Skip to main content

Role of Plant Secondary Metabolites as Anticancer and Chemopreventive Agents

  • Chapter
  • First Online:
Plant Secondary Metabolites
  • 934 Accesses

Abstract

Cancer is a life-threatening disease, and its treatment is a challenge for medical science since its inception. This disease is characterized by uncontrolled cell division, and hence its treatment relies on rectifying the functioning of cellular processes. It is estimated that cancer patients will increase by 70% in the coming two decades. Although innumerable drugs are available to treat cancer, the side effects associated with them induces the need to search for nontoxic and efficient anticancer agents. Plants being rich in structurally diverse compounds have immense scope in providing lead bioactive molecules. Plant secondary metabolites have been massively searched for their cancer prevention activities in both in vitro and in vivo models. As a consequence of substantial plant-based research, more than 60% commercial anticancer drugs are derived from plant secondary metabolites. Secondary metabolites are organic molecules essential for the survival of plants where they are engaged in performing numerous functions. This chapter is focused on the chemopreventive and anticancer activity of three major classes of secondary metabolites including terpenoids (monoterpenoids, diterpenoids, sesquiterpenoids, diterpenoids, and tetraterpenoids), polyphenols (curcumin, quercetin, resveratrol, and flavonoids), and nitrogen-containing secondary metabolites (alkaloids and glucosinolates).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahsan H, Reagan-Shaw S, Breur J, Ahmad N (2007) Sanguinarine induces apoptosis of human pancreatic carcinoma AsPC-1 and BxPC-3 cells via modulations in Bcl-2 family proteins. Cancer Lett 249(2):198–108

    Article  CAS  PubMed  Google Scholar 

  • Akihisa T, Yasukawa K, Tokuda H (2003) Potentially cancer chemopreventive and anti-inflammatory terpenoids from natural sources. Stud Nat Prod Chem 29:73–126

    Article  CAS  Google Scholar 

  • Ambrosone CB, McCann SE, Freudenheim JL, Marshall JR, Zhang Y, Shields PG (2004) Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J Nutr 134:1134–1138

    Article  CAS  PubMed  Google Scholar 

  • Amin AR, Kucuk O, Khuri FR, Shin DM (2009) Perspectives for cancer prevention with natural compounds. J Clin Oncol 27:2712–2725

    Article  PubMed  PubMed Central  Google Scholar 

  • Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB (2008) Curcumin and cancer: an ‘old-age’ disease with an ‘age-old’ solution. Cancer Lett 267:133–164

    Article  CAS  PubMed  Google Scholar 

  • Anto RJ, Mukhopadhyay A, Denning K, Aggarwal BB (2002) Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xL. Carcinogenesis 23:143–150

    Article  CAS  PubMed  Google Scholar 

  • Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal B, Kondo Y (2007) Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 72:29–39

    Article  CAS  PubMed  Google Scholar 

  • Bartik L, Whitfield GK, Kaczmarska M, Lowmiller CL, Moffet EW, Furmick JK, Hernandez Z, Haussler CA, Haussler MR, Jurutka PW (2010) Curcumin: a novel nutritionally derived ligand of the vitamin D receptor with implications for colon cancer. J Nutr Biochem 21:1153–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benyhe S (1994) Morphine: new aspects in the study of an ancient compound. Life Sci 55:969–979

    Article  CAS  PubMed  Google Scholar 

  • Bonfili L, Cecarini V, Amici M, Cuccioloni M, Angeletti M, Keller JN, Eleuteri AM (2008) Natural polyphenols as proteasome modulators and their role as anti-cancer compounds. FEBS J 275:5512–5526

    Article  CAS  PubMed  Google Scholar 

  • Burrows JN, Chibale K, Wells TN (2011) The state of the art in anti-malarial drug discovery and development. Curr Top Med Chem 11:1226–1254

    Article  CAS  PubMed  Google Scholar 

  • Calixto JB, Campos MM, Otuki MF, Santos AR (2004) Anti-inflammatory compounds of plant origin. Part II. Modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med 70:93–103

    Article  CAS  PubMed  Google Scholar 

  • Chang H-C, Chang F-R, Yang-Chang W, Lai Y-H (2004) Anti cancer effect of liriodenine on human lung cancer cells. Kaohsiung J Med Sci 20(8):365–371

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Yu R, Owuor ED, Kong ANT (2000) Activation of antioxidant response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch Pharm Res 23:605–612

    Article  CAS  PubMed  Google Scholar 

  • Chen HH, Zhou HJ, Wang WQ, Wu GD (2004) Antimalarial dihydroartemisinin also inhibits angiogenesis. Cancer Chemother Pharmacol 53:423–432

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Sun B, Pan S, Jiang H, Sun X (2009a) Dihydroartemisinin inhibits growth of pancreatic cancer cells in vitro and in vivo. Anti-Cancer Drugs 20:131–140

    Article  PubMed  Google Scholar 

  • Chen T, Li M, Zhang R, Wang H (2009b) Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy. J Cell Mol Med 13:1358–1370

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Sun B, Wang S, Pan S, Gao Y, Bai X, Xue D (2010) Growth inhibitory effects of dihydroartemisinin on pancreatic cancer cells: involvement of cell cycle arrest and inactivation of nuclear factor-κB. J Cancer Res Clin Oncol 136:897–903

    Article  CAS  PubMed  Google Scholar 

  • Chen ML, Lin YH, Yang CM, Hu ML (2012) Lycopene inhibits angiogenesis both in vitro and in vivo by inhibiting MMP-2/uPA system through VEGFR2-mediated PI3K-Akt and ERK/ p38 signaling pathways. Mol Nutr Food Res 56:889–899

    Article  CAS  PubMed  Google Scholar 

  • Cheng CY, Su CC (2010) Tanshinone IIA may inhibit the growth of small cell lung cancer H146 cells by up-regulating the Bax/Bcl-2 ratio and decreasing mitochondrial membrane potential. Mol Med Rep 3:645–650

    CAS  PubMed  Google Scholar 

  • Chia-Mao W, Yang C-W, Lee Y-Z, Chuang T-H, Wu PL, Chao Y-S, Lee S-J (2009) Tylophorine arrests carcinoma cells at G1 phase by downregulating cyclin A2 expression. Biochem Biophys Res Commun 386(1):140–145

    Article  Google Scholar 

  • Chiu TL, Su CC (2010) Tanshinone IIA induces apoptosis in human lung cancer A549 cells through the induction of reactive oxygen species and decreasing the mitochondrial membrane potential. Int J Mol Med 25:231–236

    CAS  PubMed  Google Scholar 

  • Chow HHS, Garland LL, Hsu CH, Vining DR, Chew WM, Miller JA, Perloff M, Crowell JA, Alberts DS (2010) Resveratrol modulates drug-and carcinogen-metabolizing enzymes in a healthy volunteer study. Cancer Prev Res 3:1168–1175

    Article  CAS  Google Scholar 

  • Chung FL, Conaway CC, Rao CV, Reddy BS (2000) Chemoprevention of colonic aberrant crypt foci in Fischer rats by sulforaphane and phenethyl isothiocyanate. Carcinogenesis 21:2287–2291

    Article  CAS  PubMed  Google Scholar 

  • Clegg RJ, Middleton B, Bell GD, White DA (1982) The mechanism of cyclic monoterpene inhibition of hepatic 3-hydroxy-3- methylglutaryl coenzyme A reductase in vivo in the rat. J Biol Chem 257:2294–2299

    Article  CAS  PubMed  Google Scholar 

  • Cohen JH, Kristal AR, Stanfordm JL (2000) Fruit and vegetable intakes and prostate cancer risk. J Natl Cancer Inst 92:61–68

    Article  CAS  PubMed  Google Scholar 

  • Collett GP, Campbell FC (2004) Curcumin induces c-Jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells. Carcinogenesis 25:2183–2189

    Article  CAS  PubMed  Google Scholar 

  • Conaway CC, Yang YM, Chung FL (2002) Isothiocyanates as cancer chemopreventive agents: their biological activities and metabolism in rodents and humans. Curr Drug Metab 3:233–255

    Article  CAS  PubMed  Google Scholar 

  • Cragg GM, Newman DJ (2005) Plants as source of anticancer agents. J Ethnopharmacol 100:72–99

    Article  CAS  PubMed  Google Scholar 

  • Dai ZK, Qin JK, Huang JE, Luo Y, Xu Q, Zhao HL (2011) Tanshinone IIA activates calcium-dependent apoptosis signaling pathway in human hepatoma cells. J Nat Med 66:192–201

    Article  PubMed  Google Scholar 

  • Dassonneville L, Lansiaux A, Wattelet A, Wattez N, Mahieu C, Van Miert S, Pieters L, Bailly C (2000) Cytotoxicity and cell cycle effects of the plant alkaloids cryptolepine and neocryptolepine: relation to drug-induced apoptosis. Eur J Pharmacol 409(1):9–18

    Article  CAS  PubMed  Google Scholar 

  • De Stefano I, Raspaglio G, Zannoni GF, Travaglia D, Prisco MG, Mosca M, Ferlini C, Scambia G, Gallo D (2009) Antiproliferative and antiangiogenic effects of the benzophenanthridine alkaloid sanguinarine in melanoma. Biochem Pharmacol 78(11):1374–1381

    Article  PubMed  Google Scholar 

  • Devipriya S, Ganapthy V, Shyamaladevi CS (2006) Suppression of tumor growth and invasion in 9,10 dimethyl benz(a) anthracene induced mammary carcinoma by the plant bioflavonoid quercetin. Chem Biol Interact 162:106–113

    Article  CAS  PubMed  Google Scholar 

  • Ding Z, Tang S-C, Weerasinghe P, Yang X, Pater A, Liepins A (2002) The alkaloid sanguinarine is effective against multidrug resistance in human cervical cells via bimodal cell death. Biochem Pharmacol 63(8):1415–1421

    Article  CAS  PubMed  Google Scholar 

  • Du JH, Zhang HD, Ma ZJ, Ji KM (2010) Artesunate induces oncosis-like cell death in vitro and has antitumor activity against pancreatic cancer xenografts in vivo. Cancer Chemother Pharmacol 65:895–902

    Article  CAS  PubMed  Google Scholar 

  • Efferth T, Dunstan H, Sauerbrey A, Miyachi H, Chitambar CR (2001) The anti-malarial artesunate is also active against cancer. Int J Oncol 18:767–773

