Skip to main content

Imaging in Breast Cancer

  • Chapter
  • First Online:
Breast Cancer

Abstract

Breast cancer is the most common cancer in females which is associated with significant morbidity and mortality, if not detected in early stages. Triple assessment is the key to approach breast diseases, and it includes clinical examination, imaging evaluation and pathological assessment. Role of imaging is crucial in detection and staging of such patients so as to provide appropriate treatment to them. This chapter aims to provide an overall insight about various imaging modalities involved in evaluation of breast pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Statistics of Breast Cancer in India: Trends in India [Internet]. [cited 2018 Mar 23]. Available from: http://www.breastcancerindia.net/statistics/trends.html.

  2. Mushlin AI, Kouides RW, Shapiro DE. Estimating the accuracy of screening mammography: a meta-analysis. Am J Prev Med. 1998;14(2):143–53.

    CAS  Google Scholar 

  3. Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356(3):227–36.

    CAS  Google Scholar 

  4. Devolli-Disha E, Manxhuka-Kërliu S, Ymeri H, Kutllovci A. Comparative accuracy of mammography and ultrasound in women with breast symptoms according to age and breast density. Bosn J Basic Med Sci. 2009;9(2):131–6.

    Google Scholar 

  5. Tan KP, Mohamad Azlan Z, Rumaisa MP, Siti Aisyah Murni MR, Radhika S, Nurismah MI, et al. The comparative accuracy of ultrasound and mammography in the detection of breast cancer. Med J Malaysia. 2014;69(2):79–85.

    CAS  Google Scholar 

  6. Ohuchi N, Suzuki A, Sobue T, Kawai M, Yamamoto S, Zheng Y-F, et al. Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan strategic anti-cancer randomized trial (J-START): a randomised controlled trial. Lancet. 2016;387(10016):341–8.

    Google Scholar 

  7. Sardanelli F, Giuseppetti GM, Panizza P, Bazzocchi M, Fausto A, Simonetti G, et al. Sensitivity of MRI versus mammography for detecting foci of multifocal, multicentric breast cancer in fatty and dense breasts using the whole-breast pathologic examination as a gold standard. Am J Roentgenol. 2004;183(4):1149–57.

    Google Scholar 

  8. Schnall Mitchell D, Jeffery B, Bluemke David A, DeAngelis Gia A, Nanette DB, Steven H, et al. MRI detection of distinct incidental cancer in women with primary breast cancer studied in IBMC 6883. J Surg Oncol. 2005;92(1):32–8.

    CAS  Google Scholar 

  9. Mandelson MT, Oestreicher N, Porter PL, White D, Finder CA, Taplin SH, et al. Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst. 2000;92(13):1081–7.

    CAS  Google Scholar 

  10. Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology. 2002;225(1):165–75.

    Google Scholar 

  11. The Role of Imaging Techniques in Diagnosis of Breast Cancer [Internet]. [cited 2018 Mar 3]. Available from: http://www.chsjournal.org/archive/vol37-no2-2011/reviews/the-role-of-imaging-techniques-in-diagnosis-of-breast-cancer.

  12. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA, et al. ACR BI-RADS® Atlas, breast imaging reporting and data system. Reston: American College of Radiology; 2013.

    Google Scholar 

  13. Birdwell RL. The preponderance of evidence supports computer-aided detection for screening mammography. Radiology. 2009;253(1):9–16.

    Google Scholar 

  14. Fm A. False positive value of computer-aided detection in full field digital mammography in diagnosis of breast malignancy. J Med Diagn Methods. 2015;4(4):1–5.

    Google Scholar 

  15. Ciatto S, Houssami N, Bernardi D, Caumo F, Pellegrini M, Brunelli S, et al. Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study. Lancet Oncol. 2013;14(7):583–9.

    Google Scholar 

  16. Friedewald SM, Rafferty EA, Rose SL, Durand MA, Plecha DM, Greenberg JS, et al. Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA. 2014;311(24):2499–507.

    CAS  Google Scholar 

  17. Gennaro G, Toledano A, di Maggio C, Baldan E, Bezzon E, Grassa ML, et al. Digital breast tomosynthesis versus digital mammography: a clinical performance study. Eur Radiol. 2010;20(7):1545–53.

    Google Scholar 

  18. Nguyen T, Levy G, Poncelet E, Le Thanh T, Prolongeau JF, Phalippou J, et al. Overview of digital breast tomosynthesis: clinical cases, benefits and disadvantages. Diagn Interv Imaging. 2015;96(9):843–59.

    CAS  Google Scholar 

  19. Skaane P, Bandos AI, Gullien R, Eben EB, Ekseth U, Haakenaasen U, et al. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology. 2013;267(1):47–56.

    Google Scholar 

  20. Svahn TM, Chakraborty DP, Ikeda D, Zackrisson S, Do Y, Mattsson S, et al. Breast tomosynthesis and digital mammography: a comparison of diagnostic accuracy. Br J Radiol. 2012;85(1019):e1074–82.

    CAS  Google Scholar 

  21. Zuckerman SP, Maidment ADA, Weinstein SP, McDonald ES, Conant EF. Imaging with synthesized 2D mammography: differences, advantages, and pitfalls compared with digital mammography. Am J Roentgenol. 2017;209(1):222–9.

    Google Scholar 

  22. Zuckerman SP, Conant EF, Keller BM, Maidment ADA, Barufaldi B, Weinstein SP, et al. Implementation of synthesized two-dimensional mammography in a population-based digital breast tomosynthesis screening program. Radiology. 2016;281(3):730–6.

    Google Scholar 

  23. Zuley ML, Guo B, Catullo VJ, Chough DM, Kelly AE, Lu AH, et al. Comparison of two-dimensional synthesized mammograms versus original digital mammograms alone and in combination with tomosynthesis images. Radiology. 2014;271(3):664–71.

    Google Scholar 

  24. Aujero MP, Gavenonis SC, Benjamin R, Zhang Z, Holt JS. Clinical performance of synthesized two-dimensional mammography combined with tomosynthesis in a large screening population. Radiology. 2017;283(1):70–6.

    Google Scholar 

  25. Kang H-J, Chang JM, Lee J, Song SE, Shin SU, Kim WH, et al. Replacing single-view mediolateral oblique (MLO) digital mammography (DM) with synthesized mammography (SM) with digital breast tomosynthesis (DBT) images: comparison of the diagnostic performance and radiation dose with two-view DM with or without MLO-DBT. Eur J Radiol. 2016;85(11):2042–8.

    Google Scholar 

  26. Sudhir R, Sannapareddy K, Potlapalli A, Krishnamurthy PB, Buddha S, Koppula V. Diagnostic accuracy of contrast enhanced digital mammography in breast cancer detection in comparison to tomosynthesis, synthetic 2D mammography and tomosynthesis combined with ultrasound in women with dense breast. Br J Radiol. 2021 Feb 1;94(1118):20201046. https://doi.org/10.1259/bjr.20201046. Epub 2020 Dec 2. PMID: 33242249; PMCID: PMC7934319..

  27. Xiang W, Rao H, Zhou L. A meta-analysis of contrast-enhanced spectral mammography versus MRI in the diagnosis of breast cancer. Thorac Cancer. 2020 Jun;11(6):1423–32. https://doi.org/10.1111/1759-7714.13400. Epub 2020 Mar 31. PMID: 32233072; PMCID: PMC7262891.

  28. Lee SH, Chang JM, Cho N, Koo HR, Yi A, Kim SJ, et al. Practice guideline for the performance of breast ultrasound elastography. Ultrasonography. 2014;33(1):3–10.

    Google Scholar 

  29. Sigrist RMS, Liau J, Kaffas AE, Chammas MC, Willmann JK. Ultrasound elastography: review of techniques and clinical applications. Theranostics. 2017;7(5):1303–29.

    Google Scholar 

  30. Yoon JH, Kim MH, Kim E-K, Moon HJ, Kwak JY, Kim MJ. Interobserver variability of ultrasound elastography: how it affects the diagnosis of breast lesions. Am J Roentgenol. 2011;196(3):730–6.

    Google Scholar 

  31. Olgun DÇ, Korkmazer B, Kılıç F, Dikici AS, Velidedeoğlu M, Aydoğan F, et al. Use of shear wave elastography to differentiate benign and malignant breast lesions. Diagn Interv Radiol. 2014;20(3):239–44.

    Google Scholar 

  32. Xue Y, Yao S, Li X, Zhang H. Benign and malignant breast lesions identification through the values derived from shear wave elastography: evidence for the meta-analysis. Oncotarget. 2017;8(51):89173–81.

    Google Scholar 

  33. Khamis MEM, Alaa El-deen AM, Azim Ismail AA. The diagnostic value of sonoelastographic strain ratio in discriminating malignant from benign solid breast masses. Egypt J Radiol Nucl Med. 2017;48(4):1149–57.

    Google Scholar 

  34. Claudon M, Cosgrove D, Albrecht T, Bolondi L, Bosio M, Calliada F, et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS)—update 2008. Ultraschall Med. 2008;29(01):28–44.

    CAS  Google Scholar 

  35. Kook S-H, Kwag H-J. Value of contrast-enhanced power Doppler sonography using a microbubble echo-enhancing agent in evaluation of small breast lesions. J Clin Ultrasound. 2003;31(5):227–38.

    Google Scholar 

  36. Debbie S, Carla B, Wylie B, Steven H, Leach MO, Lehman CD, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2009;57(2):75–89.

    Google Scholar 

  37. Garg PK, Deo SVS, Kumar R, Shukla NK, Thulkar S, Gogia A, et al. Staging PET–CT scanning provides superior detection of lymph nodes and distant metastases than traditional imaging in locally advanced breast cancer. World J Surg. 2016;40(8):2036–42.

    Google Scholar 

  38. Garg PK, Deo SVS, Kumar R. Role of positron emission tomography-computed tomography in locally advanced breast cancer. Indian J Surg Oncol. 2015;6(4):420–6.

    Google Scholar 

  39. Yoon JH, Kim MJ, Kim E-K, Moon HJ. Imaging surveillance of patients with breast cancer after primary treatment: current recommendations. Korean J Radiol. 2015;16(2):219–28.

    Google Scholar 

  40. Teshome M, Hunt KK. Neoadjuvant therapy in the treatment of breast cancer. Surg Oncol Clin N Am. 2014;23(3):505–23.

    Google Scholar 

  41. Chhor CM, Mercado CL. Abbreviated MRI protocols: wave of the future for breast cancer screening. Am J Roentgenol. 2016;208(2):284–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekta Dhamija MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhamija, E., Khandelwal, N. (2022). Imaging in Breast Cancer. In: Sharma, S.C., Mazumdar, A., Kaushik, R. (eds) Breast Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-16-4546-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4546-4_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4545-7

  • Online ISBN: 978-981-16-4546-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics