Skip to main content

Advances and New Perspectives in Prebiotic, Probiotic and Symbiotic Products for Food Nutrition and Feed

  • Chapter
  • First Online:
Hemicellulose Biorefinery: A Sustainable Solution for Value Addition to Bio-Based Products and Bioenergy

Abstract

The gastrointestinal tract is colonized by several bacteria that are directly associated with the well-being of the host. Bacteria related to the balance of intestinal flora are often used as dietary supplements, known as probiotics. Other products marketed as a functional ingredients are the prebiotics, nondigestible oligosaccharides known to selectively stimulate the growth of beneficial bacteria. Prebiotics such as xylooligosaccharides (XOs), fructooligosaccharides (FOs), and galactooligosaccharides (GOs) can be found naturally in fruits, vegetables, honey, and milk or industrially produced, such as XOs, obtained by the extraction and hydrolysis of hemicellulose derived from lignocellulosic materials. There are also symbiotic products, which consist of added probiotic strains in prebiotic foods or ingredients. These types of ingredients can maintain homeostasis in the intestinal microbiota preventing the onset of some diseases, in addition to being considered an alternative to the use of antibiotics to treat some infections. Comprehending the action mechanisms of these ingredients is important for understanding various diseases and for formulating products that are effective in maintaining equilibrium of microbiota. The present review seeks to bring the most up-to-date research and advances in food nutrition involving intestinal microbiota as well as prebiotics, probiotics, and symbiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aachary AA, Prapulla SG (2009) Value addition to corncob: production and characterization of xylo-oligosaccharides from alkali pretreated lignin-saccharide complex using Aspergillus oryzae MTCC 5154. Bioresour Technol 100:991–995

    CAS  PubMed  Google Scholar 

  • Adriulli A, Neri M, Loguercio C, Terreni N, Merla A, Cardarella MP, Federico A, Chilovi F, Milandri GL, De Bona M, Cavenati S, Gullini S, Abbiati R, Garbagna N, Cerutti R, Grossi E (2008) Clinical trial on the efficacy of a new symbiotic formulation, flortec, in patients with irritable bowel syndrome. J Clin Gastroenterol 42:218–223

    Google Scholar 

  • Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM, Hassan FA (2013) Prebiotics as functional foods: a review. J Funct Food 5:1542–1553

    CAS  Google Scholar 

  • Amorim C, Silvério SC, Prather KLJ, Rodrigues LR (2019) From lignocellulosic residues to market: production and commercial potential of xylooligosaccharides. Biotechnol Adv 37:1–10

    Google Scholar 

  • Bali V, Panesar PS, Bera MB, Panesaret R (2015) Fructo-oligosaccharides: production, purification and potential applications. Crit Rev Food Sci Nutr 55:1475–1490

    CAS  PubMed  Google Scholar 

  • Biedrzycka E, Bielecka M (2004) Prebiotic effectiveness of fructans of different degrees of polymerization. Trends Food Sci Technol 15:170–175

    CAS  Google Scholar 

  • Bornet FRJ, Brouns F, Tashiro Y, Duvillier V (2002) Nutritional aspects of short-chain fructooligosaccharides: natural occurrence, chemistry, physiology and health implications. Digest Liver Dis J 34:111–120

    Google Scholar 

  • Botvynko A, Bednářová A, Henke S, Shakhno N, Čurda L (2019) Production of galactooligosaccharides using various combinations of the commercial β-galactosidases. Biochem Biophys Res Commun 517:762–766

    CAS  PubMed  Google Scholar 

  • Bouhnik Y, Vahedi K, Achour L, Attar A, Salfati J, Pochart P, Marteau P, Flourié B, Bornet F, Rambaud JC (1999) Short chain fructo-oligosaccharides administration dose-dependently increases fecal bifidobacteria in healthy humans. J Nutr 129:113–116

    CAS  PubMed  Google Scholar 

  • Carpenter CE, Broadbent JR (2009) External concentration of organic acid anions and pH: key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods. J Food Sci 74:12–15

    Google Scholar 

  • Carvalho AFA, Oliva Neto P, Silva DF, Pastore GM (2013) Xylo-oligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res Int 51:75–85

    CAS  Google Scholar 

  • Chapman CMC, Gibson GR, Rowland I (2011) Health benefits of probiotics: are mixtures more effective than single strains? Eur J Nutr 50:1–17

    CAS  PubMed  Google Scholar 

  • Chapman CMC, Gibson GR, Rowland I (2012) In vitro evaluation of single- and multi-strain probiotics: inter-species inhibition between probiotic strains, and inhibition of pathogens. Anaerobe 18:405–413

    CAS  PubMed  Google Scholar 

  • Chen MH, Bowman MJ, Cotta MA, Dien BS, Iten LB, Whitehead TR, Rausch KD, Tumbleson ME, Singh V (2016) Miscanthus x giganteus xylooligosaccharides: purification and fermentation. Carbohydr Polym 140:96–103

    CAS  PubMed  Google Scholar 

  • Childs CE, Röytiö H, Alhoniemi E, Fekete AA, Forssten SD, Hudjec N, Lim YN, Steger CJ, Yaqoob P, Tuohy KM, Rastall RA, Ouwehand AC, Gibson GR (2014) Xylo-oligosaccharides alone or in symbiotic combination with Bifidobacterium animalis subsp lactis induce bifidogenesis and modulate markers of immune function in healthy adults: a double-blind, placebo-controlled, randomised, factorial cross-over study. Br J Nutr 111:1945–1956

    CAS  PubMed  Google Scholar 

  • Chung YC, Hsu CK, Ko CY, Chan YC (2007) Dietary intake of xylo-oligosaccharides improves the intestinal microbiota, fecal moisture, and pH value in the elderly. Nutr Res 27:756–761

    CAS  Google Scholar 

  • Coqueiro AY, Raizel R, Bonvini A, Tirapegui J, Rogero MM (2018) Probiotics for inflammatory bowel diseases: a promising adjuvant treatment. Int J Food Sci Nutr 70:20–29

    PubMed  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788

    CAS  PubMed  Google Scholar 

  • Crittenden RG, Playne MJ (1996) Production, properties and applications of food-grade oligosaccharides. Trends Food Sci Technol 71:353–361

    Google Scholar 

  • Crittenden RG, Karppinen S, Ojanen S, Tenkanen M, Fagerstrom R, Matto J, Saarela M, Mattila-Sandholm T, Poutanenet K (2002) In vitro fermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria. J Sci Food Agric 82:781–789

    CAS  Google Scholar 

  • Cummings JH, Macfarlane GT, Englyst HN (2001) Prebiotic digestion and fermentation. Am J Clin Nutr 73:415S–420S. https://doi.org/10.1093/ajcn/73.2.415s

    Article  CAS  PubMed  Google Scholar 

  • De La Rosa O, Flores-Gallegos AC, Muñíz-Marquez D, Nobre C, Contreras-Esquivel JC, Aguilar CN (2019) Fructooligosaccharides production from agro-wastes as alternative low-cost source. Trends Food Sci Technol 91:139–146

    Google Scholar 

  • Derrien M, Alvarez AS, Vos WM (2019) The gut microbiota in the first decade of life. Trends Microbiol 27:997–1010

    CAS  PubMed  Google Scholar 

  • Dughera L, Elia C, Navino M, Cisarò F, Armonia Study Group (2007) Effects of symbiotic preparations on constipated irritable bowel syndrome symptoms. Acta Biomed 78:111–116

    PubMed  Google Scholar 

  • Eslami M, Yousefi B, Kokhaei P, Hemati M, Nejad ZR, Arabkari V, Namdar A (2019) Importance of probiotics in the prevention and treatment of colorectal cancer. J Cell Physiol 10:7127–17143

    Google Scholar 

  • Ferreira-Lazarte A, Gallego-Lobillo P, Moreno FJ, Villamiel M, Hernandez-Hernandez O (2019) In vitro digestibility of galactooligosaccharides: effect of the structural features on their intestinal degradation. J Agric Food Chem 16:4662–4670

    Google Scholar 

  • Figueiredo FC, Carvalho AFA, Brienzo M, Campioni TS, Oliva-Neto P (2017) Chemical input reduction in the arabinoxylan and lignocellulose alkaline extraction and xylooligosaccharides production. Bioresour Technol 228:164–170

    PubMed  Google Scholar 

  • Figueiredo FC, Ranke FFB, Oliva Neto P (2020) Evaluation of xylooligosaccharides and fructooligosaccharides on digestive enzymes hydrolysis and as a nutrient for different probiotics and Salmonella typhimurium. Food Sci Technol 118

    Google Scholar 

  • Finegold SM, Li Z, Summanen PH, Downes J, Thames G, Corbett K, Dowd S, Krak M, Heber D (2014) Xylooligosaccharide increases bifidobacteria but not lactobacilli in human gut microbiota. Food Funct 5:436–445

    CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization of the United Nations and World Health Organization (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. World Health Organization 2001. http://www.who.int/foodsafety/publications/fs_management/en/probioticspdf. Accessed 21 Mar 2020

  • Gao Z, Daliri EBM, Wang J, Liu D, Chen S, Ye X, Ding T (2019) Inhibitory effect of lactic acid bacteria on foodborne pathogens: a review. J Food Prot 82:441–453

    CAS  PubMed  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  PubMed  Google Scholar 

  • Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:259–275

    CAS  PubMed  Google Scholar 

  • Gibson GR, Hutkins RW, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G (2017) The international scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14:491–502

    PubMed  Google Scholar 

  • Global Market Insights (2019) Prebiotics Market size to exceed $72bn by 2024. https://www.gminsights.com/. Accessed 23 May 2020

  • Grootaert C, Delcour JA, Courtin CM, Broekaert WF, Verstraet W, Wiel TV (2007) Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends Food Sci Technol 18:64–71

    CAS  Google Scholar 

  • Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519

    PubMed  Google Scholar 

  • Gullón P, Moura P, Esteves MP, Girio FM, Domínguez H, Parajó JC (2008) Assessment on the fermentability of xylooligosaccharides from rice husks by probiotic bacteria. J Agric Food Chem 56:7482–7487

    PubMed  Google Scholar 

  • Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514

    PubMed  Google Scholar 

  • Holzapfel WH, Haberer P, Snel J, Schillinger U, Huis in’t Veld JH (1998) Overview of gut flora and probiotics. Int J Food Microbiol 41:85–101

    CAS  PubMed  Google Scholar 

  • Hutkins RW, Krumbeck JA, Bindels LB, Cani PD, Fahey G Jr, Goh YJ, Hamaker B, Martens EC, Mills DA, Rastal RA, Vaughan E, Sanders ME (2016) Prebiotics: why definitions matter. Curr Opin Biotechnol 37:1–7

    CAS  PubMed  Google Scholar 

  • Johannsen H, Prescott SL (2009) Practical prebiotics, probiotics and symbiotics for allergists: how useful are they? Clin Exp Allergy 39:1801–1814

    CAS  PubMed  Google Scholar 

  • Kim HJ, Camilleri M, McKinzie S, Lempke MB, Burton DD, Thomforde GM, Zinsmeisteret AR (2003) A randomized controlled trial of a probiotic, VSL#3, on gut transit and symptoms in diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther 17:895–904

    CAS  PubMed  Google Scholar 

  • Kolida S, Gibson GR (2011) Symbiotics in health and disease. Annu Rev Food Sci Technol 2:373–393

    PubMed  Google Scholar 

  • Le Leu RK, Brown IL, Hu Y, Bird AR, Jackson M, Esterman A, Young GP (2005) A symbiotic combination of resistant starch and Bifidobacterium lactis facilitates apoptotic deletion of carcinogen-damaged cells in rat colon. J Nutr 35:996–1001

    Google Scholar 

  • Leahy SC, Higgins DG, Fitzgerald GF, Sinderen DV (2005) Getting better with bifidobacteria. J Appl Microbiol 98:1303–1315

    CAS  PubMed  Google Scholar 

  • Lilly DM, Stillwell RH (1965) Probiotics growth promoting factors produced by micro-organisms. Science 147:747–748

    CAS  PubMed  Google Scholar 

  • Limketkai BN, Akobeng AK, Gordon M, Adepoju AA (2020) Probiotics for induction of remission in Crohn’s disease. Cochrane Syst Rev 7:1–23

    Google Scholar 

  • Macfarlane S, Macfarlane GT, Cummings JH (2006) Review article: prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther 24:701–714

    CAS  PubMed  Google Scholar 

  • Mäkeläinen H, Saarinen M, Stowell J, Rautonen N, Ouwehand AC (2010) Xylooligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures. Benefic Microbes 2:139–148

    Google Scholar 

  • Makras L, De Vuyst L (2006) The in vitro inhibition of gram-negative pathogenic bacteria by bifidobacteria is caused by the production of organic acids. Int Dairy J 16:1049–1057

    CAS  Google Scholar 

  • Manning TS, Gibson GR (2004) Prebiotics. Best Pract Res Clin Gastroenterol 18:287–298

    PubMed  Google Scholar 

  • Markets and Markets (2019) Probiotics market by application (functional food & beverages [dairy products, non-dairy beverages, infant formula, cereals], dietary supplements, feed), ingredient (bacteria, yeast), form (dry, liquid), end user, and region—Global Forecast to 2023. Retrieved from Markets and Markets Top Market Reports. https://www.marketsandmarkets.com/Market-Reports/functional-food-ingredients-market-9242020.html. Accessed 20 May 2020

  • Markowiak P, Śliżewska K (2018) The role of probiotics, prebiotics and symbiotics in animal nutrition. Gut Pathog 10:1–20

    Google Scholar 

  • Martíez-Villaluenga C, Frías J, Vidal-Valverde C, Gómez R (2005) Raffinose family of oligosaccharides from lupin seeds as prebiotics: application in dairy products. J Food Prot 68:1246–1252

    Google Scholar 

  • Maslowski KM, Mackay CR (2011) Diet, gut microbiota and immune responses. Nat Immunol 12:5–9

    CAS  PubMed  Google Scholar 

  • McFarland LV (2006) Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am J Gastroenterol 101:812–822

    PubMed  Google Scholar 

  • Molis C, Flourié B, Ouarne F, Gailing MF, Lartigue S, Guibert A, Bornet F, Galmicheet JP (1996) Digestion, excretion, and energy value of fructooligosaccharides in healthy humans. Am J Clin Nutr 64:324–328

    CAS  PubMed  Google Scholar 

  • Morelli L, Zonenschain D, Callegari ML et al (2003) Assessment of a new synbiotic preparation in healthy volunteers: survival, persistence of probiotic strains and its effect on the indigenous flora. Nutr J 2:11. https://doi.org/10.1186/1475-2891-2-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Moura P, Barata R, Carvalheiro F, Gírio F, Loureiro-Dias MC, Esteves MP (2007) In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. Food Sci Technol 40:963–972

    CAS  Google Scholar 

  • Mussatto SI, Mancilha IM (2007) Non-digestible oligosaccharides: a review. Carbohydr Polym 68:587–597

    CAS  Google Scholar 

  • Nagpal R, Wang S, Ahmadi S, Hayes J, Gagliano J, Subashchandrabose S, Kitzman DW, Becton T, Read R, Yadav H (2018) Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Sci Rep 8:1–15

    Google Scholar 

  • Nilsson U, Bjorck I (1988) Availability of cereal fructans and inulin in the rat intestinal tract. J Nutr 118:1482–1486

    CAS  PubMed  Google Scholar 

  • Otieno DO, Ahring BK (2012) A thermochemical pretreatment process to produce xylo-oligosaccharides (XOS), arabino-oligosaccharides (AOS) and manno-oligosaccharides (MOS) from lignocellulosic biomasses. Bioresour Technol 112:285–292

    CAS  PubMed  Google Scholar 

  • Ouwehand AC, Tiihonen K, Saarinen M, Putaala H, Rautonen N (2009) Influence of a combination of Lactobacillus acidophilus NCFM and lactitol on healthy elderly: intestinal and immune parameters. Br J Nutr 101:367–375

    CAS  PubMed  Google Scholar 

  • Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A (2019) Mechanisms of Action of probiotics. Adv Nutr 10:49–66

    Google Scholar 

  • Quigley EMM (2010) Prebiotics and probiotics; modifying and mining the microbiota. Pharmacol Res 61:213–218

    PubMed  Google Scholar 

  • Quigley EMM (2019) Prebiotics and probiotics in digestive health clinical. Gastroenterol Hepatol 17:333–344

    CAS  Google Scholar 

  • Quigley EMM, Flourie B (2007) Probiotics in irritable bowel syndrome: a rationale for their use and an assessment of the evidence to date. Neurogastroenterol Motil 19:166–172

    CAS  PubMed  Google Scholar 

  • Rastall RA, Gibson GR (2015) Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr Opin Biotechnol 32:42–46

    CAS  PubMed  Google Scholar 

  • Ren DY, Li C, Qin YQ, Yin RL, Du SW, Ye F, Liu HF, Wang MP, Sun Y, Li X, Tian MY, Jin NY (2013) Lactobacilli reduce chemokine IL-8 production in response to TNF-𝛼 and Salmonella challenge of caco-2 cells. Biomed Res Int 2013:1–9