    CAS  PubMed  Google Scholar 

  • Efferth T, Sauerbrey A, Olbrich A, Gebhart E, Rauch P, Weber HO, Hengstler JG, Halatsch ME, Volm M, Tew KD, Ross DD (2003) Molecular modes of action of artesunate in tumor cell lines. Mol Pharmacol 64:382–394

    Article  CAS  PubMed  Google Scholar 

  • Ekström AM, Serafini M, Nyren O, Wolk A, Bosetti C, Bellocco R (2011) Dietary quercetin intake and risk of gastric cancer: results from a population-based study in Sweden. Ann Oncol 22:438–443

    Article  PubMed  Google Scholar 

  • Elgass S, Cooper A, Chopra M (2012) Lycopene inhibits angiogenesis in human umbilical vein endothelial cells and rat aortic rings. Br J Nutr 108:431–439

    Article  CAS  PubMed  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  CAS  PubMed  Google Scholar 

  • Fantini M, Benvenuto M, Masuelli L, Frajese GV, Tresoldi I, Modesti A, Bei R (2015) In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment. Int J Mol Sci 16:9236–9282

    Google Scholar 

  • Ferry DR, Smith A, Malkhandi J, Fyfe DW, de Takats PG, Anderson D, Baker J, Kerr DJ (1996) Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res 2:659–668

    CAS  PubMed  Google Scholar 

  • Firestone GL, Sundar SN (2009) Anticancer activities of artemisinin and its bioactive derivatives. Expert Rev Mol Med 11:e32

    Article  PubMed  Google Scholar 

  • Fridlender M, Kapulnik Y, Koltai H (2015) Plant derived substances with anti-cancer activity: from folklore to practice. Front Plant Sci 6:799

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukuda K, Hibiya Y, Mutoh M, Koshiji M, Akao S, Fujiwara H (1999) Inhibition by berberine of cyclooxygenase-2 transcriptional activity in human colon cancer cells. J Ethnopharmacol 66(2):227–233

    Article  CAS  PubMed  Google Scholar 

  • Gali-Muhtasib H, Hmadi R, Kareh M, Tohme R, Darwiche N (2015) Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis. Apoptosis 20:1531–1562

    Article  CAS  PubMed  Google Scholar 

  • Gibellini L, Pinti M, Nasi M, Montagna JP, De Biasi S, Roat E, Bertoncelli L, Cooper EL, Cossarizza A (2011) Quercetin and cancer chemoprevention. Evid Based Complement Alternat Med 2011:591356

    Article  PubMed  PubMed Central  Google Scholar 

  • Gismondi A, Reina G, Orlanducci S, Mizzoni F, Gay S, Terranova ML, Canini A (2015) Nanodiamonds coupled with plant bioactive metabolites: a nanotech approach for cancer therapy. Biomaterials 38:22–35

    Article  CAS  PubMed  Google Scholar 

  • Gismondi A, Nanni V, Reina G, Orlanducci S, Terranova ML, Canini A (2016) Nanodiamonds coupled with 5, 7-dimethoxycoumarin, a plant bioactive metabolite, interfere with the mitotic process in B16F10 cells altering the actin organization. Int J Nanomedicine 11:557–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z (2017) The modification of natural products for medical use. Acta Pharm Sin B 7:119–136

    Article  PubMed  Google Scholar 

  • Gupta SC, Patchva S, Aggarwal BB (2013) Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 15:195–218

    Article  CAS  PubMed  Google Scholar 

  • Gupta C, Prakash D, Gupta S (2017) Cancer treatment with nano-diamonds. Front Biosci (Sch Ed) 9:62–70

    Article  Google Scholar 

  • Habli Z, Toumieh G, Fatfat M, Rahal ON, Gali-Muhtasib H (2017) Emerging cytotoxic alkaloids in the battle against cancer: overview of molecular mechanisms. Molecules 22:250

    Article  PubMed Central  Google Scholar 

  • Han X, Shen T, Lou H (2007) Dietary polyphenols and their biological significance. Int J Mol Sci 8:950–988

    Article  CAS  PubMed Central  Google Scholar 

  • Handrick R, Ontikatze T, Bauer KD, Freier F, Rübel A, Dürig J, Belka C, Jendrossek V (2010) Dihydroartemisinin induces apoptosis by a Bak-dependent intrinsic pathway. Mol Cancer Ther 9:2497–2510

    Article  CAS  PubMed  Google Scholar 

  • Hansen M, Møller P, Sørensen H, de Trejo MC (1995) Glucosinolates in broccoli stored under controlled atmosphere. J Am Soc Hortic Sci 120:1069–1074

    Article  CAS  Google Scholar 

  • He Q, Shi J, Shen XL, An J, Sun H, Wang L, Hu YJ, Sun Q, Fu LC, Sheikh MS, Huang Y (2010) Dihydroartemisinin upregulates death receptor 5 expression and cooperates with TRAIL to induce apoptosis in human prostate cancer cells. Cancer Biol Ther 9:819–824

    Article  CAS  PubMed  Google Scholar 

  • Hecht SS (2000) Inhibition of carcinogenesis by isothiocyanates. Drug Metab Rev 32:395–411

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Wang D, Zhang R, Wang H (2008) Experimental therapy of hepatoma with artemisinin and its derivatives: in vitro and in vivo activity, chemosensitization, and mechanisms of action. Clin Cancer Res 14:5519–5530

