Skip to main content

Inferring the Properties of a Population of Compact Binaries in Presence of Selection Effects

  • Reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy

Abstract

Shortly after a new class of objects is discovered, the attention shifts from the properties of the individual sources to the question of their origin: do all sources come from the same underlying population, or several populations are required? What are the properties of these populations? As the detection of gravitational waves is becoming routine and the size of the event catalog increases, finer and finer details of the astrophysical distribution of compact binaries are now within our grasp. This chapter presents a pedagogical introduction to the main statistical tool required for these analyses: hierarchical Bayesian inference in the presence of selection effects. All key equations are obtained from first principles, followed by two examples of increasing complexity. Although many remarks made in this chapter refer to gravitational-wave astronomy, the write-up is generic enough to be useful to researchers and graduate students from other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malmquist KG (1922) On some relations in stellar statistics. Meddelanden fran Lunds Astronomiska Observatorium Serie I 100:1

    ADS  MATH  Google Scholar 

  2. Malmquist KG (1925) A contribution to the problem of determining the distribution in space of the stars. Meddelanden fran Lunds Astronomiska Observatorium Serie I 106:1

    ADS  MATH  Google Scholar 

  3. Mandel I, Farr WM, Gair JR (2019) Extracting distribution parameters from multiple uncertain observations with selection biases. Mon Not R Astron Soc 486:1086. 1809.02063

    Google Scholar 

  4. Loredo TJ, Lamb DQ (2002) Bayesian analysis of neutrinos observed from supernova SN-1987A. Phys Rev D 65:063002, astro-ph/0107260

    Google Scholar 

  5. Foreman-Mackey D, Hogg DW, Morton TD (2014) Exoplanet population inference and the abundance of Earth analogs from noisy, incomplete catalogs. Astrophys J 795:64, 1406.3020

    ADS  Google Scholar 

  6. Winn JN, Fabrycky DC (2015) The Occurrence and Architecture of Exoplanetary Systems. Annu Rev Astron Astrophys 53:409, 1410.4199

    ADS  Google Scholar 

  7. Loredo TJ, Wasserman IM (1995) Inferring the Spatial and Energy Distribution of Gamma-Ray Burst Sources. I. Methodology. Astrophys J Suppl 96:261

    Article  ADS  Google Scholar 

  8. Loredo TJ, Wasserman IM (1998) Inferring the spatial and energy distribution of gamma-ray burst sources. 2. Isotropic models. Astrophys J 502:75, astro-ph/9701111

    Google Scholar 

  9. Biscoveanu S, Thrane E, Vitale S (2020) Constraining short gamma-ray burst jet properties with gravitational waves and gamma rays. Astrophys J 893:38, 1911.01379

    ADS  Google Scholar 

  10. Hayes F, Heng IS, Veitch J, Williams D (2020) Comparing Short Gamma-Ray Burst Jet Structure Models. Astrophys J 891:124, 1911.04190

    ADS  Google Scholar 

  11. Abbott BP et al (LIGO and Virgo Scientific Collaboration) (2019) Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophys J Lett 882:L24, 1811.12940

    Google Scholar 

  12. Abbott BP et al (LIGO and Virgo Scientific Collaboration) (2019) GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs Phys Rev X 9:031040, 1811.12907

    Google Scholar 

  13. Taylor SR, Gerosa D (2018) Mining gravitational-wave catalogs to understand binary stellar evolution: A new hierarchical Bayesian framework. Phys Rev D 98:083017, 1806.08365

    ADS  Google Scholar 

  14. Roulet J, Zaldarriaga M (2019) Constraints on binary black hole populations from LIGO-Virgo detections. MNRAS 484:4216, 1806.10610

    ADS  Google Scholar 

  15. Talbot C, Thrane E (2018) Measuring the binary black hole mass spectrum with an astrophysically motivated parameterization. Astrophys J 856:173, 1801.02699

    ADS  Google Scholar 

  16. Zevin M, Pankow C, Rodriguez CL, Sampson L, Chase E, Kalogera V, Rasio FA (2017) Constraining Formation Models of Binary Black Holes with Gravitational-Wave Observations. Astrophys J 846:82, 1704.07379