    Google Scholar 

  • Rivero-Urgell M, Santamaria-Orleans A (2001) Oligosaccharides: application in infant food. Early Hum Dev 65:43–52

    Google Scholar 

  • Roberfroid MB (1999) Caloric value of inulin and oligofructose. J Nutr 129:1436–1437

    Google Scholar 

  • Roberfroid M (2002) Functional food concept and its application to prebiotics. Digest Liver Dis J 34:105–110

    Google Scholar 

  • Roberfroid M (2007) Prebiotics: the concept revisited. J Nutr 137:830–837

    Google Scholar 

  • Rosenfeldt V, Benfeld E, Nielsen SD, Michaelsen KF, Jeppesen DL, Valerius NH, Paerregaard A (2003) Effect of probiotic Lactobacillus strains in children with atopic dermatitis. J Allergy Clin Immunol 111:389–395

    PubMed  Google Scholar 

  • Russel DA, Ross RP, Fitzgerald GF, Stantonet C (2011) Metabolic activities and probiotic potential of bifidobacteria. Int J Food Microbiol 149:88–105

    Google Scholar 

  • Rycroft CE, Jones MR, Gibson GR, Rastall RA (2001) A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J Appl Microbiol 91:878–887

    CAS  PubMed  Google Scholar 

  • Sako T, Matsumoto K, Tanaka R (1999) Recent progress on research and applications of non-digestible galacto-oligosaccharides. Int Dairy J 9:69–80

    CAS  Google Scholar 

  • Salman M, Shahid M, Sahar T, Naheed S, Rahman M, Arif M, Iqbal M, Nazir A (2020) Development of regression model for bacteriocin production from local isolate of Lactobacillus acidophilus MS1 using box-Behnken design. Biocatal Agric Biotechnol 24:101542

    Google Scholar 

  • Samanta AK, Jayapal N, Jayaram C, Roy S, Kolte AP, Senani S, Sridhar M (2015) Xylooligosaccharides as prebiotics from agricultural by-products: production and applications. Bioact Carbohydr Diet Fibre 5:62–71

    CAS  Google Scholar 

  • Sanders ME, Benson A, Lebeer S, Merenstein DJ, Klaenhammer TR (2018) Shared mechanisms among probiotic taxa: implications for general probiotic claims. Curr Opin Biotechnol 49:207–216

    CAS  PubMed  Google Scholar 

  • Sanders ME, Goh YJ, Klaenhammer TR (2019a) Probiotics and prebiotics. In: Doyle MP, Diez-Gonzalez F, Hill C (eds) Food microbiology: fundamentals and frontiers. ASM Press, Washington, DC, pp 831–854

    Google Scholar 

  • Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA (2019b) Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol 16:605–616

    PubMed  Google Scholar 

  • Sangeetha PT, Ramesh MN, Prapulla SG (2005) Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends Food Sci Technol 16:442–457

    CAS  Google Scholar 

  • Scully P, MacSharry J, O’Mahony D, Lyons A, O’Brien F, Murphy S, Shanahan F, O’Mahony L (2013) Bifidobacterium infantis suppression of Peyer’s patch MIP-1α and MIP-1β secretion during Salmonella infection correlates with increased local CD4+CD25+ T cell numbers. Cell Immunol 281:134–140

    CAS  PubMed  Google Scholar 

  • Searle LEJ, Best A, Nunez A, Salguero FJ, Johnson L, Weyer U, Dugdale AH, Cooley WA, Carter B, Jones G, Tzortzis G, Woodward MJ, La Ragione RM (2009) A mixture containing galacto-oligosaccharide, produced by the enzymic activity of Bifidobacterium bifidum, reduces Salmonella enterica serovar typhimurium infection in mice. J Med Microbiol 58:37–48

    PubMed  Google Scholar 

  • Silk DBA, Davis A, Vulevic J, Tzortzis G, Gibson GR (2008) Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharmacol Ther 29:508–518

    PubMed  Google Scholar 

  • Sousa VMC, Dos Santos EF, Sgarbieri VC (2011) The importance of prebiotics in functional foods and clinical practice. Food Nutr Sci 2:133–144

