Skip to main content

Phytoalexins: Implications in Plant Defense and Human Health

  • Chapter
  • First Online:
Plant Secondary Metabolites

Abstract

The sessile habit of plants led to the evolution of plant secondary metabolites that were aiding to the plant defense. One of such groups of secondary metabolites is phytoalexins, which are low molecular weight compounds of antimicrobial nature and are produced by plants in response to the attacking pathogens. Phytoalexins are diverse in their chemical nature, but have a function in common, i.e., plant defense. With the climate change and development of pure line crop varieties, plant diseases are continuously challenging the efforts toward enhancement of crop productivity. The property of phytoalexins to accumulate at infection sites and inhibit the growth of the pathogenic microbes makes them potential antimicrobial agents, which may be exploited for the disease resistance. Since many genes encoding the enzymes involved in their biosynthetic pathway are now well studied, the expression of these genes can be manipulated to engineer future crops for better resistance toward plant pathogens. Besides their key role in plant defense, phytoalexins are also helpful in promoting human health. Some of them are known to possess various bioactive properties such as antioxidant, anticancer, antidiabetic, antiparasitic, cardioprotective, neuroprotective, and growth-stimulating. The present chapter, therefore, highlights their diverse chemical nature, regulation of their biosynthesis, distribution, accumulation, role in plant defense, and potential in promoting human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agrios GN (2005) Plant pathology, 5th edn. Academic Press, Elsevier. https://doi.org/10.1016/C2009-0-02037-6

    Book  Google Scholar 

  • Ahmed S, Kovinich N (2020) Regulation of phytoalexin biosynthesis for agriculture and human health. Phytochem Rev 20:483–505. https://doi.org/10.1007/s11101-020-09691-8

    Article  CAS  Google Scholar 

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17(2):73–90

    CAS  PubMed  Google Scholar 

  • Arruda RL, Paz ATS, Bara MTF, Côrtes MVDCB, Filippi MCCD, Conceição ECD (2016) An approach on phytoalexins: function, characterization and biosynthesis in plants of the family Poaceae. Ciência Rural 46(7):1206–1216

    CAS  Google Scholar 

  • Bailey JA, Mansfield JW (1982) Phytoalexins. Blackie, Glasgow. (No. 632 B3)

    Google Scholar 

  • Bamji SF, Corbitt C (2017) Glyceollins: soybean phytoalexins that exhibit a wide range of health-promoting effects. J Funct Foods 34:98–105

    CAS  Google Scholar 

  • Baskar V, Venkatesh R, Ramalingam S (2018) Flavonoids (antioxidants systems) in higher plants and their response to stresses, Antioxidants and antioxidant enzymes in higher plants. Springer, Cham, pp 253–268

    Google Scholar 

  • Benvenuto M, Mattera R, Sticca JI, Rossi P, Cipriani C, Giganti MG, Volpi A, Modesti A, Masuelli L, Bei R (2018) Effect of the BH3 mimetic polyphenol (-)-gossypol (AT-101) on the in vitro and in vivo growth of malignant mesothelioma. Front Pharmacol 9:1269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bizuneh GK (2020) The chemical diversity and biological activities of phytoalexins. Adv Tradit Med:1–13

    Google Scholar 

  • Camagna M, Ojika M, Takemoto D (2020) Detoxification of the solanaceous phytoalexins rishitin, lubimin, oxylubimin and solavetivone via a cytochrome P450 oxygenase. Plant Signal Behav 15(2):1707348

    PubMed  Google Scholar 

  • Cartwright DW, Langcake P, Pryce RJ, Leworthy DP, Ride JP (1981) Isolation and characterization of two phytoalexins from rice as momilactones A and B. Phytochemistry 20(3):535–537

    CAS  Google Scholar 

  • Cheng S, Xie X, Xu Y, Zhang C, Wang X, Zhang J, Wang Y (2016) Genetic transformation of a fruit-specific, highly expressed stilbene synthase gene from Chinese wild Vitis quinquangularis. Planta 243(4):1041–1053

    CAS  PubMed  Google Scholar 

  • Chripkova M, Zigo F, Mojzis J (2016) Antiproliferative effect of indole phytoalexins. Molecules 21(12):1626