    ADS  Google Scholar 

  17. Vitale S, Lynch R, Sturani R, Graff P (2017) Use of gravitational waves to probe the formation channels of compact binaries. Class Quant Grav 34:03LT01, 1503.04307

    Google Scholar 

  18. Farr WM, Stevenson S, Coleman Miller M, Mandel I, Farr B, Vecchio A (2017) Distinguishing Spin-Aligned and Isotropic Black Hole Populations With Gravitational Waves. Nature 548:426, 1706.01385

    ADS  Google Scholar 

  19. Talbot C, Thrane E (2017) Determining the population properties of spinning black holes. Phys Rev D 96:023012, 1704.08370

    ADS  Google Scholar 

  20. Fishbach M, Holz DE (2020) Picky Partners: The Pairing of Component Masses in Binary Black Hole Mergers. Astrophys J Lett 891:L27, 1905.12669

    ADS  Google Scholar 

  21. Del Pozzo W, Li TGF, Agathos M, Van Den Broeck C, Vitale S (2013) Demonstrating the Feasibility of Probing the Neutron-Star Equation of State with Second-Generation Gravitational-Wave Detectors. Phys Rev Lett 111:071101, 1307.8338

    ADS  Google Scholar 

  22. Chatziioannou K (2020) Neutron star tidal deformability and equation of state constraints. Gen Relativ Gravit 52:109

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Landry P, Essick R, Chatziioannou K (2020) Nonparametric constraints on neutron star matter with existing and upcoming gravitational wave and pulsar observations. Phys Rev D 101:123007, 2003.04880

    ADS  Google Scholar 

  24. Wysocki D, O’Shaughnessy R, Wade L, Lange J (2020) Inferring the neutron star equation of state simultaneously with the population of merging neutron stars 2001.01747

    Google Scholar 

  25. Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB et al (2017) A gravitational-wave standard siren measurement of the Hubble constant. Nature 551:85, 1710.05835

    ADS  Google Scholar 

  26. Gray R, Hernandez IM, Qi H, Sur A, Brady PR, Chen H-Y, Farr WM, Fishbach M, Gair JR, Ghosh A et al (2020) Cosmological inference using gravitational wave standard sirens: A mock data analysis. Phys Rev D 101:122001, 1908.06050

    ADS  Google Scholar 

  27. Chen H-Y, Fishbach M, Holz DE (2018) A two per cent Hubble constant measurement from standard sirens within five years. Nature 562:545, 1712.06531

    ADS  Google Scholar 

  28. Taylor SR Gair JR, Mandel I (2012) Cosmology using advanced gravitational-wave detectors alone. Phys Rev D 85:023535, 1108.5161

    ADS  Google Scholar 

  29. Chen H-Y (2020) Systematic uncertainty of standard sirens from the viewing angle of binary neutron star inspirals. Phys Rev Lett 125:201301, 2006.02779

    ADS  Google Scholar 

  30. Mortlock DJ, Feeney SM, Peiris HV, Williamson AR, Nissanke SM (2019) Unbiased Hubble constant estimation from binary neutron star mergers. Phys Rev D 100:103523, 1811. 11723

    Google Scholar 

  31. Feeney SM, Peiris HV, Williamson AR, Nissanke SM, Mortlock DJ, Alsing J, Scolnic D (2019) Prospects for resolving the Hubble constant tension with standard sirens. Phys Rev Lett 122:061105, 1802.03404

    ADS  Google Scholar 

  32. Taylor SR, Simon J, Sampson L (2017) Constraints on the Dynamical Environments of Supermassive Black-Hole Binaries Using Pulsar-Timing Arrays. Phys Rev Lett 118:181102, 1612.02817

    ADS  Google Scholar 

  33. Smith RJE, Talbot C, Hernand ez Vivanco F, Thrane E (2020) Inferring the population properties of binary black holes from unresolved gravitational waves. MNRAS 496:3281, 2004.09700

    Google Scholar 

  34. Chen S, Middleton H, Sesana A, Del Pozzo W, Vecchio A (2017) Probing the assembly history and dynamical evolution of massive black hole binaries with pulsar timing arrays. MNRAS 468:404, 1612.02826

