Skip to main content

Microbial Technologies in Pest and Disease Management of Tea (Camellia sinensis (L.) O. Kuntze)

  • Chapter
  • First Online:
Microbial Technology for Sustainable Environment

Abstract

Tea, the natural beverage prepared from Camellia sinensis (L). O. Kuntze, is the most consumed drink next to water. Commercially grown tea plants are attacked by pest and diseases leading to considerable crop loss. Synthetic pesticides have been the preferred method of pest and disease control in tea cultivation. The emerging consumer demand on pesticide-free tea, environmental and human impacts felt due to continuous pesticide use, forced us to look for alternatives. Microbial biopesticides have been identified as one of the alternatives in the integrated pest management strategies. This chapter discusses about the microbe-based techniques used in pest and disease management of tea and highlights the opportunities for further development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akello J, Dubois T, Coyne D, Kyamanywa S (2008) Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Prot 27:1437–1441

    Article  Google Scholar 

  • Ali MA, Ahmed T, Wu W, Hossain A, Hafeez R, Islam Masum MM, Wang Y, An Q, Sun G, Li B (2020) Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials 10(6). https://doi.org/10.3390/nano10061146

  • Anita S, Ponmurugan P (2011) In vitro evaluation of Trichoderma atroviride against Phomopsis theae a causal agent of collar canker disease in tea plants. Int J Agric Res 6:620–631

    Article  CAS  Google Scholar 

  • Anonymous (2019) International Tea Committee. Annual Bulletin of Statistics, September 2019

    Google Scholar 

  • Antony B (2014) Detection of nucleopolyhedroviruses in the eggs and caterpillars of tea looper caterpillar Hyposidra infixaria (Walk.) (Lepidoptera: Geometridae) as evidence of transovarial transmission. Arch Phytopathol Plant Protect 47(12):1426–1430. https://doi.org/10.1080/03235408.2013.845469

    Article  Google Scholar 

  • Antony B, Sinu AP, Das S (2011) New record of nucleorpolyhedrosis viruses in tea looper caterpillar in India. J Invertebr Pathol 108:63–67

    Article  PubMed  Google Scholar 

  • Arora NK, Verma M, Prakash J, Mishra J (2016) Regulation of biopesticides: global concerns and policies. In: Arora N, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2779-3_16

    Chapter  Google Scholar 

  • Babu A (2010) Pest management in tea: the South Indian scenario. Bull UPASI Tea Res Found 55:23–30

    Google Scholar 

  • Babu A, James SP, Subramaniam MSR, Shanmughapriyan R, Achuthan R, Mathew S (2008) Enhanced efficacy of Verticillium lecania against tea thrips by the addition of jaggery. Newslett UPASI Tea Res Found 18(2):3

    Google Scholar 

  • Baby UI, Premkumar R, Ajay D, Sanjay R, Sasidhar R (2004) Chemical and biological control of red root disease. Newslett UPASI Tea Res Foundations 14(2):1–2

    Google Scholar 

  • Balasuriya A, NHL P (2005) Towards biological control of tea diseases. In: Proceedings of 211th meeting of the experiments and extension forum, 29 July 2005. Tea Research Institute, Sri Lanka

    Google Scholar 

  • Barua GCS (1983) Fungi in biocontrol of tea pest and disease in North-East India. Two Bud 30:5–7

    Google Scholar 

  • Bhattacharyya PN, Sarmah SR (2018) The role of microbes in tea cultivation. In: Sharma VS, Gunasekare MTK (eds) Global tea science: current status and future needs. Burleigh Dodds Science Publishing, Cambridge. https://doi.org/10.19103/AS.2017.0036.24

    Chapter  Google Scholar 

  • Borah A, Thakur D (2020) Phylogenetic and functional characterization of culturable endophytic Actinobacteria associated with Camellia spp. for growth promotion in commercial tea cultivars. Front Microbiol 11:318. https://doi.org/10.3389/fmicb.2020.00318

    Article  PubMed  PubMed Central  Google Scholar 

  • Bordoloi M, Madhab M, Dutta P, Borah T, Nair SC, Phukan I, Debnath S, Borthakur BK (2012) Potential of entomopathogenic fungi for the management of Helopeltis theivora (Waterhouse). Two Bud 59(1):24–26

    Google Scholar 

  • Cernava T, Chen X, Krug L, Li H, Yang M, Berg G (2019) The tea leaf microbiome shows specific responses to chemical pesticides and biocontrol applications. Sci Total Environ 667:33–40

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty U, Das G, Das SK, Chakraborty BN (1998) Evaluation of Micrococcus luteus as a potential biocontrol agent of brown blight disease of tea caused by Glomerella cingulata. J Plant Crops 26:50–57

    Google Scholar 

  • Chakraborty U, Chakraborty BN, Basnet M, Chakraborty AP (2009) Evaluation of Ochrobactrum anthropi TRS-2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease. J Appl Microbiol 107(2):625–634. https://doi.org/10.1111/j.1365-2672.2009.04242.x

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Chen X (1989) An analysis of the world tea pest fauna. J Tea Sci 9(1):13–22

    Google Scholar 

  • Chen XF, Sun JD, Wu GY, Jin JZ, Zeng MS (1997) Integrated management technology of citrus black spiny whitefly (Aleurocanthus spiniferus Quaintance). J Tea Sci 17:15–20

    CAS  Google Scholar 

  • De D, Mukhopadhyay A, Chakraborty R (2008) A novel bacterial pathogen (Enterobacter sp.) isolated from the leaf roller, Caloptilia theivora of tea of Darjeeling foothills. World J Microbiol Biotechnol 24:2727–2729

    Article  Google Scholar 

  • Debnath S (1986) A new record of entomogenous fungus Paecilomyces tenuipes (Peck) Samson on various psychid pests of tea in Darjeeling. Two Bud 33(1–2):46–47

    Google Scholar 

  • Debnath S (1997) Studies on pathogenicity of Paecilomyces tenuipes (Peck) Samson to Lesperysia leucostoma a flush worm pest of tea. Two Bud 44(1):25–26

    Google Scholar 

  • Debnath S (1998) Occurrence of native entomogenous fungus Paecilomyces lilacinus (Thom) Samson on eggs and larvae of bunch caterpillar, Andraca bipunctata. Two Bud 45(2):24–25

    Google Scholar 

  • Ghatak SS, Reza W (2007) Bio-efficacy of Beauveria bassiana against tea looper caterpillar, Buzura suppressaria Guen. (Lepidopera:Geometridae). Acta Entomol Sin 50(9):962–966

    CAS  Google Scholar 

  • Gnanamangai BM, Ponmurugan P (2012) Evaluation of various fungicides and microbial based biocontrol agents against bird’s eye spot disease of tea plants. Crop Prot 32:111–118

    Article  CAS  Google Scholar 

  • Gnanamangai BM, Ponmurugan P, Jeeva SE, Manjukarunambika K, Elango V, Hemalatha K, Kakati JP, Mohanraj R, Prathap S (2017) Biosynthesised silver and copper nanoformulation as foliar spray to control bird’s eye spot disease in tea plantations. IET Nanobiotechnol 11(8):917–928. https://doi.org/10.1049/iet-nbt.2017.0023

    Article  Google Scholar 

  • Gurulingappa P, Sword GA, Murdoch G, McGee PA (2010) Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol Control 55:34–41

    Article  Google Scholar 

  • Hazarika DK, Phookan A (2003) Combination of Glomus fasciculatum with Pseudomonas fluorescens and Trichoderma harzianum: effect on biocontrol potential and growth promotion in tea seedling. In: Sixth international workshop on PGPR, IISR, Calicut, pp 289–294

    Google Scholar 

  • Hazarika LK, Puzari KC (2001) Microbials in tea pest management. In: Ignacimuthu S, Sen A (eds) Microbials in insect pest management. New Delhi, Oxford, p p174

    Google Scholar 

  • Hazarika LK, Puzari KC, Barua G (1994) Fungi as microbial insecticides on mole cricket. Two Bud 41(2):22–25

    Google Scholar 

  • Hazarika LK, Borthakur M, Sing K (1995) A new pathogen of tea bunch caterpillar. Two Bud 42(1):40–41

