholar 

  112. Bisht R, Jaiswal JK, Oliver VF, Eurtivong C, Reynisson J, Rupenthal ID (2017) Preparation and evaluation of PLGA nanoparticle-loaded biodegradable light-responsive injectable implants as a promising platform for intravitreal drug delivery. J Drug Deliv Sci Technol 40:142–156. https://doi.org/10.1016/j.jddst.2017.06.006

    Article  CAS  Google Scholar 

  113. Shityakov S, Förster C (2013) Multidrug resistance protein P-gp interaction with nanoparticles (fullerenes and carbon nanotube) to assess their drug delivery potential: a theoretical molecular docking study. Int J Comput Biol Drug Des 6(4):343–357. https://doi.org/10.1504/IJCBDD.2013.056801

    Article  CAS  PubMed  Google Scholar 

  114. Gowri S, Gopinath K, Arumugam A (2018) Experimental and computational assessment of mycosynthesized CdO nanoparticles towards biomedical applications. J Photochem Photobiol B 180:166–174. https://doi.org/10.1016/j.jphotobiol.2018.02.009

    Article  CAS  Google Scholar 

  115. Carreño-Fuentes L, Bahena D, Palomares LA, Ramírez OT, José-Yacamán M, Plascencia-Villa G (2016) Molecular docking and aberration-corrected STEM of palladium nanoparticles on viral templates. Metals 6(9):200. https://doi.org/10.3390/met6090200

    Article  Google Scholar 

  116. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wasukan N, Kuno M, Maniratanachote R (2019) Molecular docking as a promising predictive model for silver nanoparticle-mediated inhibition of cytochrome P450 enzymes. J Chem Inf Model 59(12):5126–5134. https://doi.org/10.1021/acs.jcim.9b00572

    Article  CAS  PubMed  Google Scholar 

  118. Bulcke F, Thiel K, Dringen R (2014) Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes. Nanotoxicology 8(7):775–785. https://doi.org/10.3109/17435390.2013.829591

    Article  CAS  PubMed  Google Scholar 

  119. Chibber S, Ahmad I (2016) Molecular docking, a tool to determine interaction of CuO and TiO2 nanoparticles with human serum albumin. Biochem Biophys Rep 6:63–67. https://doi.org/10.1016/j.bbrep.2016.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  120. Doudi M, Setorki M (2014) Acute effect of nano-copper on liver tissue and function in rat. J Nanosci Nanotechnol 1(5). https://doi.org/10.7508/nmj.2015.05.007

  121. Pal A (2014) Copper toxicity induced hepatocerebral and neurodegenerative diseases: an urgent need for prognostic biomarkers. Neurotoxicology 40:97–101. https://doi.org/10.1016/j.neuro.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  122. Pal A, Siotto M, Prasad R, Squitti R (2015) Towards a unified vision of copper involvement in Alzheimer’s disease: a review connecting basic, experimental, and clinical research. J Alzheimers Dis 44(2):343–354. https://doi.org/10.3233/JAD-141194

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bicak, B., Gok, B., Kecel-Gunduz, S., Budama-Kilinc, Y. (2022). Molecular Modeling of Nanoparticles. In: Saharan, V.A. (eds) Computer Aided Pharmaceutics and Drug Delivery. Springer, Singapore. https://doi.org/10.1007/978-981-16-5180-9_23

Download citation

Publish with us

Policies and ethics