    Article  CAS  PubMed  Google Scholar 

  • Huang CS, Chuang CH, Lo TF, Hu ML (2012) Anti-angiogenic effects of lycopene through immunomodulation of cytokine secretion in human peripheral blood mononuclear cells. J Nutr Biochem 24:428–434

    Article  PubMed  Google Scholar 

  • Hwang YP, Yun HJ, Kim HG, Han EH, Lee GW, Jeong HG (2010) Suppression of PMA-induced tumor cell invasion by dihydroartemisinin via inhibition of PKCα/Raf/MAPKs and NF-κB/AP-1-dependent mechanisms. Biochem Pharmacol 79:1714–1726

    Article  CAS  PubMed  Google Scholar 

  • Ide H, Tokiwa S, Sakamaki K, Nishio K, Isotani S, Muto S, Hama T, Masuda H, Horie S (2010) Combined inhibitory effect of soy flavones and curcumin on the production of prostate-specific antigen. Prostate 70:1127–1133

    Article  CAS  PubMed  Google Scholar 

  • Ijaz S, Akhtar N, Khan MS, Hameed A, Irfan M, Arshad MA, Ali S, Asrar M (2018) Plant derived anticancer agents: a green approach towards skin cancers. Biomed Pharmacother 103:1643–1651

    Article  CAS  PubMed  Google Scholar 

  • Jang B-C, Park J-G, Song D-K, Baek W-K, Yoo SK, Jung K-H, Park G-Y, Lee T-Y, Suh SI (2009) Sanguinarine induces apoptosis in A549 human lung cancer cells primarily via cellular glutathione depletion. Toxicol In Vitro 23(2):281–287

    Article  CAS  PubMed  Google Scholar 

  • Jeong JH, An JY, Kwon YT, Rhee JG, Lee YG (2009) Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression. J Cell Biochem 106:73–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji J, Zhang L, Wu YY, Zhu XY, Lv SQ, Sun XZ (2006) Induction of apoptosis by d-limonene is mediated by a caspase-dependent mitochondrial death pathway in human leukemia cells. Leuk Lymphoma 47:2617–2624

    Article  CAS  PubMed  Google Scholar 

  • Jiao D, Smith TJ, Yang CS, Pittman B, Desai D, Amin S, Chung FL (1997) Chemopreventive activity of thiol conjugates of isothiocyanates for lung tumorigenesis. Carcinogenesis 18:2143–2147

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Ge CM, Meng QH, Cao JP, Tong J, Fan SJ (2007) Dihydroartemisinin is an inhibitor of ovarian cancer cell growth. Acta Pharmacol Sin 28:1045–1056

    Article  CAS  PubMed  Google Scholar 

  • Jordan MA, Thrower D, Wilson L (2010) Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Chemother Pharmacol 70(20):209–224

    Google Scholar 

  • Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265

    Article  CAS  PubMed  Google Scholar 

  • Kaji I, Tatsuta M, Iishi H, Baba M, Inoue A, Kasugai H (2001) Inhibition by d-limonene of experimental hepatocarcinogenesis in Sprague-Dawley rats does not involve p21(ras) plasma membrane association. Int J Cancer 93:441–444

    Article  CAS  PubMed  Google Scholar 

  • Kawata S, Nagase T, Yamasaki E, Ishiguro H, Matsuzawa Y (1994) Modulation of the mevalonate pathway and cell growth by pravastatin and d-limonene in a human hepatoma cell line (Hep G2). Br J Cancer 69:1015–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korkina L, Kostyuk V (2012) Biotechnologically produced secondary plant metabolites for cancer treatment and prevention. Curr Pharm Biotechnol 13:265–275

    Article  CAS  PubMed  Google Scholar 

  • Kukreja A, Waddhwa N, Tiwari A (2014) Therapeutic role of resveratrol and piceatannol in disease prevention. J Blood Disord Transfus 5:1–6

    Article  Google Scholar 

  • Kunnumakkara AB, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal BB (2007) Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-κB-regulated gene products. Cancer Res 67:3853–3861

    Article  CAS  PubMed  Google Scholar 

  • Lam TK, Rotunno M, Lubin JH, Wacholder S, Consonni D, Pesatori AC, Bertazzi PA, Chanock SJ, Burdette L, Goldstein AM, Tucker MA (2010) Dietary quercetin, quercetin-gene interaction, metabolic gene expression in lung tissue and lung cancer risk. Carcinogenesis 31:634–642

    Article  CAS  PubMed  Google Scholar 

  • Lee MR (2011) The history of Ephedra (ma-huang). J R Coll Phys Edinb 41:78–84

    Article  CAS  Google Scholar 

  • Lee SK, Nam K-A, Heo Y-H (2003) Cytotoxic activity and G2/M cell cycle arrest mediated by antofine, a phenanthroindolizidine alkaloid isolated from Cynanchum paniculatum. Planta Med 69(1):21–25

    Article  CAS  PubMed  Google Scholar 

  • Lee Y-J, Yin H-Q, Kim Y-H, Li G-Y, Lee B-H (2004) Apoptosis inducing effects of 6- Methoxydihydrosanguinarine in HT29 colon carcinoma cells. Arch Pharm Res 27:1253–1257