    ADS  Google Scholar 

  35. Thrane E, Talbot C (2019) An introduction to Bayesian inference in gravitational-wave astronomy: Parameter estimation, model selection, and hierarchical models. Publ Astron Soc Aust 36:e010, 1809.02293

    ADS  Google Scholar 

  36. Loredo TJ, Hendry MA (2019) Multilevel and hierarchical Bayesian modeling of cosmic populations. 1911.12337

    Google Scholar 

  37. Abbott BP et al (LIGO and Virgo Scientific Collaboration) (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Phys Rev Lett 116:061102, 1602.03837

    Google Scholar 

  38. Abadie J et al (2010) Topical Review: Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Class Quant Grav 27:173001, 1003.2480

    ADS  Google Scholar 

  39. Dominik M, Belczynski K, Fryer C, Holz DE, Berti E, Bulik T, Mandel I, O’Shaughnessy R (2013) Double Compact Objects. II. Cosmological Merger Rates. Astrophys J 779:72, 1308.1546

    ADS  Google Scholar 

  40. Abbott BP et al (LIGO and Virgo Scientific Collaboration) (2016) The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914. https://dcc.ligo.org/LIGO-P1500217/public/main, 1602.03842

  41. Farr WM (2019) Accuracy Requirements for Empirically Measured Selection Functions. Res Notes Am Astron Soc 3:66, 1904.10879

    ADS  Google Scholar 

  42. Abbott BP et al (LIGO and Virgo Scientific Collaboration) (2016) Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. https://dcc.ligo.org/LIGO-P1500238/public/main, 1602.03844

  43. Zevin M et al (2017) Gravity Spy: Integrating Advanced LIGO Detector Characterization, Machine Learning, and Citizen Science. Class Quant Grav 34:064003, 1611.04596

    ADS  Google Scholar 

  44. Gaebel SM, Veitch J, Dent T, Farr WM (2019) Digging the population of compact binary mergers out of the noise. Mon Not R Astron Soc 484:4008, 1809.03815

    ADS  Google Scholar 

  45. Abbott BP et al (LIGO and Virgo Scientific Collaboration) (2016) Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Rev Relat 19, 1304.0670

    Google Scholar 

  46. Fishbach M, Holz DE, Farr WM (2018) Does the Black Hole Merger Rate Evolve with Redshift?. Astrophys J Lett 863:L41, 1805.10270

    ADS  Google Scholar 

  47. Veitch J, Raymond V, Farr B, Farr W, Graff P, Vitale S, Aylott B, Blackburn K, Christensen N, Coughlin M et al (2015) Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Phys Rev D 91:042003, 1409.7215

    ADS  Google Scholar 

  48. Ashton G et al (2019) BILBY: A user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys J Suppl 241:27, 1811.02042

    ADS  Google Scholar 

  49. MacKay D (2003) Information theory, inference, and learning algorithms. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  50. Harry GM (LIGO Scientific Collaboration) (2010) Advanced LIGO: The next generation of gravitational wave detectors. Class Quant Grav 27:084006

    Article  ADS  MathSciNet  Google Scholar 

  51. Acernese F et al (Virgo Collaboration) (2015) Advanced Virgo: a second-generation interferometric gravitational wave detector. Class Quant Grav 32:024001, 1408.3978

    Google Scholar 

  52. LIGO and Virgo Scientific Collaboration (2020) LIGO/Virgo Public Alerts User Guide, https://emfollow.docs.ligo.org/userguide/index.html

  53. Fishbach M, Farr WM, Holz DE (2020) The Most Massive Binary Black Hole Detections and the Identification of Population Outliers. Astrophys J Lett 891:L31, 1911.05882

    ADS  Google Scholar 

  54. Farr WM, Gair JR, Mandel I, Cutler C (2015) Counting and confusion: Bayesian rate estimation with multiple populations. Phys Rev D 91:023005, 1302.5341

    ADS  Google Scholar 

  55. Rodriguez CL, Zevin M, Pankow C, Kalogera V, Rasio FA (2016) Illuminating Black Hole Binary Formation Channels with Spins in Advanced LIGO. Astrophys J Lett 832:L2, 1609.05916

    ADS  Google Scholar 

  56. Bouffanais Y, Mapelli M, Gerosa D, Di Carlo UN, Giacobbo N, Berti E, Baibhav V (2019) Constraining the Fraction of Binary Black Holes Formed in Isolation and Young Star Clusters with Gravitational-wave Data. Astrophys J 886:25, 1905.11054

    ADS  Google Scholar 

  57. Ade PAR et al (Planck Collaboration) (2016) Planck 2015 results. XIII. Cosmological parameters. Astron Astrophys 594:A13, 1502.01589

    Google Scholar 

  58. Price-Whelan AM et al (2018) The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package. Astron J 156:123, 1801.02634

    Google Scholar 

  59. Thorne KS (1987) Gravitational radiation. Three hundred years of gravitation. Cambridge University Press, Cambridge, pp 330–458

    MATH  Google Scholar 

  60. Martynov DV et al (2016) Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. Phys Rev D 93:112004 [Addendum: Phys Rev D 97:059901 (2018)], 1604.00439

    Google Scholar 

  61. Sathyaprakash BS, Schutz BF (2009) Physics, Astrophysics and Cosmology with Gravitational Waves. Living Rev Relat 12:2, 0903.0338

    ADS  Google Scholar 

  62. Sachdev S et al (2019) The GstLAL Search Analysis Methods for Compact Binary Mergers in Advanced LIGO’s Second and Advanced Virgo’s First Observing Runs. 1901. 08580

    Google Scholar 

  63. Usman SA et al (2016) The PyCBC search for gravitational waves from compact binary coalescence. Class Quant Grav 33:215004, 1508.02357

    ADS  Google Scholar 

  64. Abbott BP et al (2016) GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Phys Rev D 93:122003, 1602.03839

    ADS  Google Scholar 

  65. Gerosa D, Pratten G, Vecchio A (2020) Gravitational-wave selection effects using neural-network classifiers. Phys. Rev. D 102:103020

    Article  ADS  MathSciNet  Google Scholar 

  66. Wysocki D, Lange J, O’Shaughnessy R (2019) Reconstructing phenomenological distributions of compact binaries via gravitational wave observations. Phys Rev D 100:043012, 1805.06442

    ADS  Google Scholar 

  67. Ng KK, Vitale S, Zimmerman A, Chatziioannou K, Gerosa D, Haster C-J (2018) Gravitational-wave astrophysics with effective-spin measurements: asymmetries and selection biases. Phys Rev D 98:083007, 1805.03046

    ADS  Google Scholar 

  68. Gerosa D, Berti E, O’Shaughnessy R, Belczynski K, Kesden M, Wysocki D, Gladysz W (2018) Spin orientations of merging black holes formed from the evolution of stellar binaries. Phys Rev D 98:084036, 1808.02491

    ADS  Google Scholar 

  69. Maggiore M (2007) Gravitational waves, volume 1: theory and experiments. Oxford University Press, Oxford

    Book  Google Scholar 

  70. Cutler C, Flanagan ÉE (1994) Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral waveform? Phys Rev D 49:2658, gr-qc/9402014

    Google Scholar 

  71. Abbott R et al (LIGO and Virgo Scientific Collaboration) (2020) GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Phys Rev D 102:043015

    Google Scholar 

  72. Finn LS, Chernoff DF (1993) Observing binary inspiral in gravitational radiation: One interferometer. Phys Rev D 47:2198, gr-qc/9301003

    Google Scholar 

  73. Finn LS (1996) Binary inspiral, gravitational radiation, and cosmology. Phys Rev D 53:2878, gr-qc/9601048

    Google Scholar 

  74. Flanagan EE, Hughes SA (1998) Measuring gravitational waves from binary black hole coalescences: 1. Signal-to-noise for inspiral, merger, and ringdown. Phys Rev D 57:4535, gr-qc/9701039

    Google Scholar 

  75. O’Shaughnessy R, Kalogera V, Belczynski K (2010) Binary Compact Object Coalescence Rates: The Role of Elliptical Galaxies. Astrophys J 716:615, 0908.3635

    ADS  Google Scholar 

  76. Dominik M, Berti E, O’Shaughnessy R, Mandel I, Belczynski K, Fryer C, Holz DE, Bulik T, Pannarale F (2015) Double Compact Objects III: Gravitational Wave Detection Rates. Astrophys J 806:263, 1405.7016

    ADS  Google Scholar 

  77. Schutz BF (2011) Networks of gravitational wave detectors and three figures of merit. Class Quant Grav 28:125023, 1102.5421

    ADS  MATH  Google Scholar 

  78. Hawking SW, Israel W (1989) Book-Review - 300 Years of Gravitation. J Br Astron Assoc 99:196

    ADS  Google Scholar 

  79. Schutz BF (1986) Determining the Hubble constant from gravitational wave observations. Nature 323:310

    Article  ADS  Google Scholar 

  80. Krolak A, Schutz BF (1987) Coalescing binaries—Probe of the universe. Gen Relat Grav 19:1163

    Article  ADS  Google Scholar 

  81. Hartle JB (2003) Gravity: an introduction to Einstein’s general relativity. Addison Wesley, San Francisco

    Google Scholar 

  82. Abbott BP et al (LIGO and Virgo Scientific Collaboration) (2016) Astrophysical Implications of the Binary Black-Hole Merger GW150914. Astrophys J Lett 818:L22, 1602.03846

    Google Scholar 

  83. Chen H-Y, Holz DE, Miller J, Evans M, Vitale S, Creighton J (2017) Distance measures in gravitational-wave astrophysics and cosmology. Class Quantum Grav 38:055010

    Article  ADS  Google Scholar 

  84. Mandel I, Farr WM, Colonna A, Stevenson S, Tiňo P, Veitch J (2017) Model-independent inference on compact-binary observations. Mon Not R Astron Soc 465:3254, 1608.08223

    ADS  Google Scholar 

  85. Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis, 2nd edn. Chapman and Hall/CRC

    MATH  Google Scholar 

  86. Pérez F, Granger BE (2007) IPython: A System for Interactive Scientific Computing. IEEE J Mag 9:21

    Google Scholar 

  87. Hunter JD (2007) Matplotlib: A 2D graphics environment. Comput Sci Eng 9:90

    Article  Google Scholar 

  88. Hunter JD (2007) Turns out 88 replicates 87, please eliminate one between 87 and 88. Comput Sci Eng 9:99

    Article  Google Scholar 

  89. Van Der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: A structure for efficient numerical computation. Comput Sci Eng 13:22, 1102.1523

    ADS  Google Scholar 

  90. Virtanen P et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17:261, 1907.10121

    Google Scholar 

  91. Foreman-Mackey D, Hogg DW, Lang D, Goodman J (2013) emcee: The MCMC Hammer. Publ Astron Soc Pac 125:306, 1202.3665

    Google Scholar 

  92. Waskom M et al (2017) mwaskom/seaborn: v0.8.1, https://doi.org/10.5281/zenodo.883859

Download references

Acknowledgements

We thank Sylvia Biscoveanu for a critical reading of an early draft of these notes, as wells as Emanuele Berti, Maya Fishbach, Max Isi, and Ken Ng for long and illuminating discussions. We thank Nancy Aggarwal and Peter Couvares for useful comments. S.V. acknowledges the support of the National Science Foundation though PHY-2045740, the LIGO Laboratory and the MIT physics department through the Solomon Buchsbaum Research Fund. D.G is supported by European Union’s H2020 ERC Starting Grant No. 945155-GWmining, Cariplo Foundation Grant No. 2021-0555, and Leverhulme Trust Grant No. RPG-2019-350. LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the National Science Foundation and operates under cooperative agreement PHY-0757058. We acknowledge use of iPython [86], Matplotlib [87, 88], NumPy [89], SciPy [90], emcee [91], and SeaBorn [92]. This is LIGO Document P2000231. S.R.T is supported by National Science Foundation grants AST-2007993, PHY-2020265, PHY-2146016. S.R.T also acknowledges support from a Vanderbilt University College of Arts & Science Dean’s Faculty Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Vitale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vitale, S., Gerosa, D., Farr, W.M., Taylor, S.R. (2022). Inferring the Properties of a Population of Compact Binaries in Presence of Selection Effects. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4306-4_45

Download citation

Publish with us

Policies and ethics