Skip to main content

In Vitro Propagation and Biotechnological Improvement Strategies of Plants with High-Intensity Sweetener and Anti-Diabetic Activities

  • Chapter
  • First Online:
Biotechnology of Anti-diabetic Medicinal Plants

Abstract

Diabetes mellitus is an endocrine and metabolic disease with high prevalence worldwide. Moreover, sugar intake has increased in the last decades leading to a higher risk of obesity and type 2 diabetes. Therefore, new compounds have been prospected for the food industry to produce very low-calorie and intense sweeteners from natural sources. Besides, medicinal plants with anti-diabetic activities have become popular as an alternative to drug treatments. This study aimed to perform a systematic review of plants that combine these two properties: sweeteners and anti-diabetic activity. Four plant species were identified following these features, one widely known as a sweetener (Stevia rebaudiana Bertoni) and three less common high-potency sweeteners (Cyclocarya paliurus (Batal.) Iljinsk, Glycyrrhiza glabra L., and Siraitia grosvenorii (Swingle) C. Jeffrey ex A. M. Lu and Zhi Y. Zhang). First, the bioactive compounds and the pathways involved in their biosynthesis are summarized. Afterwards, we describe the anti-diabetic action and other medicinal effects of these species. Moreover, we reviewed the principal in vitro propagation studies and biotechnological strategies reported so far on these species. Finally, the most promising biotechnological approaches and future perspectives for the industrial exploitation of these species are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acree TE, Lindley M (2008) Structure-activity relationship and AH-B after 40 years. In: Sweetness and sweeteners, pp 96–108

    Google Scholar 

  • Acree TE, Shallenberger RS, Ebeling S (1998) Thirty years of the AH-B theory. Dev Food Sci 40:1–13

    CAS  Google Scholar 

  • Ahmad N, Rab A, Ahmad N (2016) Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert). J Photochem Photobiol B Biol 154:51–56

    CAS  Google Scholar 

  • Ajagannanavar SL, Battur H, Shamarao S et al (2014) Effect of aqueous and alcoholic licorice (Glycyrrhiza glabra) root extract against Streptococcus mutans and Lactobacillus acidophilus in comparison to chlorhexidine: an in vitro study. J Int Oral Heal JIOH 6:29–34

    Google Scholar 

  • Alvarado-Orea IV, Paniagua-Vega D, Capataz-Tafur J et al (2020) Photoperiod and elicitors increase steviol glycosides, phenolics, and flavonoid contents in root cultures of Stevia rebaudiana. In Vitro Cell Dev Biol Plant 56:298–306

    CAS  Google Scholar 

  • Bai-Shen S (2012) Anti-obesity effects of mogrosides extracted from the fruits of Siraitia grosvenorii (Cucurbitaceae). Afr J Pharm Pharmacol 6:1492–1501

    Google Scholar 

  • Ban Q, Cheng J, Sun X et al (2020) Effect of feeding type 2 diabetes mellitus rats with symbiotic yogurt sweetened with monk fruit extract on serum lipid levels and hepatic AMPK (5′ adenosine monophosphate-activated protein kinase) signaling pathway. Food Funct 11:7696–7706

    CAS  PubMed  Google Scholar 

  • Bawane A, Gopalakrishna B, Akki K, Tiwari O (2012) An overview on Stevia: a natural calorie free sweetener. Int J Adv Pharm Biol Chem 1:362–368

    Google Scholar 

  • Bayraktar M (2019) Micropropagation of Stevia rebaudiana Bertoni using RITA® bioreactor. HortScience 54:725–731

    CAS  Google Scholar 

  • Bondarev N, Reshetnyak O, Nosov A (2001) Peculiarities of diterpenoid steviol glycoside production in in vitro cultures of Stevia rebaudiana Bertoni. Plant Sci 161:155–163

    CAS  Google Scholar 

  • Cheel J, Tůmová L, Areche C et al (2013) Variations in the chemical profile and biological activities of licorice (Glycyrrhiza glabra L.), as influenced by harvest times. Acta Physiol Plant 35:1337–1349

    CAS  Google Scholar 

  • Chen WJ, Wang J, Qi XY, Xie BJ (2007) The antioxidant activities of natural sweeteners, mogrosides, from fruits of Siraitia grosvenorii. Int J Food Sci Nutr 58:548–556

    CAS  PubMed  Google Scholar 

  • Chen X, Zhuang J, Liu J et al (2011) Potential AMPK activators of cucurbitane triterpenoids from Siraitia grosvenorii Swingle. Bioorg Med Chem 19:5776–5781

    CAS  PubMed  Google Scholar 

  • Cheng M, Qquia O, Wei Z (2009) Study on the suitable conditions in calli of Cyclocarya paliurus Iljinsk. J Zhengzhou Coll Anim Husb Eng 01

    Google Scholar 

  • Chiew MS, Lai KS, Hussein S, Abdullah JO (2019) Acute gamma irradiated Stevia rebaudiana Bertoni enhanced particular types of steviol glycosides. Asia Pacific J Mol Biol Biotechnol 27:56–65

    Google Scholar 

  • Chukwuma CI, Matsabisa MG, Ibrahim MA et al (2019) Medicinal plants with concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and hypertension: a review. J Ethnopharmacol 235:329–360

    CAS  PubMed  Google Scholar 

  • Cinatl J, Morgenstern B, Bauer G et al (2003) Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 361:2045–2046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crane PR, DuVal A (2013) 771. Cyclocarya paliurus. Curtis’s Bot Mag 30:222–232

    Google Scholar 

  • Das A, Mandal N (2010) Enhanced development of embryogenic callus in Stevia rebaudiana Bert. By additive and amino acids. Biotechnology 9:368–372

    CAS  Google Scholar 

  • Deng B, Shang X, Fang S et al (2012) Integrated effects of light intensity and fertilization on growth and flavonoid accumulation in Cyclocarya paliurus. J Agric Food Chem 60:6286–6292

    CAS  PubMed  Google Scholar 

  • Deng L, Lei J, He J et al (2014) Evaluation on genotoxicity and teratogenicity of aqueous extract from Cyclocarya paliurus leaves. Sci World J 2014:1–12

    Google Scholar 

  • Deutch MR, Grimm D, Wehland M et al (2019) Bioactive candy: effects of licorice on the cardiovascular system. Foods 8:495

    CAS  PubMed Central  Google Scholar 

  • Espinosa-Leal CA, Puente-Garza CA, García-Lara S (2018) In vitro plant tissue culture: means for production of biological active compounds. Planta 248:1–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • European Medicines Agency (2013) Assessment report on Glycyrrhiza glabra L. and/or Glycyrrhiza inflata Bat. and/or Glycyrrhiza uralensis Fisch., radix. United Kingdom

    Google Scholar 

  • Fakhrul RH, Norrizah JS, Jaapar SS, Noor Anilizawatima S (2014) The effect of potassium concentrations on the growth and development of Stevia rebaudiana (Bertoni) and production of stevioside and rebaudioside a. Am J Sustain Agric 8:42–51

    Google Scholar 

  • Fang S, Wang J, Wei Z, Zhu Z (2006) Methods to break seed dormancy in Cyclocarya paliurus (Batal) Iljinskaja. Sci Hortic (Amsterdam) 110:305–309

    CAS  Google Scholar 

  • Fenwick GR, Lutomski J, Nieman C (1990) Liquorice, Glycyrrhiza glabra L.—composition, uses and analysis. Food Chem 38:119–143

    CAS  Google Scholar 

  • Ferlita S, Yegiazaryan A, Noori N et al (2019) Type 2 diabetes mellitus and altered immune system leading to susceptibility to pathogens, especially Mycobacterium tuberculosis. J Clin Med 8:2219

    CAS  PubMed Central  Google Scholar 

  • Fu C, Lei C, Gan L et al (2010) Optimization of embryogenic-callus induction and embryogenesis of Glycyrrhiza glabra. Afr J Biotechnol 9:5823–5829

    CAS  Google Scholar 

  • Fu Y, Chen J, Li Y-J et al (2013) Antioxidant and anti-inflammatory activities of six flavonoids separated from licorice. Food Chem 141:1063–1071

    CAS  PubMed  Google Scholar 

  • Fu X, Yin Z-P, Chen J-G et al (2015) Production of chlorogenic acid and its derivatives in hairy root cultures of Stevia rebaudiana. J Agric Food Chem 63:262–268

    CAS  PubMed  Google Scholar 

  • Fuhrman B, Aviram M (2004) Dietary licorice-root antioxidants reduce heart diseases. Asia Pac Biotech News 08:1303–1305

    Google Scholar 

  • Gantait S, Das A, Mandal N (2015) Stevia: a comprehensive review on ethnopharmacological properties and in vitro regeneration. Sugar Tech 17:95–106

    Google Scholar 

  • Gantait S, Das A, Banerjee J (2018) Geographical distribution, botanical description and self-incompatibility mechanism of genus Stevia—a review. Sugar Tech 20:1–10

    CAS  Google Scholar 

  • Ghauri EG, Afridi MS, Marwat GA et al (2013) Micro-propagation of Stevia rebaudiana Bertoni through root explants. Pak J Bot 45:1411–1416

    CAS  Google Scholar 

  • Ghorbani T, Kahrizi D, Saeidi M, Arji I (2017) Effect of sucrose concentrations on Stevia rebaudiana Bertoni tissue culture and gene expression. Cell Mol Biol 63:33

    CAS  PubMed  Google Scholar 

  • Gomes MB, Rathmann W, Charbonnel B et al (2019) Treatment of type 2 diabetes mellitus worldwide: baseline patient characteristics in the global DISCOVER study. Diabetes Res Clin Pract 151:20–32

    PubMed  Google Scholar 

  • Gong X, Chen N, Ren K et al (2019) The fruits of Siraitia grosvenorii: a review of a chinese food-medicine. Front Pharmacol 10:1–11

    Google Scholar 

  • González C, Tapia M, Pérez E et al (2014) Main properties of steviol glycosides and their potential in the food industry: a review. Fruits 69:127–141

    Google Scholar 

  • González-Hernández D, Kairuz E, Capote-Pérez A et al (2019a) Obtención de perfiles genéticos de plantas de Stevia rebaudiana Bertoni propagadas mediante cultivo in vitro y corte de esquejes. Biotecnol Veg 19:249–257

    Google Scholar 

  • González-Hernández D, Kairuz E, Capote A et al (2019b) Micropropagación de plantas de Stevia rebaudiana Bertoni a partir de explantes ex vitro. Biotecnol Veg 19:53–63

    Google Scholar 

  • Goyal SK, Samsher, Goyal RK (2010) Stevia (Stevia rebaudiana) a bio-sweetener: a review. Int J Food Sci Nutr 61:1–10

    CAS  PubMed  Google Scholar 

  • Gujral ML, Sareen KN, Tangri KK et al (1959) Antiarthritic activity of Glycyrrhiza glabra Linn. Indian J Psychol 3:39–47

    CAS  PubMed  Google Scholar 

  • Guleria P, Yadav SK (2013) Agrobacterium mediated transient gene silensing (AMTS) in Stevia rebaudiana: insights into steviol glycoside biosynthesis pathway. PLoS One 8:e74731. https://doi.org/10.1371/journal.pone.0074731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Pandotra P, Gupta AP et al (2013) Direct rhizogenesis, in vitro stolon proliferation and high-throughput regeneration of plantlets in Glycyrrhiza glabra. Acta Physiol Plant 35:2699–2705

    PubMed  PubMed Central  Google Scholar 

  • Gupta P, Sharma S, Saxena S (2015) Biomass yield and steviol glycoside production in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol. Appl Biochem Biotechnol 176:863–874