    Article  CAS  PubMed  Google Scholar 

  • Lee CY, Sher HF, Chen HW, Liu CC, Chen CH, Lin CS, Yang PC, Tsay HS, Chen JJ (2008) Anticancer effects of tanshinone I in human non-small cell lung cancer. Mol Cancer Ther 7:3527–3538

    Article  CAS  PubMed  Google Scholar 

  • Lee WY, Liu KW, Yeung JH (2009) Reactive oxygen species-mediated kinase activation by dihydrotanshinone in tanshinones-induced apoptosis in HepG2 cells. Cancer Lett 285:46–57

    Article  CAS  PubMed  Google Scholar 

  • Lee CS, Baek J, Han SY (2017) The role of kinase modulators in cellular senescence for use in cancer treatment. Molecules 22:1411

    Article  PubMed Central  Google Scholar 

  • Li Y-F, Zhang R (1996) Reversed-phase high-performance liquid chromatography method for the simultaneous quantitation of the lactone and carboxylate forms of the novel natural productanti cancer agent 10-hydroxycamptothecin in biological fluids and tissues. J Chromatogr B Biomed Sci Appl 686(2):257–265

    Article  CAS  Google Scholar 

  • Li W, Shao Y, Hu L, Zhang X, Chen Y, Tong L, Li C, Shen X, Ding J (2007) BM6, a new semi-synthetic vinca alkaloid, exhibits its potent in vivo anti-tumor activities via its high binding affinity for tubulin and improved pharmacokinetic profiles. Cancer Biol Ther 6:787–794

    Article  CAS  PubMed  Google Scholar 

  • Li S, Xue F, Cheng Z, Yang X, Wang S, Geng F, Pan L (2009) Effect of artesunate on inhibiting proliferation and inducing apoptosis of SP2/0 myeloma cells through affecting NFκB p65. Int J Hematol 90:513–521

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Lin DJ, Liu PQ, Huang M, Li XD, Huang RW (2006) Induction of apoptosis and inhibition of cell adhesive and invasive effects by tanshinone IIA in acute promyelocytic leukemia cells in vitro. J Biomed Sci 13:813–823

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Liu WD, Yang HZ, Zhang Y, Fang ZG, Liu PQ, Lin DJ, Xiao RZ, Hu Y, Wang CZ, Li XD (2010) Inactivation of PI3k/Akt signaling pathway and activation of caspase-3 are involved in tanshinone I-induced apoptosis in myeloid leukemia cells in vitro. Ann Hematol 89:1089–1097

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Dong HF, Jiang MS (2011) Artemisinin: the gifts from traditional Chinese medicine not only for malaria control but also for schistosomiasis control. Parasitol Res 110:2071–2074

    Article  PubMed  Google Scholar 

  • Lu JJ, Meng LH, Cai YJ, Chen Q, Tong LJ, Lin LP, Ding J (2008) Dihydroartemisinin induces apoptosis in HL-60 leukemia cells dependent of iron and p38 mitogen-activated protein kinase activation but independent of reactive oxygen species. Cancer Biol Ther 7:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Lu JJ, Meng LH, Shankavaram UT, Zhu CH, Tong LJ, Chen G, Lin LP, Weinstein JN, Ding J (2010) Dihydroartemisinin accelerates c-MYC oncoprotein degradation and induces apoptosis in c-MYC-overexpressing tumor cells. Biochem Pharmacol 80:22–30

    Article  CAS  PubMed  Google Scholar 

  • Lu JJ, Chen SM, Zhang XW, Ding J, Meng LH (2011) The anti-cancer activity of dihydroartemisinin is associated with induction of iron-dependent endoplasmic reticulum stress in colorectal carcinoma HCT116 cells. Investig New Drugs 29:1276–1283

    Article  CAS  Google Scholar 

  • Meshnick SR (1998) Artemisinin antimalarials: mechanisms of action and resistance. Med Trop 58:13–17

    CAS  Google Scholar 

  • Michaelis M, Kleinschmidt MC, Barth S, Rothweiler F, Geiler J, Breitling R, Mayer B, Deubzer H, Witt O, Kreuter J, Doerr HW (2010) Anti-cancer effects of artesunate in a panel of chemoresistant neuroblastoma cell lines. Biochem Pharmacol 79:130–136

    Article  CAS  PubMed  Google Scholar 

  • Miles SL, McFarland M, Niles RM (2014) Molecular and physiological actions of quercetin: need for clinical trials to assess its benefits in human disease. Nutr Rev 72:720–734

    Article  PubMed  Google Scholar 

  • Min HY, Chung HJ, Kim EH, Kim S, Park EJ, Lee SK (2010) Inhibition of cell growth and potentiation of tumor necrosis factor-α (TNF-α)-induced apoptosis by a phenanthroindolizidine alkaloid antofine in human colon cancer cells. Biochem Pharmacol 80:1356–1364

    Article  CAS  PubMed  Google Scholar 

  • Morrissey KM, Yuraszeck TM, Li CC, Zhang Y, Kasichayanula S (2016) Immunotherapy and novel combinations in oncology: current landscape, challenges, and opportunities. Clin Transl Sci 9:89–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morse MA, Wang CX, Stoner GD, Mandal S, Conran PB, Amin SG et al (1989) Inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced DNA adduct formation and tumorigenicity in the lung of F344 rats by dietary phenethyl isothiocyanate. Cancer Res 49:549–553