    PubMed Central  Google Scholar 

  • Cruickshank IA, Perrin DR (1960) Isolation of a phytoalexin from Pisum sativum L. Nature 1960(187):799–800

    Google Scholar 

  • Darvill AG, Albersheim P (1984) Phytoalexins and their elicitors—a defense against microbial infection in plants. Annu Rev Plant Physiol 35(1):243–275

    CAS  Google Scholar 

  • Dixon RA, Dey PM, Lamb CJ (1983) Phytoalexins: enzymology and molecular biology. Adv Enzymol Relat Areas Mol Biol 55(1):69

    Google Scholar 

  • Dugrand-Judek A, Olry A, Hehn A, Costantino G, Ollitrault P, Froelicher Y, Bourgaud F (2015) The distribution of coumarins and furanocoumarins in citrus species closely matches citrus phylogeny and reflects the organization of biosynthetic pathways. PLoS One 10:e0142757

    PubMed  PubMed Central  Google Scholar 

  • Ejike CE, Gong M, Udenigwe CC (2013) Phytoalexins from the Poaceae: biosynthesis, function and prospects in food preservation. Food Res Int 52(1):167–177

    CAS  Google Scholar 

  • El Oirdi M, Trapani A, Kamal B (2010) The nature of tobacco resistance against Botrytis cinerea depends on the infection structures of the pathogen. Environ Microbiol 12:239–253

    PubMed  Google Scholar 

  • Farrell K, Jahan MA, Kovinich N (2017) Distinct mechanisms of biotic and chemical elicitors enable additive elicitation of the anticancer phytoalexin glyceollin I. Molecules 22(8):1261

    PubMed Central  Google Scholar 

  • Fu J, Liu Q, Wang C, Liang J, Liu L, Wang Q (2018) ZmWRKY79 positively regulates maize phytoalexin biosynthetic gene expression and is involved in stress response. J Exp Bot 69(3):497–510

    CAS  PubMed  Google Scholar 

  • Fu J, Liu L, Liu Q, Shen Q, Wang C, Yang P, Zhu C, Wang Q (2020) ZmMYC2 exhibits diverse functions and enhances JA signaling in transgenic Arabidopsis. Plant Cell Rep 39(2):273–288

    CAS  PubMed  Google Scholar 

  • Glazebrook J, Ausubel FM (1994) Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc Natl Acad Sci USA 91(19):8955–8959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glazebrook J, Zook M, Mert F, Kagan I, Rogers EE, Crute IR, Holub EB, Hammerschmidt R, Ausubel FM (1997) Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics 146(1):381–392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gross D (1993) Phytoalexins of the Brassicaceae/Phytoalexine der Brassicaceae. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/J Plant Dis Prot 100:433–442

    CAS  Google Scholar 

  • Henfling J, Bostock R, Kuc J (1980) Effect of abscisic acid on rishitin and lubimin accumulation and resistance to Phytophthora infestans and Cladosporium cucumerinum in potato tuber tissue slices. Phytopathology 70(11):1074–1078

    CAS  Google Scholar 

  • Huang L, Yin X, Sun X, Yang J, Rahman MZ, Chen Z, Wang X (2018) Expression of a grape VqSTS36-increased resistance to powdery mildew and osmotic stress in Arabidopsis but enhanced susceptibility to Botrytis cinerea in Arabidopsis and tomato. Int J Mol Sci 19(10):2985

    PubMed Central  Google Scholar 

  • Huffaker A, Kaplan F, Vaughan MM, Dafoe NJ, Ni X, Rocca JR, Alborn HT, Teal PE, Schmelz EA (2011) Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiol 156(4):2082–2097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue Y, Sakai M, Yao Q, Tanimoto Y, Toshima H, Hasegawa M (2013) Identification of a novel casbane-type diterpene phytoalexin, ent-10-oxodepressin, from rice leaves. Biosci Biotechnol Biochem 77(4):120891

    Google Scholar 

  • Jahan MA, Harris B, Lowery M, Coburn K, Infante AM, Percifield RJ, Ammer AG, Kovinich N (2019) The NAC family transcription factor GmNAC42-1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean. BMC Genomics 20(1):1–21

    Google Scholar 

  • Jasiński M, Jasińska L, Ogrodowczyk M (2013) Resveratrol in prostate diseases-a short review. Central Eur J Urol 66(2):144–149

    Google Scholar 

  • Jassbi AR, Zare S, Asadollahi M, Schuman MC (2017) Ecological roles and biological activities of specialized metabolites from the genus Nicotiana. Chem Rev 117:12227–12280

    CAS  PubMed  Google Scholar 

  • Jeandet P (2015) Phytoalexins: current progress and future prospects. Molecules 20(2):2770–2774

    CAS  PubMed Central  Google Scholar 

  • Jeandet P, Douillet-Breuil AC, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50(10):2731–2741

    CAS  PubMed  Google Scholar 

  • Jeandet P, Hébrard C, Deville M-A, Cordelier S, Dorey S, Aziz A, Crouzet J (2014) Deciphering the role of phytoalexins in plant-microorganism interactions and human health. Molecules 19(11):18033–18056

    PubMed  PubMed Central  Google Scholar 

  • Jeandet P, Clément C, Cordelier S (2019) Regulation of resveratrol biosynthesis in grapevine: new approaches for disease resistance? J Exp Bot 70(2):375–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kariya K, Ube N, Ueno M, Teraishi M, Okumoto Y, Mori N, Ueno K, Ishihara A (2020) Natural variation of diterpenoid phytoalexins in cultivated and wild rice species. Phytochemistry 180:112518

    CAS  PubMed  Google Scholar 

  • Kıran S, Ellialtıoğlu Ş (2019) The effect of arachidonic acid elicitor on phytoalexin stimulation in eggplant callus suspension culture. Derim 36(2):141–145

    Google Scholar 

  • Kiran S, Ellialtioğlu ŞŞ, Üstün AS, Mehmetoğlu Ü, Bayraktar H, Dolar FS (2017) Phytoalexin accumulations in the callus culture of two eggplant genotypes by using Verticillium dahliae Kleb. Elicitor. Int J Forestry Horticult 3(3):1–8

    Google Scholar 

  • Klein AP, Sattely ES (2017) Biosynthesis of cabbage phytoalexins from indole glucosinolate. Proc Natl Acad SciUSA 114(8):1910–1915

    CAS  Google Scholar 

  • Kodama O, Miyakawa J, Akatsuka T, Kiyosawa S (1992) Sakuranetin, a flavanone phytoalexin from ultraviolet-irradiated rice leaves. Phytochemistry 31(11):3807–3809

    CAS  Google Scholar 

  • Kruszka D, Sawikowska A, Selvakesavan RK, Krajewski P, Kachlicki P, Franklin G (2020) Silver nanoparticles affect phenolic and phytoalexin composition of Arabidopsis thaliana. Sci Total Environ 716:135361

    CAS  PubMed  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750

    Google Scholar 

  • Lee HA, Kim S, Kim S, Choi D (2017) Expansion of sesquiterpene biosynthetic gene clusters in pepper confers nonhost resistance to the Irish potato famine pathogen. New Phytol 215:1132–1143

    CAS  PubMed  Google Scholar 

  • Li R, Tee CS, Jiang YL, Jiang XY, Venkatesh PN, Sarojam R, Ye J (2015) A terpenoid phytoalexin plays a role in basal defense of Nicotiana benthamiana against potato virus X. Sci Rep 5:9682

    PubMed  PubMed Central  Google Scholar 

  • Liang Y, Li Z, Zhang Y, Meng F, Qiu D, Zeng H, Li G, Yang X (2020) Nbnrp1 mediates Verticillium dahliae effector PevD1-triggered defense responses by regulating sesquiterpenoid phytoalexins biosynthesis pathway in Nicotiana benthamiana. Gene 768:145280. https://doi.org/10.1016/j.gene.2020.145280

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Ma F, Wu F, Jiang C, Wang Y (2019) Expression of stilbene synthase VqSTS6 from wild Chinese Vitis quinquangularis in grapevine enhances resveratrol production and powdery mildew resistance. Planta 250(6):1997–2007

    CAS  PubMed  Google Scholar 

  • Meyer J, Berger DK, Christensen SA, Murray SL (2017) RNA-Seq analysis of resistant and susceptible sub-tropical maize lines reveals a role for kauralexins in resistance to grey leaf spot disease, caused by Cercospora zeina. BMC Plant Biol 17(1):1–20