    Google Scholar 

  • Hazarika OK, Phookan AK, Saikia GK, Borthakur BK, Sarma D (2000) Management of charcoal stump rot of tea with biocontrol agents. J Plant Crops 28:149–153

    Google Scholar 

  • Hiromori H, Yaginuma D, Kajino K, Hatsukade M (2004) The effects of temperature on insecticidal activity of Beauveria amorpha to Hepthophylla picea. Appl Entomol Zool 39:389–392

    Article  Google Scholar 

  • Hong Y, Xin W, Lai Y et al (2005) Isolation of endophytic antifungal and pesticide degrading bacteria from tea plant. J Tea Sci 25(3):183–188. [Abstract]

    CAS  Google Scholar 

  • Ishii T, Takatsuka J, Nakai M (2002) A comparative study of the growth characteristics and competitive abilities of a nucleopolyhedrovirus and an entomopoxvirus in larvae of the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae). Biol Control 23:96–105

    Article  Google Scholar 

  • Islam M, Ahmad I, Ali M (2018) Biocontrol studies on rhizospheric microorganisms against black rot disease of tea caused by Corticium theae Bernard. Bangladesh J Bot 47(4):985–991. https://doi.org/10.3329/bjb.v47i4.47399

    Article  Google Scholar 

  • Jeyaraman M, Robert PSA (2018) Bio efficacy of indigenous biological agents and selected fungicides against branch canker disease of (Macrophoma theicola) tea under field level. BMC Plant Biol 18:222. https://doi.org/10.1186/s12870-018-1445-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushik H, Dutta P (2016) Establishment of Metarhizium anisopliae, an entomopathogen as endophyte for biological control in tea. Res Crop 17:375–387. https://doi.org/10.5958/2348-7542.2016.00063.2

    Article  Google Scholar 

  • Kodomari S (1987) Control of leaf rollers with granulosis viruses in tea field. 1. Effectiveness of application of GV mixture of oriental tea tortrix and smaller tea tortrix. Bull Shizuoka Tea Exp Stn 13:39–48

    Google Scholar 

  • Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10:845. https://doi.org/10.3389/fpls.2019.00845

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuberan T, Vidhyapallavi RS, Balamurugan A, Nepolean P, Jayanthi R, Premkumar R (2012) Isolation and biocontrol potential of phylloplane Trichoderma against Glomerella cingulata in tea. J Agric Sci Technol 8(3):1039–1050

    Google Scholar 

  • Kumhar KC, Babu A (2015) Effect of indigenous Trichoderma strain on tea crop. Two Bud 62(2):3–6

    Google Scholar 

  • Kumhar KC, Babu A (2019) Biocontrol potency of Trichoderma isolates against tea (Camellia sp.) pathogens and their susceptibility towards fungicides. Int J Chem Stud 7:4192–4195

    CAS  Google Scholar 

  • Kumhar KC, Babu A, Bordoloi M, Banerjee P, Dey T (2015) Biological and chemical control of Fusarium solani, causing dieback disease of tea Camellia sinensis (L): an in vitro study. Int J Curr Microbial Appl Sci 4(8):955–963

    CAS  Google Scholar 

  • Kumhar KC, Babu A, Arulmarianathan JP et al (2020) Role of beneficial fungi in managing diseases and insect pests of tea plantation. Egypt J Biol Pest Control 30:78. https://doi.org/10.1186/s41938-020-00270-9

    Article  Google Scholar 

  • Litwin A, Nowak M, Różalska S (2020) Entomopathogenic fungi: unconventional applications. Rev Environ Sci Biotechnol 19:23–42. https://doi.org/10.1007/s11157-020-09525-1

    Article  Google Scholar 

  • Lo CT (1998) General mechanisms of action of microbial biocontrol agents. Plant Pathol Bull 7:155–166

    CAS  Google Scholar 

  • Mamun MSA, Hoque M, Ahmed M (2014) In vitro and in vivo screening of some entomopathogens against red spider mite, Oligonychus coffeae Nietner (Acarina: Tetranychidae) in tea. Tea J Bangladesh 43:34–44