    Google Scholar 

  • Symonds EL, O'Mahony C, Lapthorne S, O’Mahony D, Sharry JM, O’Mahony L, Shanahan F (2012) Bifidobacterium Infantis 35624 protects against Salmonella-induced reductions in digestive enzyme activity in mice by attenuation of the host inflammatory response. Clin Transl Gastroenterol 3:1–10

    Google Scholar 

  • Tang WHW, Bäckhed F, Landmesser U, Hazen SL (2019) Intestinal microbiota in cardiovascular health and disease. J Am Coll Cardiol 73:2089–2105

    PubMed  PubMed Central  Google Scholar 

  • Tilg H, Adolph TE, Gerner RR, Moschen AR (2018) The intestinal microbiota in colorectal cancer. Cancer Cell 33:1–11

    Google Scholar 

  • Tong M, Li X, Wegener Parfrey L, Roth B, Ippoliti A, Wei B, Borneman J, McGovern DP, Frank DN, Li E, Horvath S, Knight R, Braun J (2013) A modular organization of the human intestinal mucosal microbiota and its association with inflammatory bowel disease. In: Microbial communities associated with IBD, vol 8, pp 1–14

    Google Scholar 

  • Torres DPM, Gonçalves MPF, Teixeira JA, Rodrigues LR (2010) Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Compr Rev Food Sci Food Saf 9:438–454

    CAS  PubMed  Google Scholar 

  • Vanhoof K, De Schrijver R (1995) Effect of unprocessed and baked inulin on lipid metabolism in normo and hypercholesterolemic rats. Nutr Res 15:1637–1646

    CAS  Google Scholar 

  • Velasco M, Requena T, Delgado-Iribarren A, Peláez C, Guijarro C (2018) Probiotic yogurt for the prevention of antibiotic-associated diarrhea in adults a randomized double-blind placebo-controlled trial. J Clin Gastroenterol 10:717–723

    Google Scholar 

  • Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, Drider D (2019) Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front Microbiol 10:57

    PubMed  PubMed Central  Google Scholar 

  • Viljanen M, Kuitunen M, Haahtela T, Juntunen-Backman K, Korpela R, Savilahti E (2005) Probiotic effects on faecal inflammatory markers and on faecal IgA in food allergic atopic eczema/dermatitis syndrome infants. Pediatr Allergy Immunol 16:65–71

    PubMed  Google Scholar 

  • Wang Y (2009) Prebiotics: present and future in food science and technology. Food Res Int 42:8–12

    CAS  Google Scholar 

  • Wang ZK, Yang YS, Chen Y, Yuan J, Sun G, Peng LH (2014) Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease. World J Gastroenterol 20:14805–14820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Yao M, Lv L, Ling Z, Li L (2017) The human microbiota in health and disease. Engineering 3:71–82. https://doi.org/10.1016/J.ENG.2017.01.008

    Article  Google Scholar 

  • Wasilewski A, Zielínska M, Storr M, Fichna J (2015) Beneficial effects of probiotics, prebiotics, symbiotics, and psychobiotics in inflammatory bowel disease. Inflamm Bowel Dis J 21:1674–1682

    Google Scholar 

  • Xiao L, Ning J, Xu G (2012) Application of xylo-oligosaccharide in modifying human intestinal function. Afr J Microbiol Res 6:2116–2119

    CAS  Google Scholar 

  • Yang B, Wei J, Ju P, Chen J (2019) Effects of regulating intestinal microbiota on anxiety symptoms: a systematic review. Gen Psychiatry 32:1–9

    Google Scholar 

  • Young ID, Montilla A, Olano A, Wittmann A, Kawasaki N, Villamiel M (2019) Effect of purification of galactooligosaccharides derived from lactulose with Saccharomyces cerevisiae on their capacity to bind immune cell receptor Dectin-2. Food Res Int 115:10–15

    CAS  PubMed  Google Scholar 

  • Zimmermann P, Messina N, Mohn WW, Finlay BB, Curtis N (2019) Association between the intestinal microbiota and allergic sensitization, eczema, and asthma: a systematic review. J Allergy Clin Immunol 143:467–485

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franciane Cristina de Figueiredo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Figueiredo, F.C., de Oliva-Neto, P. (2022). Advances and New Perspectives in Prebiotic, Probiotic and Symbiotic Products for Food Nutrition and Feed. In: Brienzo, M. (eds) Hemicellulose Biorefinery: A Sustainable Solution for Value Addition to Bio-Based Products and Bioenergy. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-3682-0_10

Download citation

Publish with us

Policies and ethics