    Google Scholar 

  • Miranda L, Maier CS, Stevens JF (2012) Flavonoids. In: eLS. Wiley, Chichester

    Google Scholar 

  • Miyamoto K, Nishizawa Y, Minami E, Nojiri H, Yamane H, Okada K (2015) Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells. J Plant Physiol 173:19–27

    CAS  PubMed  Google Scholar 

  • Morimoto N, Ueno K, Teraishi M, Okumoto Y, Mori N, Ishihara A (2018) Induced phenylamide accumulation in response to pathogen infection and hormone treatment in rice (Oryza sativa). Biosci Biotechnol Biochem 82:407–416

    CAS  PubMed  Google Scholar 

  • Müller K (1940) Experimentelle untcrsuchungcn uber die Phytophthora-resistem der kartoffel. Arb Biol Reichsasnstalt Landw Forstw Berlin 23:189–231

    Google Scholar 

  • Müller KO, Börger H (1940) Experimentelle Untersuchungen Über die Phytophthora infestans-Resistenz der Kartoffel. Arb. Biol. Reichsanst. Land Forstwirtsch 97:189–231

    Google Scholar 

  • Müller KO, Meyer G, Klinkowski M (1939) Physiologischgenetische Untersuchungen über die Resistenz der Kartoffel gegenüber Phytophthora infestans. Naturwissenschaften 27(46):765–768

    Google Scholar 

  • Ohnishi M, Morishita H, Iwahashi H, Toda S, Shirataki Y, Kimura M, Kido R (1994) Inhibitory effects of chlorogenic acids on linoleic acid peroxidation and haemolysis. Phytochemistry 36(3):579–583

    CAS  Google Scholar 

  • Okada A, Okada K, Miyamoto K, Koga J, Shibuya N, Nojiri H, Yamane H (2009) OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice. J Biol Chem 284(39):26510–26518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pastorczyk M, Kosaka A, Pis’lewska-Bednarek M, López G, Frerigmann H, Kułak K, Glawischnig E, Molina A, Takano Y, Bednarek P (2020) The role of CYP 71A12 monooxygenase in pathogen-triggered tryptophan metabolism and Arabidopsis immunity. New Phytol 225(1):400–412

    CAS  PubMed  Google Scholar 

  • Pavel IZ, Danciu C, Oprean C, Dehelean CA, Muntean D, Csuk R, Muntean DM (2016) In vitro evaluation of the antimicrobial ability and cytotoxicity on two melanoma cell lines of a benzylamide derivative of maslinic acid. Anal Cell Pathol 2016:2787623

    Google Scholar 

  • Paxton JD (1980) A new working definition of the term “phytoalexin”. Plant dis 64(8):734

    Google Scholar 

  • Paxton JD (1981) Phytoalexins-a working redefinition. J Phytopathol 101(2):106–109

    Google Scholar 

  • Pedras MSC, Ahiahonu PW (2005) Metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi. Phytochemistry 66(4):391–411

    CAS  PubMed  Google Scholar 

  • Pedras MSC, Thapa C (2020) Unveiling fungal detoxification pathways of the cruciferous phytoalexin rapalexin A: sequential L-cysteine conjugation, acetylation and oxidative cyclization mediated by Colletotrichum spp. Phytochemistry 169:112188

    CAS  PubMed  Google Scholar 

  • Pedras MSC, To QH (2017) Defense and signalling metabolites of the crucifer Erucastrum canariense: synchronized abiotic induction of phytoalexins and galacto-oxylipins. Phytochemistry 139:18–24

    CAS  PubMed  Google Scholar 

  • Pedras MSC, Zheng QA, Sarma-Mamillapalle VK (2007) The phytoalexins from Brassicaceae: structure, biological activity, synthesis and biosynthesis. Nat Prod Commun 2(3):319–330

    CAS  Google Scholar 

  • Pedras MSC, Chumala PB, Jin W, Islam MS, Hauck DW (2009) The phytopathogenic fungus Alternaria brassicicola: phytotoxin production and phytoalexin elicitation. Phytochemistry 70:394–402

    CAS  PubMed  Google Scholar 

  • Pham TH, Lecomte S, Efstathiou T, Ferriere F, Pakdel F (2019) An update on the effects of glyceollins on human health: possible anticancer effects and underlying mechanisms. Nutrients 11(1):79