    Google Scholar 

  • Mishra AK, Morang P, Deka M, Nishanth Kumar S, Dileep Kumar BS (2014) Plant growth-promoting rhizobacterial strain-mediated induced systemic resistance in tea (Camellia sinensis (L.) O. Kuntze) through defense-related enzymes against brown root rot and charcoal stump rot. Appl Biochem Biotechnol 174(2):506–521. https://doi.org/10.1007/s12010-014-1090-0

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay A, De D (2009) Pathogenicity of a baculovirus isolated from Arctornis submarginata (Walker) (Lepidoptera:Lymantriidae), a potential pest of tea growing in the Darjeeling foothills of India. J Invertebr Pathol 100:57–60

    Article  PubMed  Google Scholar 

  • Mukhopadhyay A, Khewa S, De D (2011) Characteristics and virulence of NPV isolated from Hyposidra talaca. Int J Trop Insect Sci 31(1–2):13–19

    Article  Google Scholar 

  • Muraleedharan N (2001) Evaluation of three entomopathogenic fungi for the control of red spider mites. http://www.o-cha.net/english/conference2/pdf/2001/files/PROC/II-082.pdf

  • Nakai M (2009) Biological control of tortricidae in tea fields in Japan using insect viruses and parasitoids. Virol Sin 24(4):323–332

    Article  Google Scholar 

  • Nepolean P, Balamurugan A, Jayanthi R, Mareeswaran J, Premkumar R (2014) Bioefficacy of certain chemical and biofungicides against Hypoxylon spp. causing wood rot disease in tea. J Plant Crops 42(3):341–347

    Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Ons L, Bylemans D, Thevissen K, Cammue BPA (2020) Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms 8(12). https://doi.org/10.3390/microorganisms8121930

  • Ownley BH, Griffin MR, Klingeman WE, Gwinn KD, Moulton JK, Pereira RM (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 98(3):267–270

    Article  CAS  PubMed  Google Scholar 

  • Pal KK, Gardener MB (2006) Biological control of plant pathogens. Plant Health Instructor. https://doi.org/10.1094/PHI-A-2006-1117-02

  • Pandey A, Palni LMS (2002) Tea rhizosphere: characteristics, features, microbial diversity and applications. Int J Tea Sci 1(4):10–24

    Google Scholar 

  • Peng HY, Zeng YT, Chen XW, Ge YH, Jin F, Xie TE (1998) Efficacy analysis of viral insecticide of Buzura suppressaria nuclear polyhedrosis virus (BsSNPV). Chin J Appl Environ Biol 4:258–262

    Google Scholar 

  • Phong NH, Wattanachai P, Kasem S (2014) Antifungal substances from Chaetomium cupreum against Pestalotia spp. causing gray blight disease of tea. In: Proceeding of the third international conference on integration of science and technology, 27–28 November 2014, Champasak Grand Hotel Pakse, Laos, PDR, p 38

    Google Scholar 

  • Ponmurugan P (2017) Biosynthesis of silver and gold nanoparticles using Trichoderma atroviride for the biological control of Phomopsis canker disease in tea plants. IET Nanobiotechnol 11(3):261–267. https://doi.org/10.1049/iet-nbt.2016.0029

    Article  PubMed  Google Scholar 

  • Ponmurugan P, Baby UI (2007) Evaluation of fungicides and biocontrol agents against Phomopsis canker of tea under field condition. Australas Plant Pathol 36:68–72

    Article  CAS  Google Scholar 

  • Ponmurugan P, Baby UI, Premkumar R, Radhakrishnan B (2002) Integrated control of Phomopsis canker disease of tea. In: Proceedings of the 15th plantation crops symposium Placrosym XV, Mysore, 10–13 December, pp 599–602

    Google Scholar 

  • Ponmurugan P, Manjukarunambika K, Elango V, Gnanamangai BM (2016) Antifungal activity of biosynthesized copper nanoparticles evaluated against red root-rot disease in tea plants. J Exp Nanosci 11(13):1019–1031. https://doi.org/10.1080/17458080.2016.1184766

    Article  CAS  Google Scholar 

  • Prabhavathi VR, Mathivanan N, Sagadevan E, Murugesan K, Lalithakumari D (2006) Intra-strain protoplast fusion enhances carboxymethyl cellulase activity in Trichoderma reesei. Enzym Microb Technol 38:719–723