    CAS  PubMed  Google Scholar 

  • Morse MA, Eklind KI, Hecht SS, Jordan KG, Choi CI, Desai DH, Amin SG, Chung FL (1991) Structure-activity relationships for inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone lung tumorigenesis by arylalkyl isothiocyanates in A/J mice. Cancer Res 51:1846–1850

    CAS  PubMed  Google Scholar 

  • Mu C, Jia P, Yan Z, Liu X, Li X, Liu H (2007) Quercetin induces cell cycle G1 arrest through elevating Cdk inhibitors p21 and p27 in human hepatoma cell line (HepG2). Methods Find Exp Clin Pharmacol 29:179–183

    Article  CAS  PubMed  Google Scholar 

  • Mu D, Zhang W, Chu D, Liu T, Xie Y, Fu E, Jin F (2008) The role of calcium, P38 MAPK in dihydroartemisinin-induced apoptosis of lung cancer PC-14 cells. Cancer Chemother Pharmacol 61:639–645

    Article  CAS  PubMed  Google Scholar 

  • Nair HK, Rao KVK, Aalinkeel R, Mahajan S, Chawda R, Schwartz SA (2004) Inhibition of prostate cancer cell colony formation by the flavonoid quercetin correlates with modulation of specific regulatory genes. Clin Diagn Lab Immunol 11:63–69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Narasimha Rao K, Venkatachalam SR (2000) Inhibition of dihydrofolate reductase and cell growth activity by the phenanthroindolizidine alkaloids pergularinine and tylophorinidine: the in vitro cytotoxicity of these plant alkaloids and their potential as antimicrobial and anticancer agents. Toxicol In Vitro 14(1):53–59

    Article  Google Scholar 

  • Ng TP, Chiam PC, Lee T, Chua HC, Lim L, Kua EH (2006) Curry consumption and cognitive function in the elderly. Am J Epidemiol 164:898–906

    Article  PubMed  Google Scholar 

  • Nizamutdinova IT, Lee GW, Son KH, Jeon SJ, Kang SS, Kim YS, Lee JH, Seo HG, Chang KC, Kim HJ (2008a) Tanshinone I effectively induces apoptosis in estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cells. Int J Oncol 33:4854–4891

    Google Scholar 

  • Nizamutdinova IT, Lee GW, Lee JS, Cho MK, Son KH, Jeon SJ, Kang SS, Kim YS, Lee JH, Seo HG, Chang KC (2008b) Tanshinone I suppresses growth and invasion of human breast cancer cells, MDA-MB-231, through regulation of adhesion molecules. Carcinogenesis 29:1885–1892

    Article  CAS  PubMed  Google Scholar 

  • Nwodo JN, Ibezim A, Simoben CV, Ntie-Kang F (2016) Exploring cancer therapeutics with natural products from African medicinal plants, part II: alkaloids, terpenoids and flavonoids. Anticancer Agents Med Chem 16:108–127

    Article  CAS  PubMed  Google Scholar 

  • Park IJ, Kim MJ, Park OJ, Park MG, Choe W, Kang I, Kim SS, Ha J (2010) Cryptotanshinone sensitizes DU145 prostate cancer cells to Fas (APO1/CD95)-mediated apoptosis through Bcl-2 and MAPK regulation. Cancer Lett 298:88–98

    Article  CAS  PubMed  Google Scholar 

  • Rabi T, Bishayee A (2009) D-Limonene sensitizes docetaxel-induced cytotoxicity in human prostate cancer cells: generation of reactive oxygen species and induction of apoptosis. J Carcinog 8:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Raj R, Mongia P, Sahu SK, Ram A (2016) Nanocarriers based anticancer drugs: current scenario and future perceptions. Curr Drug Targets 17:206–228

    Article  CAS  PubMed  Google Scholar 

  • Ramos S (2008) Cancer chemoprevention and chemotherapy: dietary polyphenols and signaling pathways. Mol Nutr Food Res 52:507–526

    Article  CAS  PubMed  Google Scholar 

  • Rasheed SA, Efferth T, Asangani IA, Allgayer H (2010) First evidence that the antimalarial drug artesunate inhibits invasion and in vivo metastasis in lung cancer by targeting essential extracellular proteases. Int J Cancer 127:1475–1485

    Article  CAS  PubMed  Google Scholar 

  • Reungpatthanaphong P, Mankhetkorn S (2002) Modulation of multidrug resistance by artemisinin, artesunate and dihydroartemisinin in K562/adr and GLC4/adr resistant cell lines. Biol Pharm Bull 25:1555–1561

    Article  CAS  PubMed  Google Scholar 

  • Rosea P, Huangb Q, Ongb CN, Whiteman M (2005) Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol 209:105–113

    Article  Google Scholar 

  • Schmidt BM, Ribnicky DM, Lipsky PE, Raskin I (2007) Revisiting the ancient concept of botanical therapeutics. Nat Chem Biol 3:360–366