    CAS  PubMed Central  Google Scholar 

  • Pilátová M, Šarišský M, Kutschy P, Miroššay A, Mezencev R, Čurillová Z, Suchý M, Monde K, Mirossay L, Mojžiš J (2005) Cruciferous phytoalexins: antiproliferative effects in T-Jurkat leukemic cells. Leuk Res 29(4):415–421

    PubMed  Google Scholar 

  • Poloni A, Schirawski J (2014) Red card for pathogens: phytoalexins in sorghum and maize. Molecules 19(7):9114–9133

    PubMed  PubMed Central  Google Scholar 

  • Rathore KS, Pandeya D, Campbell LM, Wedegaertner TC, Puckhaber L, Stipanovic RD, Thenell JS, Hague S, Hake K (2020) Ultra-low gossypol cottonseed: selective gene silencing opens up a vast resource of plant-based protein to improve human nutrition. Crit Rev Plant Sci 39(1):1–29

    CAS  Google Scholar 

  • Salvador-Guirao R, Baldrich P, Tomiyama S, Hsing YI, Okada K, San Segundo B (2019). OsDCL1a activation impairs phytoalexin biosynthesis and compromises disease resistance in rice. Ann Bot 123(1):79–93

    Google Scholar 

  • Schmelz EA, Huffaker A, Sims JW, Christensen SA, Lu X, Okada K, Peters RJ (2014) Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant J 79(4):659–678

    CAS  PubMed  Google Scholar 

  • Schnippenkoetter W, Lo C, Liu G, Dibley K, Chan WL, White J, Milne R, Zwart A, Kwong E, Keller B, Godwin I, Krattinger SG, Lagudah E (2017) The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum. Plant Biotechnol J 15(11):1387–1396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seo JY, Kim BR, Oh J, Kim JS (2018) Soybean-derived phytoalexins improve cognitive function through activation of Nrf2/HO-1 signaling pathway. Int J Mol Sci 19(1):268

    PubMed Central  Google Scholar 

  • Sharma A, Sharma A, Kumar R, Sharma I, Vats AK (2021) PR proteins: key genes for engineering disease resistance in plants. In: Kumar P, Thakur AK (eds) Crop improvement: biotechnological advances. CRC Press, pp 81–98

    Google Scholar 

  • Shen Q, Pu Q, Liang J, Mao H, Liu J, Wang Q (2019) CYP71Z18 overexpression confers elevated blast resistance in transgenic rice. Plant Mol Biol 100(6):579–589

    CAS  PubMed  Google Scholar 

  • Shimizu T, Lin F, Hasegawa M, Okada K, Nojiri H, Yamane H (2012) Purification and identification of naringenin 7-O-methyltransferase, a key enzyme in biosynthesis of flavonoid phytoalexin sakuranetin in rice. J Biol Chem 287(23):19315–19325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla PK, Mishra P, Mishra N (2019) A prospective study on emerging roles of phytoalexins in plant protection. Int J Pharma Biol Sci 10(3):186–198

    CAS  Google Scholar 

  • Smeriglio A, Barreca D, Bellocco E, Trombetta D (2016) Chemistry, pharmacology and health benefits of anthocyanins. Phytother Res 30:1265–1286

    CAS  PubMed  Google Scholar 

  • Smith BA, Neal CL, Chetram M, Vo B, Mezencev R, Hinton C, Odero-Marah VA (2013) The phytoalexin camalexin mediates cytotoxicity towards aggressive prostate cancer cells via reactive oxygen species. J Nat Med 67(3):607–618

    CAS  PubMed  Google Scholar 

  • Song N, Ma L, Wang W, Sun H, Wang L, Baldwin IT, Wu J (2019) An ERF2-like transcription factor regulates production of the defense sesquiterpene capsidiol upon Alternaria alternata infection. J Exp Bot 70(20):5895–5908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stahl E, Bellwon P, Huber S, Schlaeppi K, Bernsdorff F, Vallat-Michel A, Mauch F, Zeier J (2016) Regulatory and functional aspects of indolic metabolism in plant systemic acquired resistance. Mol Plant 9(5):662–681

    CAS  PubMed  Google Scholar 

  • Stompor M (2020) A review on sources and pharmacological aspects of sakuranetin. Nutrients 12(2):513