    Article  CAS  Google Scholar 

  • Premkumar R, Baby UI (2005) Recommendations on the control of root and stem diseases of tea. In: Handbook of tea culture section. UPASI Tea Research Institute, India, pp 15–16

    Google Scholar 

  • Premkumar R, Ajay D, Muraleedharan N (2009) Biological control of tea diseases-a review. In: Premkumar R, Ajay D, Muraleedharan N (eds) Role of biocontrol agents for disease management in sustainable agriculture. Research India Publications, New Delhi, pp 223–230

    Google Scholar 

  • Purkayastha GD, Mangar P, Saha A, Saha D (2018) Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea. PLoS One 13(2):e0191761. https://doi.org/10.1371/journal.pone.0191761

    Article  CAS  Google Scholar 

  • Rabha AJ, Naglot A, Sharma GD et al (2014) In vitro evaluation of antagonism of endophytic Colletotrichum gloeosporioides against potent fungal pathogens of Camellia sinensis. Indian J Microbiol 54:302–309. https://doi.org/10.1007/s12088-014-0458-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Resca R, Basaglia M, Poggiolini S, Vian P, Bardin S, Walsh UF et al (2001) An integrated approach for the evaluation of biological control of the complex Polymyxa betae/beet necrotic yellow vein virus, by means of seed inoculants. Plant Soil 12:215–226. https://doi.org/10.1023/A:1010310825363

    Article  Google Scholar 

  • Roobakkumar A, Babu A, Kumar DV, Rahman VJ, Sarkar S (2011) Pseudomonas fluorescens as an efficient entomopathogen against Oligonychus coffeae Nietner (Acari: Tetranychidae) infesting tea. J Entomol Nematol 3(7):73–77

    Google Scholar 

  • Roy S, Muraleedharan N (2014) Microbial management of arthropod pests of tea: current state and prospects. Appl Microbiol Biotechnol 98(12):5375–5386. https://doi.org/10.1007/s00253-014-5749-9

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Rahman A, Sarma M, Babu A, Deka B (2018) Special bulletin-integrated management of major tea pests of Northeast India. Tocklai Tea Research Association, Tocklai

    Google Scholar 

  • Roy S, Prasad AK, Neave S et al (2020) Nonchemical based integrated management package for live-wood eating termites in tea plantations of north-east India. Int J Trop Insect Sci 40:435–440. https://doi.org/10.1007/s42690-019-00095-6

    Article  Google Scholar 

  • Saito T, Takatsuka J, Shimazu M (2012) Characterization of Paecilomyces cinnamomeus from the camellia whitefly, Aleurocanthus camelliae (Hemiptera: Aleyrodidae), infesting tea in Japan. J Invertebr Pathol 110(1):14–23

    Article  PubMed  Google Scholar 

  • Sandhu SS, Sharma AK, Beniwal V, Goel G, Batra P, Kumar A, Jaglan S, Sharma AK, Malhotra S (2012) Myco-biocontrol of insect pests: factors involved, mechanism, and regulation. J Pathog. https://doi.org/10.1155/2012/126819

  • Sarkar A, Das RC, Rashid MH, Ali M, Islam MS, Asaeda T, Wang Q (2015) Biocontrol potentiality of isolated Trichoderma spp. against Pestalozzia theae Saw. in tea. Acta Phytopathol Entomol Hung 50(2):179–186

    Article  Google Scholar 

  • Sarmah SR, Baruah PK, Das SC (2017) Practical utilization of botanical extracts and microbial in controlling dieback disease of tea [Camellia sinensis (L) O. Kuntze] caused by Fusarium solani (Mart.) Sacc. J Tea Sci Res 7(2):11–19. https://doi.org/10.5376/jtsr.2017.07.0002

    Article  Google Scholar 

  • Sarmah SR, Bhattacharyya PN, Barooah K (2020) Microbial biocides- viable alternatives to chemicals for tea disease management. J Biol Control 34(2):144–152. https://doi.org/10.18311/jbc/2020/22689

    Article  CAS  Google Scholar 

  • Selvasundaram R, Muraleedharan N (2000) Occurrence of the entomogenous fungus Beauveria bassiana on the short hole borer of tea. J Plant Crop 28(3):229–230

    Google Scholar 

  • Senanayake PD, Kulathunga SD (2015) Potential entomopathogenic fungus for shot-hole borer control in tea cultivation. In: NSF research summit conference proceedings; empowered by research and innovation. BMICH, Colombo, p 123

    Google Scholar 

  • Shan W, Zhou Y, Liu H, Yu X (2018) Endophytic Actinomycetes from tea plants (Camellia sinensis): isolation, abundance, antimicrobial, and plant-growth-promoting activities. BioMed Res Int. https://doi.org/10.1155/2018/1470305

  • Shanmugrapriyan R, Mathew S (2011) Bioefficacy of Metarhizium anisopliae and Derrimax against tea thrips. Newslett UPASI Tea Res Foundation 20(1):6

    Google Scholar 

  • Shanmugrapriyan R, Mathew S, Babu A (2010) Bioefficacy of Metarhizium anisopliae on tea thrips. Newslett UPASI Tea Res Foundation 21:2

    Google Scholar 

  • Singha D, Singha B, Dutta B (2011) Potential of Metarhizium anisopliae and Beauveria bassiana in the control of tea termite Microtermes obesi Holmgren in vitro and under field conditions. J Pest Sci 84(1):69–75

    Article  Google Scholar 

  • Sowndhararajan K, Marimuthu S, Manian S (2013a) Integrated control of blister blight disease in tea using the biocontrol agent Ochrobactrum anthropi strain BMO-111 with chemical fungicides. J Appl Microbiol 114(5):1491–1499

    Article  CAS  PubMed  Google Scholar 

  • Sowndhararajan K, Marimuthu S, Manian S (2013b) Biocontrol potential of phylloplane bacterium Ochrobactrum anthropi BMO -111 against blister blight disease of tea. J Appl Microbiol 114:209–218

    Article  CAS  PubMed  Google Scholar 

  • Sun X (2015) History and current status of development and use of viral insecticides in China. Viruses 7(1):306–319. https://doi.org/10.3390/v7010306

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun JD, Xu DY, Zhang YM (1988) Euproctis pseudoconspersa nuclear polyhedrosis virus and its application in tea plantation. Fujian J Agric Sci 3:1–9

    Google Scholar 

  • Sun JD, Wu GY, Lin AX, ZengMS XDY, Wang QS (1996) Efficiency of/Euproctis pseudoconspersa nuclear polyhedrosis virus (EpNPV) preparation. Entomol J East China 5:55–59

    Google Scholar 

  • Takahashi M, Nakai M, Saito Y, Sato Y, Ishijima C, Kunimi Y (2015) Field efficacy and transmission of fast- and slow-killing nucleopolyhedroviruses that are infectious to Adoxophyes honmai (Lepidoptera: Tortricidae). Viruses 7(3):1271–1283. https://doi.org/10.3390/v7031271

    Article  PubMed  PubMed Central  Google Scholar 

  • Takatsuka J, Okuno S, Ishii T, Nakai M, Kunimi Y (2010) Fitness-related traits of entomopoxviruses isolated from Adoxophyes honmai (Lepidoptera: Tortricidae) at three localities in Japan. J Invertebr Pathol 105(2):121–131

    Article  PubMed  Google Scholar 

  • Tanti A, Bhattacharyya P, Dutta P, Sarmah S, Madhab M, Saikia D, Kachari A, Berceroyjyrwa R (2016) Diversity of phylloplane microflora in certain tea cultivars of Assam, North-East India. Eur J Biol Res 6:287–292

    Google Scholar 

  • Verma C, Jandaik S, Gupta BK, Kashyap N, Suryaprakash VS, Kashyap S, Kerketta A (2020) Microbial metabolites in plant disease management: review on biological approach. Int J Chem Stud 8(4):2570–2581. https://doi.org/10.22271/chemi.2020.v8.i4ad.10026

    Article  CAS  Google Scholar 

  • Vitarana SI (2000) 75 years of research in entomology, acarology and nematology. In: Modder WWD (ed) Twentieth century tea research in Sri Lanka. Tea Research Institute of Sri Lanka, Talawakelle, pp 111–160

    Google Scholar 

  • Vitarana SI, Nagahaulla SM, Abeysinghe LS, Vitana SB (1997) Environment friendly pest control agents: use of bio 1020 to control white grub damage on tea. Sri Lanka J Tea Sci 65(1–2):34–45

    Google Scholar 

  • Wahab S (2004) Tea pests and their management with bio-pesticides. Int J Tea Sci 3:21–30

    Google Scholar 

  • Wang GH, Xia SM, Han BY (2010) Survey on resources and appraisal of dominant species of natural enemies in tea plantations in Guizhou province. J Anhui Agric Univ 37:772–780

    Google Scholar 

  • Worrall EA, Hamid A, Mody KT, Mitter N, Pappu HR (2018) Nanotechnology for plant disease management. Agronomy 8:285. https://doi.org/10.3390/agronomy8120285

    Article  CAS  Google Scholar 

  • Wu G, Sun JD (1994) A study and application of Beauveria bassiana (Bals.) Vuill. in the control of the tea brown weevil. China Tea 16(1):30–31

    CAS  Google Scholar 

  • Wu GY, De SJ, Shen ZM, Aug LA, Yean XD, Shen WQ (1995) Application of Beauveria bassiana strain 871 in controlling tea weevil (Myllocerus aurolineatus). J Fujian Acad Agric Sci 10(2):39–43

    Google Scholar 

  • Wu Z, Su Q, Cui Y et al (2020) Temporal and spatial pattern of endophytic fungi diversity of Camellia sinensis (cv. Shu Cha Zao). BMC Microbiol 20:270. https://doi.org/10.1186/s12866-020-01941-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie H, Feng X, Wang M, Wang Y, Kumar Awasthi M, Xu P (2020) Implications of endophytic microbiota in Camellia sinensis: a review on current understanding and future insights. Bioengineered 11(1):1001–1015. https://doi.org/10.1080/21655979.2020.1816788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Stirling E, Li W et al (2020) Trade-off between stochastic and deterministic processes shifts from soil to leaf microbiome of tea plant. Res Square. https://doi.org/10.21203/rs.3.rs-28737/v1

  • Yaginuma D, Hiromori H, Hatsukade M (2006) Virulence of the entomopathogenic fungus Beauveria brongniartii to several life stages of the yellowish elongate chafer Heptophylla picea Motschulsky (Coleoptera: Scarabaeidae). Appl Entomol Zool 41(2):287–293

    Article  Google Scholar 

  • Yan X, Wang Z, Mei Y, Wang L, Wang X, Xu Q, Peng S, Zhou Y, Wei C (2018) Isolation, diversity, and growth-promoting activities of endophytic bacteria from tea cultivars of Zijuan and Yunkang-10. Front Microbiol 9:1848. https://doi.org/10.3389/fmicb.2018.01848

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2008a) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4. https://doi.org/10.1016/j.tplants.2008.10.004

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Peters JI, Williams RO (2008b) Inhaled nanoparticles-a current review. Int J Pharm 356:239–247

    Article  CAS  PubMed  Google Scholar 

  • Ye GY, Xiao Q, Chen M et al (2014) Tea: biological control of insect and mite pests in China. Biol Control 68:73–81

    Article  Google Scholar 

  • You J (2008) Dynamic distributes of endophytic fungi from Camellia sinensis. Guihaia 28(1):82–85

    Google Scholar 

  • Zhang Y, Yu X, Zhang W, Lang D, Zhang X, Cui G et al (2019) Interactions between endophytes and plants: beneficial effect of endophytes to ameliorate biotic and abiotic stresses in plants. J Plant Biol 62:1–13. https://doi.org/10.1007/s12374-018-0274-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Ms. R.D.S.M. Gamlath and the staff of Plant Pathology and Entomology and Nematology Divisions, Tea Research Institute of Sri Lanka, for their support and field photographs.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinniah, G.D., Senanayake, P.D. (2021). Microbial Technologies in Pest and Disease Management of Tea (Camellia sinensis (L.) O. Kuntze). In: Bhatt, P., Gangola, S., Udayanga, D., Kumar, G. (eds) Microbial Technology for Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-3840-4_19

Download citation

Publish with us

Policies and ethics