    Article  CAS  PubMed  Google Scholar 

  • Shan YF, Shen X, Xie YK, Chen JC, Shi HQ, Yu ZP, Song QT, Zhou MT, Zhang QY (2009) Inhibitory effects of tanshinone II-A on invasion and metastasis of human colon carcinoma cells. Acta Pharmacol Sin 30:1537–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen SQ, Zhang Y, Xiang JJ, Xiong CL (2007) Protective effect of curcumin against liver warm ischemia/reperfusion injury in rat model is associated with regulation of heat shock protein and antioxidant enzymes. World J Gastroenterol 13:1953–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoeba M, Celikb S, Jasparsc M, Kumarasamya Y, MacManusa SM, Nahard L, Thoo-Lin PK, Sarker SD (2005) Isolation, structure elucidation and bioactivity of schischkiniin, a unique indole alkaloid from the seeds of Centaurea schischkinii. Tetrahedron 61(38):9001–9006

    Article  Google Scholar 

  • Sichaem J, Surapinit S, Siripong P, Khumkratok S, Jong-aramruang J, Tip-pyang S (2010) Two new cytotoxic isomeric indole alkaloids from the roots of Nauclea orientalis. Fitoterapia 81(7):830–833

    Article  CAS  PubMed  Google Scholar 

  • Stoner GD, Morrissey DT, Heur YH, Daniel EM, Galati AJ, Wagner SA (1991) Inhibitory effects of phenethyl isothiocyanate on N nitrosobenzylmethylamine carcinogenesis in the rat esophagus. Cancer Res 51:2063–2068

    CAS  PubMed  Google Scholar 

  • Su CC, Lin YH (2008a) Tanshinone IIA inhibits human breast cancer cells through increased Bax to Bcl-xL ratios. Int J Mol Med 22:357–361

    CAS  PubMed  Google Scholar 

  • Su CC, Lin YH (2008b) Tanshinone IIA down-regulates the protein expression of ErbB-2 and up-regulates TNF-α in colon cancer cells in vitro and in vivo. Int J Mol Med 22:847–851

    CAS  PubMed  Google Scholar 

  • Su CC, Chen GW, Kang JC, Chan MH (2008a) Growth inhibition and apoptosis induction by tanshinone IIA in human colon adenocarcinoma cells. Planta Med 74:1357–1362

    Article  CAS  PubMed  Google Scholar 

  • Su CC, Chen GW, Lin JG (2008b) Growth inhibition and apoptosis induction by tanshinone I in human colon cancer Colo 205 cells. Int J Mol Med 22:613–618

    CAS  PubMed  Google Scholar 

  • Sun J (2007) D-Limonene: safety and clinical applications. Altern Med Rev 12:259–264

    PubMed  Google Scholar 

  • Sung HJ, Choi SM, Yoon Y, An KS (1999) Tanshinone IIA, an ingredient of Salvia miltiorrhiza BUNGE, induces apoptosis in human leukemia cell lines through the activation of caspase-3. Exp Mol Med 31:174–178

    Article  CAS  PubMed  Google Scholar 

  • Tait S, Salvati AL, Desideri N, Fiore L (2006) Antiviral activity of substituted homoisoflavonoids on enteroviruses. Antivir Res 72:252–255

    Article  CAS  PubMed  Google Scholar 

  • Talalay P, Fahey JW (2001) Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr 131:3027–3033

    Article  Google Scholar 

  • Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, Gong J, Zhong Z, Xu Z, Dang Y, Guo J (2011) Anti-cancer natural products isolated from Chinese medicinal herbs. Chin Med 6:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Z, Tang Y, Fu L (2003) Growth inhibition and apoptosis induction in human hepatoma cells by tanshinone II A. J Huazhong Univ Sci Technolog Med Sci 23:166–168

    Article  CAS  PubMed  Google Scholar 

  • Theodoratou E, Kyle J, Cetnarskyj R, Farrington SM, Tenesa A, Barnetson R, Porteous M, Dunlop M, Campbell H (2007) Dietary flavonoids and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 16:684–693

    Article  CAS  PubMed  Google Scholar 

  • Udenigwe CC, Ramprasath VR, Aluko RE, Jones PJ (2008) Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutr Rev 66:445–454

    Article  PubMed  Google Scholar 

  • Uppala PT, Dissmore T, Lau BH, Andacht T, Rajaram S (2013) Selective inhibition of cell proliferation by lycopene in MCF-7 breast cancer cells in vitro: a proteomic analysis. Phytother Res 27:595–601

    Article  CAS  PubMed  Google Scholar 

  • Vaishampayan U, Hussain M, Banerjee M, Seren S, Sarkar FH, Fontana J, Forman JD, Cher ML, Powell I, Pontes JE, Kucuk O (2007) Lycopene and soy isoflavones in the treatment of prostate cancer. Nutr Cancer 59:1–7

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven DT, Goldbohm RA, Van Poppel G, Verhagen H, Van den Brandt PA (1996) Epidemiological studies on Brassica vegetables and cancer risk. Cancer Epidemiol Biomarkers Prev 5:733–748

    CAS  PubMed  Google Scholar 

  • Wang G, Tang W, Bidigare R (2005a) Terpenoids as therapeutic drugs and pharmaceutical agents. Nat Prod:197–227

    Google Scholar 

  • Wang X, Wei Y, Yuan S, Liu G, Lu Y, Zhang J, Wang W (2005b) Potential anticancer activity of tanshinone IIA against human breast cancer. Int J Cancer 116:799–807

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang X, Jiang S, Yuan S, Lin P, Zhang J, Lu Y, Wang Q, Xiong Z, Wu Y, Ren J (2007) Growth inhibition and induction of apoptosis and differentiation of tanshinone IIA in human glioma cells. J Neurooncol 82:11–21

    Article  CAS  PubMed  Google Scholar 

  • Wang SJ, Gao Y, Chen H et al (2010) Dihydroartemisinin inactivates NF-kappaB and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo. Cancer Lett 293:99–108

    Article  CAS  PubMed  Google Scholar 

  • Wattenberg LW (1977) Inhibition of carcinogenic effects of polycyclic hydrocarbons by benzyl isothiocyanate and related compounds. J Natl Cancer Inst 58:395–398

    Article  CAS  PubMed  Google Scholar 

  • Wattenberg LW (1983) Inhibition of neoplasia by minor dietary constituents. Cancer Res 43:2448–2453

    CAS  Google Scholar 

  • Wei L, Brossi A, Morris-Natschke SL, Bastow KF, Lee K-H (2008) Antitumor agents 248. Chemistry and antitumor activity of tylophorinerelated alkaloids. Stud Nat Prod Chem 34:3–34

    Article  CAS  Google Scholar 

  • Willoughby JA, Sundar SN, Cheung M, Tin AS, Modiano J, Firestone GL (2009) Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the cyclin-dependent kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression. J Biol Chem 284:2203–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Won SH, Lee HJ, Jeong SJ, Lee HJ, Lee EO, Jung DB, Shin JM, Kwon TR, Yun SM, Lee MH, Choi SH (2010) Tanshinone IIA induces mitochondria dependent apoptosis in prostate cancer cells in association with an inhibition of phosphoinositide 3-kinase/AKT pathway. Biol Pharm Bull 33:1828–1834

    Article  CAS  PubMed  Google Scholar 

  • Wu WL, Chang WL, Chen CF (1991) Cytotoxic activities of tanshinones against human carcinoma cell lines. Am J Chin Med 19:207–216

    Article  PubMed  Google Scholar 

  • Yang YM, Conaway CC, Chiao JW, Wang CX, Amin S, Whysner J, Dai W, Reinhardt J, Chung FL (2002) Inhibition of benzo(a)pyrene-induced lung tumorigenesis in A/J mice by dietary N-acetylcysteine conjugates of benzyl and phenethyl isothiocyanates during the postinitiation phase is associated with activation of mitogen-activated protein kinases and p53 activity and induction of apoptosis. Cancer Res 62:2–7

    CAS  PubMed  Google Scholar 

  • Yang ZS, Zhou WL, Sui Y, Wang JX, Wu JM, Zhou Y, Zhang Y, He PL, Han JY, Tang W, Li Y (2005) Synthesis and immunosuppressive activity of new artemisinin derivatives. 1. [12(beta or alpha)-Dihydroartemisininoxy]phen(ox)yl aliphatic acids and esters. J Med Chem 48:4608–4617

    Article  CAS  PubMed  Google Scholar 

  • Yang JH, Hsia TC, Kuo HM, Chou PD, Chou CC, Wei YH, Chung JG (2006) Inhibition of lung cancer cell growth by quercetin glucuronides via G2/M arrest and induction of apoptosis. Drug Metab Dispos 34:296–304

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Liu J, Xu S, Zhu Z, Xu J (2017) The structural modification of natural products for novel drug discovery. Expert Opin Drug Discovery 12:121–140

    Article  CAS  Google Scholar 

  • Yin H-Q, Kim Y-H, Moon C-K, Lee B-H (2005) Reactive oxygen species-mediated induction of apoptosis by a plant alkaloid 6-methoxydihydrosanguinarine in HepG2 cells. Biochem Pharmacol 70(2):242–248

    Article  CAS  PubMed  Google Scholar 

  • Yuan SL, Wei YQ, Wang XJ, Xiao F, Li SF, Zhang J (2004) Growth inhibition and apoptosis induction of tanshinone II-A on human hepatocellular carcinoma cells. World J Gastroenterol 10:2024–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuxian X, Feng T, Ren L, Zhengcai L (2009) Tanshinone II-A inhibits invasion and metastasis of human hepatocellular carcinoma cells in vitro and in vivo. Tumori J 95:789–795

    Article  Google Scholar 

  • Zhang Y, Kensler TW, Cho CG, Posner GH, Talalay P (1994) Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc Natl Acad Sci U S A 91:3147–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SM, Hunter DJ, Rosner BA, Giovannucci EL, Colditz GA, Speizer FE, Willett WC (2000) Intakes of fruits, vegetables, and related nutrients and the risk of non-Hodgkin’s lymphoma among women. Cancer Epidemiol Biomarkers Prev 9:477–485

    CAS  PubMed  Google Scholar 

  • Zhang K, Li J, Meng W, Xing H, Yang Y (2010) C/ EBPβ and CHOP participate in tanshinone IIA-induced differentiation and apoptosis of acute promyelocytic leukemia cells in vitro. Int J Hematol 92:571–578

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Zuo Z, Chow MS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45:1345–1359

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, J., Mahey, S., Ahluwalia, P., Joshi, R., Kumar, R. (2022). Role of Plant Secondary Metabolites as Anticancer and Chemopreventive Agents. In: Sharma, A.K., Sharma, A. (eds) Plant Secondary Metabolites. Springer, Singapore. https://doi.org/10.1007/978-981-16-4779-6_4

Download citation

Publish with us

Policies and ethics