    CAS  PubMed Central  Google Scholar 

  • Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci 103(48):18054–18059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamogami S, Kodama O (2000) Coronatine elicits phytoalexin production in rice leaves (Oryza sativa L.) in the same manner as jasmonic acid. Phytochemistry 54(7):689–694

    CAS  PubMed  Google Scholar 

  • Thomma BP, Eggermont K, Tierens KFJ, Broekaert WF (1999) Requirement of functional ethyleneinsensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121(4):1093–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomzik JE, Stenzel K, Stöcker R, Schreier PH, Hain R, Stahl DJ (1997) Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol 51(4):265–278

    CAS  Google Scholar 

  • Tian X, Ruan J, Huang J, Fang X, Mao Y, Wang L, Chen X, Yang C (2016) Gossypol: phytoalexin of cotton. Sci China Life Sci 59(2):122–129

    CAS  PubMed  Google Scholar 

  • Tiku AR (2020) Antimicrobial compounds (phytoanticipins and phytoalexins) and their role in plant defense. In: Mérillon JM, Ramawat K (eds) Co-evolution of secondary metabolites. Reference series in phytochemistry. Springer, Cham, pp 845–868. https://doi.org/10.1007/978-3-319-96397-6_63

    Chapter  Google Scholar 

  • Tischlerova V, Kello M, Budovska M, Mojzis J (2017) Indole phytoalexin derivatives induce mitochondrial-mediated apoptosis in human colorectal carcinoma cells. World J Gastroenterol 23(24):4341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji J, Jackson EP, Gage DA, Hammerschmidt R, Somerville SC (1992) Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv syringae. Plant Physiol 98(4):1304–1309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ube N, Harada D, Katsuyama Y, Osaki-Oka K, Tonooka T, Ueno K, Taketa S, Ishihara A (2019) Identification of phenylamide phytoalexins and characterization of inducible phenylamide metabolism in wheat. Phytochemistry 167:112098

    CAS  PubMed  Google Scholar 

  • VanEtten HD, Mansfield JW, Bailey JA, Farmer EE (1994) Two classes of plant antibiotics: phytoalexins versus "phytoanticipins". Plant Cell 6(9):1191–1192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wharton PS, Nicholson RL (2000) Temporal synthesis and radiolabelling of the sorghum 3-deoxyanthocyanidin phytoalexins and the anthocyanin, cyanidin 3-dimalonyl glucoside. New Phytol 145(3):457–469

    CAS  PubMed  Google Scholar 

  • Yamamura C, Mizutani E, Okada K, Nakagawa H, Fukushima S, Tanaka A, Maeda S, Kamakura T, Yamane H, Takatsuji H, Mori M (2015) Diterpenoid phytoalexin factor, a bHLH transcription factor, plays a central role in the biosynthesis of diterpenoid phytoalexins in rice. Plant J 84(6):1100–1113

    CAS  PubMed  Google Scholar 

  • Yang T, Fang L, Sanders S, Jayanthi S, Rajan G, Podicheti R, Thallapuranam SK, Mockaitis K, Medina-Bolivar F (2018) Stilbenoid prenyltransferases define key steps in the diversification of peanut phytoalexins. J Biol Chem 293(1):28–46

    CAS  PubMed  Google Scholar 

  • Yoshioka M, Adachi A, Sato Y, Doke N, Kondo T, Yoshioka H (2019) RNAi of the sesquiterpene cyclase gene for phytoalexin production impairs pre-and post-invasive resistance to potato blight pathogens. Mol Plant Pathol 20(7):907–922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Dreher K, Karthikeyan A, Chi A, Pujar A, Caspi R, Karp P, Kirkup V, Latendresse M, Lee C, Mueller LA, Muller R, Rhee SY (2010) Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants. Plant Physiol 153:1479–1491

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Authors are thankful to the Vice-Chancellor of DAV University for the continuous encouragement and infrastructural support.

Conflicts of Interests

Authors declare that they do not have any conflict of interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, I., Thakur, A., Sharma, A., Singh, N., Kumar, R., Sharma, A. (2022). Phytoalexins: Implications in Plant Defense and Human Health. In: Sharma, A.K., Sharma, A. (eds) Plant Secondary Metabolites. Springer, Singapore. https://doi.org/10.1007/978-981-16-4779-6_10

Download citation

Publish with us

Policies and ethics