Skip to main content

Molecular Virology and Life Cycle of Hepatitis B Virus

  • Chapter
  • First Online:

Abstract

Hepatitis B virus (HBV) is the prototypic member of Orthohepadnaviridae, hepadnaviruses that can lead to transient or persistent infection. When left untreated, chronic HBV infection leads to severe liver damage culminating in hepatocellular carcinoma (HCC). HCC represents the third cause of cancer-related death worldwide with more than 800,000 deaths every year, thus constituting a major health issue.

HBV genomic DNA is a relaxed-circular partially double-stranded DNA (rcDNA), which has to be converted into a covalently closed circular DNA (cccDNA) in hepatocytes nucleus to allow viral replication. cccDNA represents the viral genomic reservoir and the template for viral transcription of the viral pregenomic RNA (pgRNA) intermediate, which is then reverse-transcribed back to viral DNA. The persistence of cccDNA in infected hepatocytes accounts for chronicity of infection and the low rate of cure. Here, we review the current body of knowledge on HBV biology, with a particular focus on the complex jigsaw puzzle of HBV molecular mechanisms of replication.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

5’ RACE:

5’ Rapid amplification cDNA end

AGL:

Antigenic loop

AP-1:

Activator protein-1

BCP:

Basic core promoter

C/EBP:

CCAAT/enhancer-binding proteins

cccDNA:

Covalently closed circular DNA

CHB:

Chronic hepatitis B

CTD:

Carboxy terminal domain

Cul4:

Cullin 4

DDB1:

DNA damage-binding protein 1

DNA:

Deoxyribonucleic acid

DNMT:

DNA methyltransferase

DR1/2:

Direct repeat 1/2

dsl-DNA:

Double-stranded linear DNA

DynLL1:

Dynein light chain 1

EnhI/II:

Enhancer I/II

ESCRT:

Export and sorting complex required for transport

FEN1:

Flap endonuclease 1

FXR:

Farnesoid X receptor

H 2a/2b/3/4:

Histone 2a/2b/3/4

HAT:

Histone acetyl transferase

HBDSP:

Hepatitis B double spliced protein

HBeAg:

Hepatitis B e antigen

HBsAg:

Hepatitis B s antigen

HBSP:

Hepatitis B spliced protein

HBV:

Hepatitis B virus

HCC:

Hepatocellular carcinoma

HDAC:

Histone deacetylase

HGS/HRS:

Hepatocyte growth factor-regulated tyrosine kinase substrate

HNF:

Hepatocyte nuclear factor

HSPG:

Heparan sulfate proteoglycan

kb:

Kilobase

kDa:

Kilodalton

m6A:

N6 methyladenosine

METTL3/14:

Methyltransferase-Like 3/14

miRNA:

MicroRNA

mRNA:

Messenger RNA

MVB:

Multivesicular bodies

NES:

Nuclear export signal

NF1:

Nuclear factor 1

NF-κB:

Nuclear factor-κ B

NPC:

Nuclear pore complex

nt:

Nucleotide

NTCP:

Na+-taurocholate cotransporting polypeptide

NUC:

Nucleos(t)ide analog

Nup153:

Nucleoporin 153

ORF:

Open riding frame

PAPD5/7:

PolyA-RNA polymerase-associated domain containing protein 5/7

PAS:

Polyadenylation signal

PCNA:

Proliferating cell nuclear antigen

pgRNA:

Pregenomic RNA

Pol:

Polymerase

PolyA:

Polyadenylation

PRE:

Posttranscriptional regulatory element

P-S FP:

Polymerase-surface fusion protein

PSF:

PTB-associated splicing factor

PTM:

Posttranslational modification

Rab5/7:

Ras-Associated protein 5/7

rcDNA:

Relaxed circular DNA

RER:

Rough endoplasmic reticulum

RNA:

Ribonucleic acid

Smc5/6:

Structural maintenance of chromosomes 5/6

SP1:

Singly spliced product 1

SRE:

Splicing regulatory element

SVP:

Subviral particle

TBP:

TATA-binding protein

TDP2:

Tyrosyl-DNA phosphodiesterase 2

TP:

Terminal protein

TREX:

Transcription and export factor

TSS:

Transcription start site

URR:

Upper regulatory region

WHV:

Woodchuck hepatitis virus

YTHDF:

YTH domain-containing family protein

References

  • Allweiss L, Volz T, Giersch K, Kah J, Raffa G, Petersen J, Lohse AW, Beninati C, Pollicino T, Urban S, et al. Proliferation of primary human hepatocytes and prevention of hepatitis B virus reinfection efficiently deplete nuclear cccDNA in vivo. Gut. 2018;67:542–52.