    CAS  PubMed  Google Scholar 

  • Harada T, Ohtaki E, Misu K et al (2002) Congestive heart failure caused by Digitalis toxicity in an elderly man taking a licorice-containing chinese herbal laxative. Cardiology 98:218–218

    PubMed  Google Scholar 

  • Harada N, Ishihara M, Horiuchi H et al (2016) Mogrol derived from Siraitia grosvenorii mogrosides suppresses 3T3-L1 adipocyte differentiation by reducing cAMP-response element-binding protein phosphorylation and increasing AMP-activated protein kinase phosphorylation. PLoS One 11:e0162252

    PubMed  PubMed Central  Google Scholar 

  • Hu D, Shen Y, Mi L, Shangguan X (2010) Callus culture of Cyclocarya paliurus (Batal.) Iljinskaja leaves. For Stud China 12:147–150

    Google Scholar 

  • Hu Y, Yan J, Feng X et al (2017) Characterization of the complete chloroplast genome of wheel wingnut (Cyclocarya paliurus), an endemic in China. Conserv Genet Resour 9:273–275

    Google Scholar 

  • Huang N, Su J, Xian K et al (2020) Rapid propagation technology of Cyclocarya paliurus. Guihaia 40:108–118

    Google Scholar 

  • Itkin M, Davidovich-Rikanati R, Cohen S et al (2016) The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraitia grosvenorii. Proc Natl Acad Sci 113:E7619–E7628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jain P, Kachhwaha S, Kothari SL (2012) Optimization of micronutrients for the improvement of in vitro plant regeneration of Stevia rebaudiana (Bert.) Bertoni. Indian J Biotechnol 11:486–490

    CAS  Google Scholar 

  • Jaiswal N, Verma Y, Misra P (2017) Micropropagation and in vitro elicitation of licorice (Glycyrrhiza spp.). In Vitro Cell Dev Biol Plant 53:145–166

    CAS  Google Scholar 

  • Janarthanam B, Gopalakrishnan M, Sai GL, Sekar T (2009) Plant regeneration from leaf derived callus of Stevia rebaudiana Bertoni. Plant Tissue Cult Biotechnol 19:133–141

    Google Scholar 

  • Javed R, Mohamed A, Yücesan B et al (2017a) CuO nanoparticles significantly influence in vitro culture, steviol glycosides, and antioxidant activities of Stevia rebaudiana Bertoni. Plant Cell Tiss Org Cult 131:611–620

    CAS  Google Scholar 

  • Javed R, Usman M, Yücesan B et al (2017b) Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiol Biochem 110:94–99

    CAS  PubMed  Google Scholar 

  • Jia Z, Yang X (2009) A minor, sweet cucurbitane glycoside from Siraitia grosvenorii. Nat Prod Commun 4:769–772

    CAS  PubMed  Google Scholar 

  • Jiang Z-Y, Zhang X-M, Zhou J et al (2006) Two new triterpenoid glycosides from Cyclocarya paliurus. J Asian Nat Prod Res 8:93–98

    CAS  PubMed  Google Scholar 

  • Jiang C, Wang Q, Wei Y et al (2015) Cholesterol-lowering effects and potential mechanisms of different polar extracts from Cyclocarya paliurus leave in hyperlipidemic mice. J Ethnopharmacol 176:17–26

    CAS  PubMed  Google Scholar 

  • Jin J-S, Lee J-H (2012) Phytochemical and pharmacological aspects of Siraitia grosvenorii, luo han kuo. Orient Pharm Exp Med 12:233–239

    Google Scholar 

  • Kao KN, Michayluk MR (1975) Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media. Planta 126:105–110

    CAS  PubMed  Google Scholar 

  • Kaur R, Kaur H, Dhindsa AS (2013) Glycyrrhiza glabra: a phytopharmacological review. Int J Pharm Sci Res 4:2470–2477

    Google Scholar 

  • Kennelly EJ, Cai L, Long L et al (1995) Novel highly sweet secodammarane glycosides from Pterocarya paliurus. J Agric Food Chem 43:2602–2607

    CAS  Google Scholar 

  • Khan SA, Ur Rahman L, Shanker K, Singh M (2013) Agrobacterium tumefaciens-mediated transgenic plant and somaclone production through direct and indirect regeneration from leaves in Stevia rebaudiana with their glycoside profile. Protoplasma 251:661–670

    PubMed  Google Scholar 

  • Khan MAB, Hashim MJ, King JK et al (2019) Epidemiology of type 2 diabetes–global burden of disease and forecasted trends. J Epidemiol Glob Health 10:107

    Google Scholar 

  • Khan SA, Verma P, Ur Rahman L, Parasharami VA (2021) Exploration of biotechnological studies in low-calorie sweetener Stevia rebaudiana: present and future prospects. In: Medicinal and aromatic plants. Elsevier, Amsterdam, pp 289–324

    Google Scholar 

  • Kim DH, Gopal J, Sivanesan I (2017) Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Adv 7:36492–36505

    CAS  Google Scholar 

  • Kim MJ, Zheng J, Liao MH, Jang I (2019) Overexpression of SrUGT76G1 in Stevia alters major steviol glycosides composition towards improved quality. Plant Biotechnol J 17:1037–1047

    CAS  PubMed  Google Scholar 

  • Kinghorn AD, Soejarto DD (2002) Discovery of terpenoid and phenolic sweeteners from plants. Pure Appl Chem 74:1169–1179

    CAS  Google Scholar 

  • Kojoma M, Ohyama K, Seki H et al (2010) In vitro proliferation and triterpenoid characteristics of licorice (Glycyrrhiza uralensis Fischer, Leguminosae) stolons. Plant Biotechnol 27:59–66

    CAS  Google Scholar 

  • Kukreja AK (1998) In vitro propagation of liquorice (Glycyrrhiza glabra L.) through multiple shoot formation. J Spices Aromat Crop 7:13–17

    Google Scholar 

  • Kurihara H, Asami S, Shibata H et al (2003a) Hypolipemic effect of Cyclocarya paliurus (Batal) Iljinskaja in lipid-loaded mice. Biol Pharm Bull 26:383–385

    CAS  PubMed  Google Scholar 

  • Kurihara H, Fukami H, Kusumoto A et al (2003b) Hypoglycemic action of Cyclocarya paliurus (Batal.) Iljinskaja in normal and diabetic mice. Biosci Biotechnol Biochem 67:877–880

    CAS  PubMed  Google Scholar 

  • Lemus-Mondaca R, Vega-Gálvez A, Zura-Bravo L, Ah-Hen K (2012) Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. Food Chem 132:1121–1132

    CAS  PubMed  Google Scholar 

  • Li C, Lin L-M, Sui F et al (2014) Chemistry and pharmacology of Siraitia grosvenorii: a review. Chin J Nat Med 12:89–102

    CAS  PubMed  Google Scholar 

  • Li F, Yang F, Liu X et al (2017) Cucurbitane glycosides from the fruit of Siraitia grosvenorii and their effects on glucose uptake in human HepG2 cells in vitro. Food Chem 228:567–573

    CAS  PubMed  Google Scholar 

  • Libik-Konieczny M, Michalec-Warzecha Ż, Dziurka M et al (2020) Steviol glycosides profile in Stevia rebaudiana Bertoni hairy roots cultured under oxidative stress-inducing conditions. Appl Microbiol Biotechnol 104:5929–5941

    CAS  PubMed  Google Scholar 

  • Lim TK (2016) Glycyrrhiza glabra. In: Edible medicinal and non-medicinal plants. Springer, Dordrecht, pp 354–457

    Google Scholar 

  • Lin G-P, Jiang T, Hu X-B et al (2007) Effect of Siraitia grosvenorii polysaccharide on glucose and lipid of diabetic rabbits induced by feeding high fat/high sucrose chow. Exp Diabetes Res 2007:1–4

    Google Scholar 

  • Liu DD, Ji XW, Li RW (2013) Effects of Siraitia grosvenorii fruits extracts on physical fatigue in mice. Iran J Pharm Res 12:115–121

    PubMed  PubMed Central  Google Scholar 

  • Liu X, Xie J, Jia S et al (2017) Immunomodulatory effects of an acetylated Cyclocarya paliurus polysaccharide on murine macrophages RAW264.7. Int J Biol Macromol 98:576–581

    CAS  PubMed  Google Scholar 

  • Liu H, Wang C, Qi X et al (2018a) Antiglycation and antioxidant activities of mogroside extract from Siraitia grosvenorii (Swingle) fruits. J Food Sci Technol 55:1880–1888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Cao Y, Fang S et al (2018b) Antidiabetic effect of Cyclocarya paliurus leaves depends on the contents of antihyperglycemic flavonoids and antihyperlipidemic triterpenoids. Molecules 23:1042

    PubMed Central  Google Scholar 

  • Liu Y, Fang S, Yang W et al (2018c) Light quality affects flavonoid production and related gene expression in Cyclocarya paliurus. J Photochem Photobiol B Biol 179:66–73

    CAS  Google Scholar 

  • Liu Y, Fang S, Zhou M et al (2018d) Geographic variation in water-soluble polysaccharide content and antioxidant activities of Cyclocarya paliurus leaves. Ind Crop Prod 121:180–186

    Google Scholar 

  • Liu H, Qi X, Yu K et al (2019) AMPK activation is involved in hypoglycemic and hypolipidemic activities of mogroside-rich extract from Siraitia grosvenorii (Swingle) fruits on high-fat diet/streptozotocin-induced diabetic mice. Food Funct 10:151–162

    CAS  PubMed  Google Scholar 

  • Lopez-Arellano M, Dhir S, Albino N et al (2015) Somatic embryogenesis and plantlet regeneration from protoplast culture of Stevia rebaudiana. Br Biotechnol J 5:1–12

    Google Scholar 

  • Lu H, Liu J, Zhang H, Gao S (2011) Regeneration of lo han kuo (Siraitia grosvenori) in vitro by direct organogenesis. J Northeast Agric Univ 18:18–23

    CAS  Google Scholar 

  • Luwańska A, Perz A, Mańkowska G, Wielgus K (2015) Application of in vitro stevia (Stevia rebaudiana Bertoni) cultures in obtaining steviol glycoside rich material. Herba Pol 61:50–63

    Google Scholar 

  • Ma C, Ma Z, Liao X et al (2013) Immunoregulatory effects of glycyrrhizic acid exerts anti-asthmatic effects via modulation of Th1/Th2 cytokines and enhancement of CD4+CD25+Foxp3+ regulatory T cells in ovalbumin-sensitized mice. J Ethnopharmacol 148:755–762

    CAS  PubMed  Google Scholar 

  • Mehrotra S, Kukreja AK, Singh Khanuja SP, Mishra BN (2008) Genetic transformation studies and scale up of hairy root culture of Glycyrrhiza glabra in bioreactor. Electron J Biotechnol 11:1–7

    Google Scholar 

  • Michalec-Warzecha Ż, Pistelli L, D’Angiolillo F, Libik-Konieczny M (2016) Establishment of highly efficient agrobacterium rhizogenes-mediated transformation for Stevia rebaudiana Bertoni explants. Acta Biol Cracov Bot 58:113–118

    CAS  Google Scholar 

  • Modi A, Kumar N (2018) Conventional and biotechnological approaches to enhance steviol glycosides (SGs) in Stevia rebaudiana Bertoni. In: Biotechnological approaches for medicinal and aromatic plants. Springer, Singapore, pp 53–62