    Article  PubMed  CAS  Google Scholar 

  • Altinel K, Hashimoto K, Wei Y, Neuveut C, Gupta I, Suzuki AM, Dos Santos A, Moreau P, Xia T, Kojima S, et al. Single-nucleotide resolution mapping of hepatitis B virus promoters in infected human livers and hepatocellular carcinoma. J Virol. 2016;90:10811–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai L, Zhang X, Kozlowski M, Li W, Wu M, Liu J, Chen L, Zhang J, Huang Y, Yuan Z. Extracellular hepatitis B virus RNAs are heterogeneous in length and circulate as capsid-antibody complexes in addition to virions in chronic hepatitis B patients. J Virol. 2018;92:e00798–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bayliss J, Lim L, Thompson AJV, Desmond P, Angus P, Locarnini S, Revill PA. Hepatitis B virus splicing is enhanced prior to development of hepatocellular carcinoma. J Hepatol. 2013;59:1022–8.

    Article  PubMed  CAS  Google Scholar 

  • Beck J, Nassal M. Hepatitis B virus replication. World J Gastroenterol. 2007;13:48–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belloni L, Allweiss L, Guerrieri F, Pediconi N, Volz T, Pollicino T, Petersen J, Raimondo G, Dandri M, Levrero M. IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J Clin Invest. 2012;122:529–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bill CA, Summers J. Genomic DNA double-strand breaks are targets for hepadnaviral DNA integration. Proc Natl Acad Sci. 2004;101:11135–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bock C-T, Schranz P, Schröder CH, Zentgraf H. Hepatitis B virus genome is organized into nucleosomes in the nucleus of the infected cell. Virus Genes. 1994;8:215–29.

    Article  PubMed  CAS  Google Scholar 

  • Bock CT, Schwinn S, Locarnini S, Fyfe J, Manns MP, Trautwein C, Zentgraf H. Structural organization of the hepatitis B virus minichromosome1. J Mol Biol. 2001;307:183–96.

    Article  PubMed  CAS  Google Scholar 

  • Bonilla Guerrero R, Roberts LR. The role of hepatitis B virus integrations in the pathogenesis of human hepatocellular carcinoma. J Hepatol. 2005;42:760–77.

    Article  PubMed  CAS  Google Scholar 

  • Boyd A, Lacombe K, Lavocat F, Maylin S, Miailhes P, Lascoux-Combe C, Delaugerre C, Girard P-M, Zoulim F. Decay of ccc-DNA marks persistence of intrahepatic viral DNA synthesis under tenofovir in HIV-HBV co-infected patients. J Hepatol. 2016;65:683–91.

    Article  PubMed  CAS  Google Scholar 

  • Burdette D, Lazerwith S, Yang J, Chan H, Iv WD, Feierbach B. Evidence of an infectious virus reservoir in suppressed chronic hepatitis B patients. Biol Sci. 2020; https://doi.org/10.21203/rs.3.rs-100058/v1.

  • Candotti D, Allain J-P. Biological and clinical significance of hepatitis B virus RNA splicing: an update. Ann Blood. 2016;2:6–6.

    Article  Google Scholar 

  • Charre C, Levrero M, Zoulim F, Scholtès C. Non-invasive biomarkers for chronic hepatitis B virus infection management. Antivir Res. 2019;169:104553.

    Article  PubMed  CAS  Google Scholar 

  • Chen W-N, Chen J-Y, Lin W-S, Lin J-Y, Lin X. Hepatitis B doubly spliced protein, generated by a 2.2 kb doubly spliced hepatitis B virus RNA, is a pleiotropic activator protein mediating its effects via activator protein-1- and CCAAT/enhancer-binding protein-binding sites. J Gen Virol. 2010;91:2592–600.

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Gan Y, Han N, Fang W, Li J, Zhao F, Hu K, Rayner S. Computational evolutionary analysis of the overlapped surface (S) and polymerase (P) region in hepatitis B virus indicates the spacer domain in P is crucial for survival. PLoS One. 2013;8:e60098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Wu M, Wang F, Zhang W, Wang W, Zhang X, Zhang J, Liu Y, Liu Y, Feng Y, et al. Hepatitis B virus spliced variants are associated with an impaired response to interferon therapy. Sci Rep. 2015;5:16459.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chi B, Wang K, Du Y, Gui B, Chang X, Wang L, Fan J, Chen S, Wu X, Li G, et al. A sub-element in PRE enhances nuclear export of intronless mRNAs by recruiting the TREX complex via ZC3H18. Nucleic Acids Res. 2014;42:7305–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cougot D, Allemand E, Riviere L, Benhenda S, Duroure K, Levillayer F, Muchardt C, Buendia M-A, Neuveut C. Inhibition of PP1 phosphatase activity by HBx: a mechanism for the activation of hepatitis B virus transcription. Sci Signal. 2012;5:ra1.

    Article  PubMed  CAS  Google Scholar 

  • Dandri M, Locarnini S. New insight in the pathobiology of hepatitis B virus infection. Gut. 2012;61:i6–i17.

    Article  PubMed  CAS  Google Scholar 

  • Dandri M, Burda MR, Will H, Petersen J. Increased hepatocyte turnover and inhibition of woodchuck hepatitis B virus replication by adefovir in vitro do not lead to reduction of the closed circular DNA. Hepatology. 2000;32:139–46.

    Article  PubMed  CAS  Google Scholar 

  • Decorsière A, Mueller H, van Breugel PC, Abdul F, Gerossier L, Beran RK, Livingston CM, Niu C, Fletcher SP, Hantz O, et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature. 2016;531:386–0.

    Article  PubMed  CAS  Google Scholar 

  • Duriez M, Mandouri Y, Lekbaby B, Wang H, Schnuriger A, Redelsperger F, Guerrera CI, Lefevre M, Fauveau V, Ahodantin J, et al. Alternative splicing of hepatitis B virus: a novel virus/host interaction altering liver immunity. J Hepatol. 2017;67:687–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fanning GC, Zoulim F, Hou J, Bertoletti A. Therapeutic strategies for hepatitis B virus infection: towards a cure. Nat Rev Drug Discov. 2019;18:827–44.

    Article  PubMed  CAS  Google Scholar 

  • Flecken T, Meier M-A, Skewes-Cox P, Barkan DT, Heim MH, Wieland SF, Holdorf MM. Mapping the heterogeneity of histone modifications on hepatitis B virus DNA using liver needle biopsies obtained from chronically infected patients. J Virol. 2019;93:e02036–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gallucci L, Kann M. Nuclear import of hepatitis B virus capsids and genome. Viruses. 2017;9:21.

    Article  PubMed Central  CAS  Google Scholar 

  • Ganem D. Hepatitis B virus infection—natural history and clinical consequences. N Engl J Med. 2004;350(11):1118–29.

    Article  PubMed  CAS  Google Scholar 

  • Gao W, Hu J. Formation of hepatitis B virus covalently closed circular DNA: removal of genome-linked protein. J Virol. 2007;81:6164–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gordon SC, Krastev Z, Horban A, Petersen J, Sperl J, Dinh P, Martins EB, Yee LJ, Flaherty JF, Kitrinos KM, et al. Efficacy of tenofovir disoproxil fumarate at 240 weeks in patients with chronic hepatitis B with high baseline viral load. Hepatology. 2013;58:505–13.

    Article  PubMed  CAS  Google Scholar 

  • Guidotti LG. Viral clearance without destruction of infected cells during acute HBV infection. Science. 1999;284:825–9.

    Article  PubMed  CAS  Google Scholar 

  • Guo Y-H, Li Y-N, Zhao J-R, Zhang J, Yan Z. HBc binds to the CpG islands of HBV cccDNA and promotes an epigenetic permissive state. Epigenetics. 2011;6:720–6.

    Article  PubMed  Google Scholar 

  • Habig JW, Loeb DD. Sequence identity of the direct repeats, DR1 and DR2, contributes to the discrimination between primer translocation and in situ priming during replication of the duck hepatitis B virus. J Mol Biol. 2006;364:32–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heise T. The hepatitis B virus PRE contains a splicing regulatory element. Nucleic Acids Res. 2006;34:353–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hong X, Kim ES, Guo H. Epigenetic regulation of hepatitis B virus covalently closed circular DNA: implications for epigenetic therapy against chronic hepatitis B: Hong, Kim, and Guo. Hepatology. 2017;66:2066–77.

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Liu K. Complete and incomplete hepatitis B virus particles: formation, function, and application. Viruses. 2017;9:56.

    Article  PubMed Central  CAS  Google Scholar 

  • Huang H-L, Jeng K-S, Hu C-P, Tsai C-H, Lo SJ, Chang C. Identification and characterization of a structural protein of hepatitis B virus: a polymerase and surface fusion protein encoded by a spliced RNA. Virology. 2000;275:398–410.