    Google Scholar 

  • Mubarak M, El Halmouch Y, Belal A et al (2015) Improving sweet leaf (Stevia rebaudiana var. Bertoni) resistance to bialaphos herbicide via bar gene transfer. Plant Omics 8:232–237

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Murray MT (2020) Glycyrrhiza glabra (licorice). In: Textbook of natural medicine. Elsevier, Amsterdam, pp 641–647.e3

    Google Scholar 

  • Mustafa SB, Akram M, Muhammad Asif H et al (2019) Antihyperglycemic activity of hydroalcoholic extracts of selective medicinal plants Curcuma longa, Lavandula stoechas, Aegle marmelos, and Glycyrrhiza glabra and their polyherbal preparation in alloxan-induced diabetic mice. Dose-Response 17:155932581985250

    Google Scholar 

  • Nourazarian SM, Nourazarian A, Majidinia M, Roshaniasl E (2016) Effect of root extracts of medicinal herb Glycyrrhiza glabra on HSP90 gene expression and apoptosis in the HT-29 colon cancer cell line. Asian Pac J Cancer Prev 16:8563–8566

    Google Scholar 

  • Ohta M, Sasa S, Inoue A et al (2010) Characterization of novel steviol glycosides from leaves of Stevia rebaudiana Morita. J Appl Glycosci 57:199–209

    CAS  Google Scholar 

  • Pandey DK, Ayangla NW (2018) Biotechnological aspects of the production of natural sweetener glycyrrhizin from Glycyrrhiza sp. Phytochem Rev 17:397–430

    CAS  Google Scholar 

  • Pandey M, Chikara SK (2015) Effect of salinity and drought stress on growth parameters, glycoside content and expression level of vital genes in steviol glycosides biosynthesis pathway of Stevia rebaudiana (Bertoni). Int J Genet 7:153–160

    CAS  Google Scholar 

  • Pandey H, Pandey P, Pandey SS et al (2016) Meeting the challenge of stevioside production in the hairy roots of Stevia rebaudiana by probing the underlying process. Plant Cell Tiss Org Cult 126:511–521

    CAS  Google Scholar 

  • Pandey AK, Food D, Chauhan OP, Organisation D (2019) Monk fruit (Siraitia grosvenorii) - health aspects and food applications. Pantnagar J Res 17:191–198

    Google Scholar 

  • Parsaeimehr A, Mousavi B (2009) Producing friable callus for suspension culture in Glycyrrhiza glabra. Adv Environ Biol 3:125–128

    CAS  Google Scholar 

  • Pastorino G, Cornara L, Soares S et al (2018) Liquorice (Glycyrrhiza glabra): a phytochemical and pharmacological review. Phytother Res 32:2323–2339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pawar SV, Khandagale VG, Jambhale VM et al (2015) In vitro regeneration studies in Stevia through nodal segment and shoot tip. Bioscan 10:1007–1010

    Google Scholar 

  • Prakash O, Mehrotra S, Krishna A, Mishra BN (2010) A neural network approach for the prediction of in vitro culture parameters for maximum biomass yields in hairy root cultures. J Theor Biol 265:579–585

    CAS  PubMed  Google Scholar 

  • Prata C, Zambonin L, Rizzo B et al (2017) Glycosides from Stevia rebaudiana Bertoni possess insulin-mimetic and antioxidant activities in rat cardiac fibroblasts. Oxid Med Cell Longev 2017:1–13

    Google Scholar 

  • Puri M, Sharma D, Tiwari AK (2011) Downstream processing of stevioside and its potential applications. Biotechnol Adv 29:781–791

    CAS  PubMed  Google Scholar 

  • Qi X-Y, Chen W-J, Zhang L-Q, Xie B-J (2008) Mogrosides extract from Siraitia grosvenorii scavenges free radicals in vitro and lowers oxidative stress, serum glucose, and lipid levels in alloxan-induced diabetic mice. Nutr Res 28:278–284

    CAS  PubMed  Google Scholar 

  • Qiao J, Luo Z, Gu Z et al (2019) Identification of a novel specific cucurbitadienol synthase allele in Siraitia grosvenorii correlates with high catalytic efficiency. Molecules 24:627

    PubMed Central  Google Scholar 

  • Quirós-Sauceda AE, Ovando-Martínez M, Velderrain-Rodríguez GR et al (2016) Licorice (Glycyrrhiza glabra Linn.) oils. In: Essential oils in food preservation, flavor and safety. Elsevier, Amsterdam, pp 523–530

    Google Scholar 

  • Rameeh V, Gerami M, Ghasemi Omran V, Ghavampour S (2017) Impact of glycine betaine on salinity tolerance of stevia (Stevia rebaudiana Bertoni) under in vitro condition. Cercet Agron Mold 50:95–105

    Google Scholar 

  • Rasouli D, Werbrouck S, Maleki B et al (2021) Elicitor-induced in vitro shoot multiplication and steviol glycosides production in Stevia rebaudiana. South Afr J Bot 137:265–271

    CAS  Google Scholar 

  • Rezaizad M, Hashemi-Moghaddam H, Abbaspour H et al (2019) Photocatalytic effect of TiO2 nanoparticles on morphological and photochemical properties of stevia plant (Stevia Rebaudiana Bertoni). Sugar Tech 21:1024–1030

    CAS  Google Scholar 

  • Sabbadin C, Bordin L, Donà G et al (2019) Licorice: from pseudohyperaldosteronism to therapeutic uses. Front Endocrinol (Lausanne) 10:1–6

    Google Scholar 

  • Safari M, Zebarjadi A, Chaghamirza K (2013) Study of callus induction of Glycyrrhiza glabra as an important medicinal plant. In: The Second International Conference on Agriculture and Natural Resources, pp 483–485

    Google Scholar 

  • Saha S, Nosál’ová G, Ghosh D et al (2011) Structural features and in vivo antitussive activity of the water extracted polymer from Glycyrrhiza glabra. Int J Biol Macromol 48:634–638

    CAS  PubMed  Google Scholar 

  • Sánchez-Aceves LM, Dublán-García O, López-Martínez L-X et al (2017) Reduction of the oxidative stress status using steviol glycosides in a fish model (Cyprinus carpio). Biomed Res Int 2017:1–9

    Google Scholar 

  • Sanchéz-Cordova ÁJ, Capataz-Tafur J, Barrera-Figueroa BE et al (2019) Agrobacterium rhizogenes-mediated transformation enhances steviol glycosides production and growth in Stevia rebaudiana plantlets. Sugar Tech 21:398–406

    Google Scholar 

  • Saraiva A, Carrascosa C, Raheem D et al (2020) Natural sweeteners: the relevance of food naturalness for consumers, food security aspects, sustainability and health impacts. Int J Environ Res Public Health 17:6285

    CAS  PubMed Central  Google Scholar 

  • Shallenberger RS, Acree TE (1967) Molecular theory of sweet taste. Nature 216:480–482

    CAS  PubMed  Google Scholar 

  • Shallenberger RS, Acree TE (1969) Molecular structure and sweet taste. J Agric Food Chem 17:701–703

    CAS  Google Scholar 

  • Shams-Ardakani M, Mohagheghzadeh A, Ghannadi A, Barati A (2007) Formation of glycyrrhizin by in vitro cultures of Glycyrrhiza glabra. Chem Nat Compd 43:353–354

    CAS  Google Scholar 

  • Sharma P, Tiwari G, Tripathi MK et al (2008) Morphogenesis and plantlet regeneration from leaf disc explants of liquorice (Glycyrrhiza glabra L.). Plant Cell Biotechnol Mol Biol 9:117–126

    CAS  Google Scholar 

  • Sharma P, Tripathi MK, Tiwari G et al (2010) Regeneration of liquorice (Glycyrrhiza glabra L.) cultured nodal segments. Indian J Plant Physiol 15:1–10

    CAS  Google Scholar 

  • Shi H, Liao J, Cui S et al (2019) Effects of forchlorfenuron on the morphology, metabolite accumulation, and transcriptional responses of Siraitia grosvenorii fruit. Molecules 24:4076

    CAS  PubMed Central  Google Scholar 

  • Shibata S (2000) A drug over the millenia: pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi 120:849–862

    CAS  PubMed  Google Scholar 

  • Shirazi Z, Aalami A, Tohidfar M, Sohani MM (2018) Metabolic engineering of glycyrrhizin pathway by over-expression of beta-amyrin 11-oxidase in transgenic roots of Glycyrrhiza glabra. Mol Biotechnol 60:412–419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Šic Žlabur J, Voća S, Dobričević N et al (2013) Stevia rebaudiana Bertoni—a review of nutritional and biochemical properties of natural sweetener. Agric Conspec Sci 78:25–30

    Google Scholar 

  • Siems K, Kluge G, Jakupovic S, et al (2018) Novel triterpene-glycosides as sweeteners or sweetener enhancer. Dec. 13:US 2018/0354980 A1

    Google Scholar 

  • Singh SD, Rao GP (2005) Stevia: the herbal sugar of 21st century. Sugar Tech 7:17–24

    CAS  Google Scholar 

  • Singh HP, Dhir S, Dhir SK (2008) Stevia. In: Compendium of transgenic crop plants: transgenic sugar, tuber and fiber crops, pp 97–115

    Google Scholar 

  • Soejarto DD, Compadre CM, Medon PJ et al (1983) Potential sweetening agents of plant origin. II. Field search for sweet-tasting Stevia species. Econ Bot 37:71–79

    Google Scholar 

  • Sreedhar RV, Venkatachalam L, Thimmaraju R et al (2008) Direct organogenesis from leaf explants of Stevia rebaudiana and cultivation in bioreactor. Biol Plant 52:355–360

    CAS  Google Scholar 

  • Sridhar TM, Aswath CR (2014) Influence of additives on enhanced in vitro shoot multiplication of Stevia rebaudiana (Bert.)—an important anti diabetic medicinal plant. Am J Plant Sci 05:192–199

    Google Scholar 

  • Sterry GE (1875) Improvement in compounds for flavoring and preserving tobacco. United States pat. Off. 166,155, d

    Google Scholar 

  • Suzuki YA, Murata Y, Inui H et al (2005) Triterpene glycosides of Siraitia grosvenorii inhibit rat intestinal maltase and suppress the rise in blood glucose level after a single oral administration of maltose in rats. J Agric Food Chem 53:2941–2946

    CAS  PubMed  Google Scholar 

  • Suzuki YA, Tomoda M, Murata Y et al (2007) Antidiabetic effect of long-term supplementation with Siraitia grosvenorii on the spontaneously diabetic Goto–Kakizaki rat. Br J Nutr 97:770–775

    CAS  PubMed  Google Scholar 

  • Świąder K, Wegner K, Piotrowska A et al (2019) Plants as a source of natural high-intensity sweeteners: a review. J Appl Bot Food Qual 92:160–171

    Google Scholar 

  • Taak P, Tiwari S, Koul B (2020) Optimization of regeneration and agrobacterium-mediated transformation of stevia (Stevia rebaudiana Bertoni): a commercially important natural sweetener plant. Sci Rep 10:16224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tadhani M, Jadeja RP, Rema S (2006) Micropropagation of Stevia rebaudiana using multiple shoot culture. J Cell Tissue Res 6:545–548

    Google Scholar 

  • Tang S-Q, Bin X-Y, Peng Y-T et al (2007) Assessment of genetic diversity in cultivars and wild accessions of Luohanguo (Siraitia grosvenorii [Swingle] a. M. Lu et Z. Y. Zhang), a species with edible and medicinal sweet fruits endemic to southern China, using RAPD and AFLP markers. Genet Resour Crop Evol 54:1053–1061

    CAS  Google Scholar 

  • Tang Q, Ma X, Mo C et al (2011) An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC Genomics 12:343. https://doi.org/10.1186/1471-2164-12-343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Z-H, Li T, Tong Y-G et al (2015) A systematic review of the anticancer properties of compounds isolated from licorice (Gancao). Planta Med 81:1670–1687

    CAS  PubMed  Google Scholar 

  • Tavakoli H, Tavakoli N, Moradi F (2019) The effect of the elicitors on the steviol glycosides biosynthesis pathway in Stevia rebaudiana. Funct Plant Biol 46:787

    CAS  PubMed  Google Scholar 

  • Tenea G, Calin A, Rosu A et al (2006) Manipulation of biomass and biosynthetic potential of Morus nigra and Glycyrhiza glabra tissue culture by agrobacterium rhizogenes mediated genetic transformation. In: 4th conference on medicinal and aromatic plants of south-east European countries. Pp, pp 250–255

    Google Scholar 

  • Thilakarathne PL, Peiris SE, Lankika PC (2019) Efficient low cost seesap (CSUP) technique for micropropagation of newly introduced sweetener plant, Stevia rebaudiana Bertoni. Afr J Biotechnol 18:540–547

    CAS  Google Scholar 

  • Thimmappa R, Geisler K, Louveau T et al (2014) Triterpene biosynthesis in plants. Annu Rev Plant Biol 65:225–257. https://doi.org/10.1146/annurev-arplant-050312-120229

    Article  CAS  PubMed  Google Scholar 

  • Thiyagarajan M, Venkatachalam P (2010) In vitro multiple shoot regeneration from nodal explants of Stevia rebaudiana (BERT): an antidiabetic medicinal plant. Plant Cell Biotechnol Mol Biol 11:59–64

    CAS  Google Scholar 

  • Ukiya M, Akihisa T, Tokuda H et al (2002) Inhibitory effects of cucurbitane glycosides and other triterpenoids from the fruit of Momordica grosvenori on Epstein−Barr virus early antigen induced by tumor promoter 12-O-tetradecanoylphorbol-13-acetate. J Agric Food Chem 50:6710–6715

    CAS  PubMed  Google Scholar 

  • Uskutoğlu T, Uskutoğlu D, Turgut K (2019) Effects on pre-treatment and different tissue culture media for androgenesis in Stevia rebaudiana Bertoni. Sugar Tech 21:1016–1023

    Google Scholar 

  • Wang ZY, Nixon DW (2001) Licorice and cancer. Nutr Cancer 39:1–11

    CAS  PubMed  Google Scholar 

  • Wang Q, Jiang C, Fang S et al (2013) Antihyperglycemic, antihyperlipidemic and antioxidant effects of ethanol and aqueous extracts of Cyclocarya paliurus leaves in type 2 diabetic rats. J Ethnopharmacol 150:1119–1127

    PubMed  Google Scholar 

  • Wang Z, Xie J, Yang Y et al (2017) Sulfated Cyclocarya paliurus polysaccharides markedly attenuates inflammation and oxidative damage in lipopolysaccharide-treated macrophage cells and mice. Sci Rep 7:40402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Yang Z, Xin Z et al (2019) Analysis of mogrosides in Siraitia grosvenorii fruits at different stages of maturity. Nat Prod Commun 14:1934578X1987862

    Google Scholar 

  • Wittekind A, Walton J (2014) Worldwide trends in dietary sugars intake. Nutr Res Rev 27:330–345

    CAS  PubMed  Google Scholar 

  • Wu F, Jin Z, Jin J (2013) Hypoglycemic effects of glabridin, a polyphenolic flavonoid from licorice, in an animal model of diabetes mellitus. Mol Med Rep 7:1278–1282

    CAS  PubMed  Google Scholar 

  • Wu B, Suo F, Lei W, Gu L (2014) Comprehensive analysis of alternative splicing in Digitalis purpurea by strand-specific RNA-Seq. PLoS One 9:e106001

    PubMed  PubMed Central  Google Scholar 

  • Wu Q, La Hovary C, Chen H-Y et al (2020) An efficient Stevia rebaudiana transformation system and in vitro enzyme assays reveal novel insights into UGT76G1 function. Sci Rep 10:3773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia M, Han X, He H et al (2018) Improved de novo genome assembly and analysis of the chinese cucurbit Siraitia grosvenorii, also known as monk fruit or luo-han-guo. Gigascience 7:1–9

    PubMed  PubMed Central  Google Scholar 

  • Xiangyang Q, Weijun C, Liegang L et al (2006) Effect of a Siraitia grosvenorii extract containing mogrosides on the cellular immune system of type 1 diabetes mellitus mice. Mol Nutr Food Res 50:732–738

    PubMed  Google Scholar 

  • Xiao H, Wen B, Ning Z et al (2017) Cyclocarya paliurus tea leaves enhances pancreatic β cell preservation through inhibition of apoptosis. Sci Rep 7:9155

    PubMed  PubMed Central  Google Scholar 

  • Xie Y, Wang Y, Shang X et al (2009) Preliminary study on the tissue culture and rapid propagation system of Cyclocarya paliurus. Acta Bot Boreali Occident Sin 9:2331–2338

    Google Scholar 

  • Xie J-H, Xie M-Y, Nie S-P et al (2010) Isolation, chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus (Batal.) Iljinskaja. Food Chem 119:1626–1632

    CAS  Google Scholar 

  • Xie J-H, Dong C, Nie S-P et al (2015a) Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja leaves. Food Chem 186:97–105

    CAS  PubMed  Google Scholar 

  • Xie Y, Li Y, Liu N et al (2015b) Effects of cerium nitrate on the growth and physiological characteristics in Cyclocarya paliurus seedlings. J Rare Earths 33:898–904

    CAS  Google Scholar 

  • Xie J-H, Wang Z-J, Shen M-Y et al (2016) Sulfated modification, characterization and antioxidant activities of polysaccharide from Cyclocarya paliurus. Food Hydrocoll 53:7–15

    CAS  Google Scholar 

  • Yadav SK, Guleria P (2012) Steviol glycosides from Stevia: biosynthesis pathway review and their application in foods and medicine. Crit Rev Food Sci Nutr 52:988–998

    CAS  PubMed  Google Scholar 

  • Yadav K, Singh N (2012) Factors influencing in vitro plant regeneration of liquorice (Glycyrrhiza glabra L.). Iran J Biotechnol 10:161–167

    CAS  Google Scholar 

  • Yadav AK, Singh S, Dhyani D, Ahuja PS (2011) A review on the improvement of stevia [Stevia rebaudiana (Bertoni)]. Can J Plant Sci 91:1–27

    Google Scholar 

  • Yan H, Liang C, Li Y (2010) Improved growth and quality of Siraitia grosvenorii plantlets using a temporary immersion system. Plant Cell Tiss Org Cult 103:131–135

    Google Scholar 

  • Yang Z-W, Ouyang K-H, Zhao J et al (2016) Structural characterization and hypolipidemic effect of Cyclocarya paliurus polysaccharide in rat. Int J Biol Macromol 91:1073–1080

    CAS  PubMed  Google Scholar 

  • Yang Z, Wang J, Li J et al (2018) Antihyperlipidemic and hepatoprotective activities of polysaccharide fraction from Cyclocarya paliurus in high-fat emulsion-induced hyperlipidaemic mice. Elsevier, Amsterdam

    Google Scholar 

  • Yao Y, Yan L, Chen H et al (2020) Cyclocarya paliurus polysaccharides alleviate type 2 diabetic symptoms by modulating gut microbiota and short-chain fatty acids. Phytomedicine 77:153268

    CAS  PubMed  Google Scholar 

  • Yin Z, Shangguan X, Chen J et al (2013) Growth and triterpenic acid accumulation of Cyclocarya paliurus cell suspension cultures. Biotechnol Bioprocess Eng 18:606–614

    CAS  Google Scholar 

  • Yu Y, Shen M, Wang Z et al (2017) Sulfated polysaccharide from Cyclocarya paliurus enhances the immunomodulatory activity of macrophages. Carbohydr Polym 174:669–676

    CAS  PubMed  Google Scholar 

  • Zhang J, Shen Q, Lu J-C et al (2010) Phenolic compounds from the leaves of Cyclocarya paliurus (Batal.) Ijinskaja and their inhibitory activity against PTP1B. Food Chem 119:1491–1496

    CAS  Google Scholar 

  • Zhang L, Hu TJ, Lu CN (2011) Immunomodulatory and antioxidant activity of a Siraitia grosvenorii polysaccharide in mice. Afr J Biotechnol 10:10045–10053

    CAS  Google Scholar 

  • Zhang K, Luo Z, Guo Y et al (2016) Methyl jasmonate-induced accumulation of metabolites and transcriptional responses involved in triterpene biosynthesis in Siraitia grosvenorii fruit at different growing stages. Acta Soc Bot Pol 85:1–12

    Google Scholar 

  • Zhang Y, Zhou G, Peng Y et al (2020) Anti-hyperglycemic and anti-hyperlipidemic effects of a special fraction of Luohanguo extract on obese T2DM rats. J Ethnopharmacol 247:112273

    CAS  PubMed  Google Scholar 

  • Zhao H, Tang Q, Mo C et al (2017) Cloning and characterization of squalene synthase and cycloartenol synthase from Siraitia grosvenorii. Acta Pharm Sin B 7:215–222

    PubMed  Google Scholar 

  • Zhao H, Wang J, Tang Q et al (2018) Functional expression of two NADPH-cytochrome P450 reductases from Siraitia grosvenorii. Int J Biol Macromol 120:1515–1524

    CAS  PubMed  Google Scholar 

  • Zhao W, Tang D, Yuan E et al (2020) Inducement and cultivation of novel red Cyclocarya paliurus callus and its unique morphological and metabolic characteristics. Ind Crop Prod 147:112266

    CAS  Google Scholar 

  • Zheng J, Zhuang Y, Mao H-Z, Jang I-C (2019) Overexpression of SrDXS1 and SrKAH enhances steviol glycosides content in transgenic Stevia plants. BMC Plant Biol 19:1

    PubMed  PubMed Central  Google Scholar 

  • Zheng X, Zhao M-G, Jiang C-H et al (2020) Triterpenic acids-enriched fraction from Cyclocarya paliurus attenuates insulin resistance and hepatic steatosis via PI3K/Akt/GSK3β pathway. Phytomedicine 66:153130

    CAS  PubMed  Google Scholar 

  • Zhou Y, Zheng Y, Ebersole J, Huang C (2009) Insulin secretion stimulating effects of mogroside V and fruit extract of luo han kuo (Siraitia grosvenori Swingle) fruit extract. Yao Xue Xue Bao 44:1252–1257

    PubMed  Google Scholar 

  • Zhu Q, Liu X, Wang P et al (2019) The complete chloroplast genome sequence of the Siraitia grosvenorii (Cucurbitaceae). Mitochondrial DNA Part B 4:2221–2222

    PubMed  PubMed Central  Google Scholar 

  • Çiçek SS (2020) Structure-dependent activity of plant-derived sweeteners. Molecules 25:1946

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Kairuz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kairuz, E., Rivero-Aragón, A., Angenon, G. (2021). In Vitro Propagation and Biotechnological Improvement Strategies of Plants with High-Intensity Sweetener and Anti-Diabetic Activities. In: Gantait, S., Verma, S.K., Sharangi, A.B. (eds) Biotechnology of Anti-diabetic Medicinal Plants. Springer, Singapore. https://doi.org/10.1007/978-981-16-3529-8_7

Download citation

Publish with us

Policies and ethics