    Article  PubMed  CAS  Google Scholar 

  • Huang H-C, Chen C-C, Chang W-C, Tao M-H, Huang C. Entry of hepatitis B virus into immortalized human primary hepatocytes by Clathrin-dependent endocytosis. J Virol. 2012;86:9443–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang Q, Zhou B, Cai D, Zong Y, Wu Y, Liu S, Mercier A, Guo H, Hou J, Colonno R, et al. Rapid turnover of hepatitis B virus covalently closed circular DNA indicated by monitoring emergence and reversion of signature-mutation in treated chronic hepatitis B patients. Hepatology. 2020;73(1):41–52.

    Article  PubMed  CAS  Google Scholar 

  • Imam H, Khan M, Gokhale NS, McIntyre ABR, Kim G-W, Jang JY, Kim S-J, Mason CE, Horner SM, Siddiqui A. N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle. Proc Natl Acad Sci U S A. 2018;115:8829–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iwamoto M, Saso W, Nishioka K, Ohashi H, Sugiyama R, Ryo A, Ohki M, Yun J-H, Park S-Y, Ohshima T, et al. The machinery for endocytosis of epidermal growth factor receptor coordinates the transport of incoming hepatitis B virus to the endosomal network. J Biol Chem. 2020;295:800–7.

    Article  PubMed  Google Scholar 

  • Jain S, Chang T-T, Chen S, Boldbaatar B, Clemens A, Lin SY, Yan R, Hu C-T, Guo H, Block TM, et al. Comprehensive DNA methylation analysis of hepatitis B virus genome in infected liver tissues. Sci Rep. 2015;5:10478.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong J-K, Yoon G-S, Ryu W-S. Evidence that the 5Ј-end cap structure is essential for encapsidation of hepatitis B virus pregenomic RNA. J Virol. 2000;74:7.

    Article  Google Scholar 

  • Jiang B, Hildt E. Intracellular trafficking of HBV particles. Cells. 2020;9:2023.

    Article  PubMed Central  CAS  Google Scholar 

  • Julithe R, Abou-Jaoude G, Sureau C. Modification of the hepatitis B virus envelope protein glycosylation pattern interferes with secretion of viral particles, infectivity, and susceptibility to neutralizing antibodies. J Virol. 2014;88:9049–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kairat A, Beerheide W, Zhou G, Tang Z-Y, Edler L, Schröder CH. Truncated hepatitis B virus RNA in human hepatocellular carcinoma: its representation in patients with advancing age. Intervirology. 1999;42:228–37.

    Article  PubMed  CAS  Google Scholar 

  • Keasler VV, Hodgson AJ, Madden CR, Slagle BL. Enhancement of hepatitis B virus replication by the regulatory X protein in vitro and in vivo. J Virol. 2007;81:2656–62.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura K, Que L, Shimadu M, Koura M, Ishihara Y, Wakae K, Nakamura T, Watashi K, Wakita T, Muramatsu M. Flap endonuclease 1 is involved in cccDNA formation in the hepatitis B virus. PLoS Pathog. 2018;14:e1007124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ko C, Chakraborty A, Chou W-M, Hasreiter J, Wettengel JM, Stadler D, Bester R, Asen T, Zhang K, Wisskirchen K, et al. Hepatitis B virus genome recycling and de novo secondary infection events maintain stable cccDNA levels. J Hepatol. 2018;69:1231–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Köck J, Rösler C, Zhang J-J, Blum HE, Nassal M, Thoma C. Generation of covalently closed circular DNA of hepatitis B viruses via intracellular recycling is regulated in a virus specific manner. PLoS Pathog. 2010;6:e1001082.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Königer C, Wingert I, Marsmann M, Rösler C, Beck J, Nassal M. Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses. Proc Natl Acad Sci U S A. 2014;111:E4244–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kramvis A, Kew MC. The core promoter of hepatitis B virus. J Viral Hepat. 1999;6(6):415–27.

    Article  PubMed  CAS  Google Scholar 

  • Lai C-L, Wong DK-H, Wong GT-Y, Seto W-K, Fung J, Yuen M-F. Rebound of HBV DNA after cessation of nucleos/tide analogues in chronic hepatitis B patients with undetectable covalently closed circular DNA. JHEP Rep. 2020;2:100112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Duff Y, Blanchet M, Sureau C. The pre-S1 and antigenic loop infectivity determinants of the hepatitis B virus envelope proteins are functionally independent. J Virol. 2009;83:12443–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lebossé F, Inchauspé A, Locatelli M, Miaglia C, Diederichs A, Fresquet J, Chapus F, Hamed K, Testoni B, Zoulim F. Quantification and epigenetic evaluation of the residual pool of hepatitis B covalently closed circular DNA in long-term nucleoside analogue-treated patients. Sci Rep. 2020;10:21097.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee WM. Hepatitis B virus infection. N Engl J Med. 1997;337(24):1733–45.

    Article  PubMed  CAS  Google Scholar 

  • Leistner CM, Gruen-Bernhard S, Glebe D. Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell Microbiol. 2007;10(1):122–33.

    Google Scholar 

  • Levrero M, Zucman-Rossi J. Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol. 2016;64:S84–S101.

    Article  PubMed  CAS  Google Scholar 

  • Li T, Robert EI, van Breugel PC, Strubin M, Zheng N. A promiscuous α-helical motif anchors viral hijackers and substrate receptors to the CUL4–DDB1 ubiquitin ligase machinery. Nat Struct Mol Biol. 2010;17:105–11.

    Article  PubMed  CAS  Google Scholar 

  • Li M, Sohn JA, Seeger C. Distribution of hepatitis B virus nuclear DNA. J Virol. 2017;92:e01391–17.

    PubMed  PubMed Central  Google Scholar 

  • Liu F, Campagna M, Qi Y, Zhao X, Guo F, Xu C, Li S, Li W, Block TM, Chang J, et al. Alpha-interferon suppresses Hepadnavirus transcription by altering epigenetic modification of cccDNA minichromosomes. PLoS Pathog. 2013;9:e1003613.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Long Q, Yan R, Hu J, Cai D, Mitra B, Kim ES, Marchetti A, Zhang H, Wang S, Liu Y, et al. The role of host DNA ligases in hepadnavirus covalently closed circular DNA formation. PLoS Pathog. 2017;13:e1006784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lucifora J, Arzberger S, Durantel D, Belloni L, Strubin M, Levrero M, Zoulim F, Hantz O, Protzer U. Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J Hepatol. 2011;55:996–1003.

    Article  PubMed  CAS  Google Scholar 

  • Lutgehetmann M, Volz T, Köpke A, Broja T, Tigges E, Lohse AW, Fuchs E, Murray JM, Petersen J, Dandri M. In vivo proliferation of hepadnavirus-infected hepatocytes induces loss of covalently closed circular DNA in mice. Hepatology. 2010;52:16–24.

    Article  PubMed  CAS  Google Scholar 

  • Macovei A, Radulescu C, Lazar C, Petrescu S, Durantel D, Dwek RA, Zitzmann N, Nichita NB. Hepatitis B virus requires intact Caveolin-1 function for productive infection in HepaRG cells. J Virol. 2010;84:243–53.

    Article  PubMed  CAS  Google Scholar 

  • Macovei A, Petrareanu C, Lazar C, Florian P, Branza-Nichita N. Regulation of hepatitis B virus infection by Rab5, Rab7, and the endolysosomal compartment. J Virol. 2013;87:6415–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magnius L, Mason WS, Taylor J, Kann M, Glebe D, Dény P, Sureau C, Norder H, ICTV Report Consortium. ICTV virus taxonomy profile: hepadnaviridae. J Gen Virol. 2020;101:571–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mason WS, Jilbert AR, Summers J. Clonal expansion of hepatocytes during chronic woodchuck hepatitis virus infection. Proc Natl Acad Sci. 2005;102:1139–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mason WS, Liu C, Aldrich CE, Litwin S, Yeh MM. Clonal expansion of Normal-appearing human hepatocytes during chronic hepatitis B virus infection. JVI. 2010;84:8308–15.

    Article  CAS  Google Scholar 

  • Messageot F, Salhi S, Eon P, Rossignol J-M. Proteolytic processing of the hepatitis B virus e antigen precursor: cleavage at two furin consensus sequences. J Biol Chem. 2003;278:891–5.

    Article  PubMed  CAS  Google Scholar 

  • Mohd-Ismail NK, Lim Z, Gunaratne J, Tan YJ. Mapping the interactions of HBV cccDNA with host factors. IJMS. 2019;20:4276.

    Article  PubMed Central  CAS  Google Scholar 

  • Moolla N, Kew M, Arbuthnot P. Regulatory elements of hepatitis B virus transcription. J Viral Hepat. 2002;9:323–31.

    Article  PubMed  Google Scholar 

  • Moraleda G, Saputelli J, Aldrich CE, Averett D, Condreay L, Mason WS. Lack of effect of antiviral therapy in nondividing hepatocyte cultures on the closed circular DNA of woodchuck hepatitis virus. J Virol. 1997;71:9392–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moreau P, Cournac A, Palumbo GA, Marbouty M, Mortaza S, Thierry A, Cairo S, Lavigne M, Koszul R, Neuveut C. Tridimensional infiltration of DNA viruses into the host genome shows preferential contact with active chromatin. Nat Commun. 2018;9:4268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mueller H, Lopez A, Tropberger P, Wildum S, Schmaler J, Pedersen L, Han X, Wang Y, Ottosen S, Yang S, et al. PAPD5/7 are host factors that are required for hepatitis B virus RNA stabilization. Hepatology. 2019;69:1398–411.

    Article  PubMed  CAS  Google Scholar 

  • Murray JM, Wieland SF, Purcell RH, Chisari FV. Dynamics of hepatitis B virus clearance in chimpanzees. Proc Natl Acad Sci. 2005;102:17780–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nassal M. The arginine-rich domain of the hepatitis B virus Core protein is required for pregenome encapsidation and productive viral positive-strand DNA synthesis but not for virus assembly. J Virol. 1992;66:10.

    Article  Google Scholar 

  • Nassal M. HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut. 2015;64:1972–84.

    Article  PubMed  CAS  Google Scholar 

  • Newbold JE, Xin H, Tencza M, Sherman G, Dean J, Bowden S, Locarnini S. The covalently closed duplex form of the hepadnavirus genome exists in situ as a heterogeneous population of viral minichromosomes. J Virol. 1995;69:8.

    Article  Google Scholar 

  • Ning X, Nguyen D, Mentzer L, Adams C, Lee H, Ashley R, Hafenstein S, Hu J. Secretion of genome-free hepatitis B virus – single strand blocking model for Virion morphogenesis of para-retrovirus. PLoS Pathog. 2011;7:e1002255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osseman Q, Gallucci L, Au S, Cazenave C, Berdance E, Blondot M-L, Cassany A, Bégu D, Ragues J, Aknin C, et al. The chaperone dynein LL1 mediates cytoplasmic transport of empty and mature hepatitis B virus capsids. J Hepatol. 2018;68:441–8.

    Article  PubMed  CAS  Google Scholar 

  • Pastor F, Herrscher C, Patient R, Eymieux S, Moreau A, Burlaud-Gaillard J, Seigneuret F, de Rocquigny H, Roingeard P, Hourioux C. Direct interaction between the hepatitis B virus core and envelope proteins analyzed in a cellular context. Sci Rep. 2019;9(1):16178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patient R, Hourioux C, Roingeard P. Morphogenesis of hepatitis B virus and its subviral envelope particles. Cell Microbiol. 2009;11:1561–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pollicino T, Belloni L, Raffa G, Pediconi N, Squadrito G, Raimondo G, Levrero M. Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology. 2006;130:823–37.

    Article  PubMed  CAS  Google Scholar 

  • Prange R. Host factors involved in hepatitis B virus maturation, assembly, and egress. Med Microbiol Immunol. 2012;201:449–61.

    Article  PubMed  CAS  Google Scholar 

  • Qi Y, Gao Z, Xu G, Peng B, Liu C, Yan H, Yao Q, Sun G, Liu Y, Tang D, et al. DNA polymerase κ is a key cellular factor for the formation of covalently closed circular DNA of hepatitis B virus. PLoS Pathog. 2016;12:e1005893.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rabe B, Vlachou A, Pante N, Helenius A, Kann M. Nuclear import of hepatitis B virus capsids and release of the viral genome. Proc Natl Acad Sci. 2003;100:9849–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajoriya N, Combet C, Zoulim F, Janssen HLA. How viral genetic variants and genotypes influence disease and treatment outcome of chronic hepatitis B. Time for an individualised approach? J Hepatol. 2017;67:1281–97.

    Article  PubMed  Google Scholar 

  • Rall LB, Standring DN, Laub O, Rutter WJ. Transcription of hepatitis B virus by RNA polymerase II. Mol Cell Biol. 1983;3:1766–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rivière L, Gerossier L, Ducroux A, Dion S, Deng Q, Michel M-L, Buendia M-A, Hantz O, Neuveut C. HBx relieves chromatin-mediated transcriptional repression of hepatitis B viral cccDNA involving SETDB1 histone methyltransferase. J Hepatol. 2015;63:1093–102.

    Article  PubMed  CAS  Google Scholar 

  • Russnak R, Ganem D. Sequences 5′ to the polyadenylation signal mediate differential poly(A) site use in hepatitis B viruses. Genes Dev. 1990;4:764–76.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer S. Hepatitis B virus taxonomy and hepatitis B virus genotypes. World J Gastroenterol. 2007;13:14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmitz A, Schwarz A, Foss M, Zhou L, Rabe B, Hoellenriegel J, Stoeber M, Panté N, Kann M. Nucleoporin 153 arrests the nuclear import of hepatitis B virus capsids in the nuclear basket. PLoS Pathog. 2010;6:e1000741.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schutz T, Kairat A, Schröder CH. DNA sequence requirements for the activation of a CATAAA polyadenylation signal within the hepatitis B virus X Reading frame: rapid detection of truncated transcripts. Virology. 1996;223:401–5.

    Article  PubMed  CAS  Google Scholar 

  • Soussan P, Tuveri R, Nalpas B, Garreau F, Zavala F, Masson A, Pol S, Brechot C, Kremsdorf D. The expression of hepatitis B spliced protein (HBSP) encoded by a spliced hepatitis B virus RNA is associated with viral replication and liver fibrosis. J Hepatol. 2003;38:343–8.

    Article  PubMed  CAS  Google Scholar 

  • Stadelmayer B, Diederichs A, Chapus F, Rivoire M, Neveu G, Alam A, Fraisse L, Carter K, Testoni B, Zoulim F. Full-length 5’RACE identifies all major HBV transcripts in HBV-infected hepatocytes and patient serum. J Hepatol. 2020;73(1):40–51.

    Article  PubMed  CAS  Google Scholar 

  • Su Q, Wang S-F, Chang T-E, Breitkreutz R, Hennig H, Takegoshi K, Edler L, Schroder CH. Circulating Hepatitis B virus nucleic acids in chronic infection: representation of differently polyadenylated viral transcripts during progression to nonreplicative stages. Clin Cancer Res. 2001;7(7):2005–15.

    PubMed  CAS  Google Scholar 

  • Summers J, O’Connell A, Millman I. Genome of hepatitis B virus: restriction enzyme cleavage and structure of DNA extracted from Dane particles. Proc Natl Acad Sci. 1975;72:4597–601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Summers J, Jilbert AR, Yang W, Aldrich CE, Saputelli J, Litwin S, Toll E, Mason WS. Hepatocyte turnover during resolution of a transient hepadnaviral infection. Proc Natl Acad Sci. 2003;100:11652–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sunbul M. Hepatitis B virus genotypes: global distribution and clinical importance. World J Gastroenterol. 2014;20:5427.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sung W-K, Zheng H, Li S, Chen R, Liu X, Li Y, Lee NP, Lee WH, Ariyaratne PN, Tennakoon C, et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet. 2012;44:765–9.

    Article  PubMed  CAS  Google Scholar 

  • Tavis JE, Lomonosova E. The hepatitis B virus ribonuclease H as a drug target. Antivir Res. 2015;118:132–8.

    Article  PubMed  CAS  Google Scholar 

  • Tropberger P, Mercier A, Robinson M, Zhong W, Ganem DE, Holdorf M. Mapping of histone modifications in episomal HBV cccDNA uncovers an unusual chromatin organization amenable to epigenetic manipulation. Proc Natl Acad Sci. 2015;112:E5715–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tu T, Budzinska M, Shackel N, Urban S. HBV DNA integration: molecular mechanisms and clinical implications. Viruses. 2017;9:75.

    Article  PubMed Central  CAS  Google Scholar 

  • Tu T, Budzinska MA, Vondran FWR, Shackel NA, Urban S. Hepatitis B virus DNA integration occurs early in the viral life cycle in an in vitro infection model via sodium taurocholate cotransporting polypeptide-dependent uptake of enveloped virus particles. J Virol. 2018;92:e02007–17.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tu T, Zehnder B, Qu B, Urban S. De novo synthesis of hepatitis B virus nucleocapsids is dispensable for the maintenance and transcriptional regulation of cccDNA. JHEP Rep. 2021;3:100195.

    Article  PubMed  Google Scholar 

  • Verrier ER, Colpitts CC, Bach C, Heydmann L, Weiss A, Renaud M, Durand SC, Habersetzer F, Durantel D, Abou-Jaoudé G, et al. A targeted functional RNA interference screen uncovers glypican 5 as an entry factor for hepatitis B and D viruses: VIRAL HEPATITIS. Hepatology. 2016;63:35–48.

    Article  PubMed  CAS  Google Scholar 

  • Villet S, Pichoud C, Villeneuve J-P, Trépo C, Zoulim F. Selection of a multiple drug-resistant hepatitis B virus strain in a liver-transplanted patient. Gastroenterology. 2006;131:1253–61.

    Article  PubMed  Google Scholar 

  • Vivekanandan P, Daniel HDJ, Kannangai R, Martinez-Murillo F, Torbenson M. Hepatitis B virus replication induces methylation of both host and viral DNA. J Virol. 2010;84:4321–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang G-H, Seeger C. The reverse transcriptase of hepatitis B virus acts as a protein primer for viral DNA synthesis. Cell. 1992;71:663–70.

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Shen T, Huang X, Kumar GR, Chen X, Zeng Z, Zhang R, Chen R, Li T, Zhang T, et al. Serum hepatitis B virus RNA is encapsidated pregenome RNA that may be associated with persistence of viral infection and rebound. J Hepatol. 2016;65:700–10.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Sorensen EM, Naito A, Schott M, Kim S, Ahlquist P. Involvement of host cellular multivesicular body functions in hepatitis B virus budding. Proc Natl Acad Sci. 2007;104:10205–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei L, Ploss A. Core components of DNA lagging strand synthesis machinery are essential for hepatitis B virus cccDNA formation. Nat Microbiol. 2020;5:715–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Werle-Lapostolle B, Bowden S, Locarnini S, Wursthorn K, Petersen J, Lau G, Trepo C, Marcellin P, Goodman Z, Delaney WE IV. Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy1. Gastroenterology. 2004;126:1750–8.

    Article  PubMed  CAS  Google Scholar 

  • Wieland SF, Spangenberg HC, Thimme R, Purcell RH, Chisari FV. Expansion and contraction of the hepatitis B virus transcriptional template in infected chimpanzees. PNAS. 2004;101:2129–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wooddell CI, Yuen M-F, Chan HL-Y, Gish RG, Locarnini SA, Chavez D, Ferrari C, Given BD, Hamilton J, Kanner SB, et al. RNAi-based treatment of chronically infected patients and chimpanzees reveals that integrated hepatitis B virus DNA is a source of HBsAg. Sci Transl Med. 2017;9:eaan0241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, Huang Y, Qi Y, Peng B, Wang H, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. ELife. 2012;1:e00049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang W, Summers J. Integration of hepadnavirus DNA in infected liver: evidence for a linear precursor. J Virol. 1999;73:9710–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao L-H, Liu X, Yan H-X, Li W-Y, Zeng X, Yang Y, Zhao J, Liu S-P, Zhuang X-H, Lin C, et al. Genomic and oncogenic preference of HBV integration in hepatocellular carcinoma. Nat Commun. 2016a;7:12992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao X-L, Yang J-R, Lin S-Z, Ma H, Guo F, Yang R-F, Zhang H-H, Han J-C, Wei L, Pan X-B. Serum viral duplex-linear DNA proportion increases with the progression of liver disease in patients infected with HBV. Gut. 2016b;65:502–11.

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z, Wang JC-Y, Segura CP, Hadden-Perilla JA, Zlotnick A. The integrity of the intradimer interface of the hepatitis B virus capsid protein dimer regulates capsid self-assembly. ACS Chem Biol. 2020;15:3124–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zheng Y, Li J, Ou, J. -h. Regulation of hepatitis B virus core promoter by transcription factors HNF1 and HNF4 and the viral X protein. J Virol. 2004;78:6908–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou T, Guo J-T, Nunes FA, Molnar-Kimber KL, Wilson JM, Aldrich CE, Saputelli J, Litwin S, Condreay LD, Seeger C, et al. Combination therapy with lamivudine and adenovirus causes transient suppression of chronic woodchuck hepatitis virus infections. J Virol. 2000;74:11754–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu Y, Yamamoto T, Cullen J, Saputelli J, Aldrich CE, Miller DS, Litwin S, Furman PA, Jilbert AR, Mason WS. Kinetics of Hepadnavirus loss from the liver during inhibition of viral DNA synthesis. J Virol. 2001;75:311–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zlotnick A, Venkatakrishnan B, Tan Z, Lewellyn E, Turner W, Francis S. Core protein: a pleiotropic keystone in the HBV lifecycle. Antivir Res. 2015;121:82–93.

    Article  PubMed  CAS  Google Scholar 

  • Zoulim F, Locarnini S. Hepatitis B virus resistance to nucleos(t)ide analogues. Gastroenterology. 2009;137:1593–1608.e2.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Zoulim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chapus, F., Martinez, M.G., Testoni, B., Zoulim, F. (2021). Molecular Virology and Life Cycle of Hepatitis B Virus. In: Kao, JH. (eds) Hepatitis B Virus and Liver Disease. Springer, Singapore. https://doi.org/10.1007/978-981-16-3615-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3615-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3614-1

  • Online ISBN: 978-981-16-3615-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics