Skip to main content

Plant Secondary Metabolites for Tackling Antimicrobial Resistance: A Pharmacological Perspective

  • Chapter
  • First Online:
Antimicrobial Resistance

Abstract

The practice of using medicinal plants in treating various diseases and ailments dates back to over 60,000 years ago. These medicinal plants produce a diversity of secondary metabolites which are natural sources of biologically active compounds that can be classified into phenolics, alkaloids, saponins, terpenes, glycosides and flavonoids. These active compounds exert significant antimicrobial resistance (AMR) and pharmacological activity. In the current scenario, more attention is being focussed towards plant-based drug discovery in treating diseases, especially in fulfilling therapeutic requirements of dreaded diseases such as cancer, HIV and neurodegenerative diseases. This review aims to elucidate and understand different classifications of plant secondary metabolites towards understanding their mechanisms of action in tackling antimicrobial resistance (AMR) as well as their benefits and usage in pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghapour Z et al (2019) Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect Drug Resist 12:965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad Khan MS, Ahmad I (2019) Chapter 1 - herbal medicine: current trends and future prospects. In: Khan MSA, Ahmad I, Chattopadhyay D (eds) New look to phytomedicine. Academic Press, Cambridge, MA, pp 3–13

    Google Scholar 

  • Anupama N, Madhumitha G, Rajesh K (2014) Role of dried fruits of Carissa carandas as anti-inflammatory agents and the analysis of phytochemical constituents by GC-MS. Biomed Res Int 2014:512369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asfour HZ (2018) Anti-quorum sensing natural compounds. J Microscopy Ultrastruct 6(1):1

    Article  Google Scholar 

  • Attele AS et al (2002) Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51(6):1851–1858

    Article  CAS  PubMed  Google Scholar 

  • Aylanc V et al (2020) In vitro studies on different extracts of fenugreek (Trigonella spruneriana BOISS.): Phytochemical profile, antioxidant activity, and enzyme inhibition potential. J Food Biochem 2020:e13463

    Google Scholar 

  • Babbar N et al (2014) Influence of different solvents in extraction of phenolic compounds from vegetable residues and their evaluation as natural sources of antioxidants. J Food Sci Technol 51(10):2568–2575

    Article  CAS  PubMed  Google Scholar 

  • Baker DD, Alvi KA (2004) Small-molecule natural products: new structures, new activities. Curr Opin Biotechnol 15(6):576–583

    Article  CAS  PubMed  Google Scholar 

  • Barbieri R et al (2017) Phytochemicals for human disease: an update on plant-derived compounds antibacterial activity. Microbiol Res 196:44–68

    Article  CAS  PubMed  Google Scholar 

  • Bartha GS et al (2019) Analysis of aristolochlic acids and evaluation of antibacterial activity of Aristolochia clematitis L. Biol Futura 70(4):323

    Article  CAS  Google Scholar 

  • Batiha GE-S et al (2020) The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods 9(3):374

    Article  CAS  PubMed Central  Google Scholar 

  • Beuria TK, Santra MK, Panda D (2005) Sanguinarine blocks cytokinesis in Bacteria by inhibiting FtsZ assembly and bundling. Biochemistry 44(50):16584–16593

    Article  CAS  PubMed  Google Scholar 

  • Bhargava N et al (2015) Attenuation of quorum sensing-mediated virulence of Acinetobacter baumannii by Glycyrrhiza glabra flavonoids. Future Microbiol 10(12):1953–1968

    Article  CAS  PubMed  Google Scholar 

  • Blanco P et al (2016) Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms 4(1):14

    Article  PubMed Central  Google Scholar 

  • Boberek JM, Stach J, Good L (2010) Genetic evidence for inhibition of bacterial division protein FtsZ by berberine. PLoS One 5(10):e13745

    Article  PubMed  PubMed Central  Google Scholar 

  • Borges A et al (2015) Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens. J Food Sci Technol 52(8):4737–4748

    Article  CAS  PubMed  Google Scholar 

  • Bouyahya A et al (2017) Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pac J Trop Med 10(8):729–743

    Article  CAS  PubMed  Google Scholar 

  • Canli K et al (2016) In vitro antimicrobial activity screening of Rheum rhabarbarum roots. Int J Pharm Sci Invent 5(2):1–4

    Google Scholar 

  • Casas R et al (2014) The effects of the mediterranean diet on biomarkers of vascular wall inflammation and plaque vulnerability in subjects with high risk for cardiovascular disease. A randomized trial. PLoS One 9(6):e100084

    Article  PubMed  PubMed Central  Google Scholar 

  • Chadwick NE, Morrow KM (2011) Competition among sessile organisms on coral reefs, in Coral Reefs: an ecosystem in transition. Springer, pp 347–371

    Book  Google Scholar 

  • Chen W, Balan P, Popovich DG (2019) Review of ginseng anti-diabetic studies. Molecules 24(24):4501

    Article  CAS  PubMed Central  Google Scholar 

  • Cho KS et al (2017) Terpenes from forests and human health. Toxicol Res 33(2):97–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark VC (2010) Collecting arthropod and amphibian secretions for chemical analyses. In: Behavioral and chemical ecology, 1st edn. Nova Science Publication, New York, pp 1–46

    Google Scholar 

  • Cotrim BA et al (2012) Unsaturated fatty alcohol derivatives of olive oil phenolic compounds with potential low-density lipoprotein (LDL) antioxidant and antiobesity properties. J Agric Food Chem 60(4):1067–1074

    Article  CAS  PubMed  Google Scholar 

  • Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26(5):343–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cushnie TT, Cushnie B, Lamb AJ (2014) Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 44(5):377–386

    Article  CAS  PubMed  Google Scholar 

  • Dans AML et al (2007) The effect of Momordica charantia capsule preparation on glycemic control in type 2 diabetes mellitus needs further studies. J Clin Epidemiol 60(6):554–559

    Article  PubMed  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dembitsky VM (2005) Astonishing diversity of natural surfactants: 6. Biologically active marine and terrestrial alkaloid glycosides. Lipids 40(11):1081

    Article  CAS  PubMed  Google Scholar 

  • Denny Joseph KM, Muralidhara (2015) Combined oral supplementation of fish oil and quercetin enhances neuroprotection in a chronic rotenone rat model: relevance to Parkinson's disease. Neurochem Res 40(5):894–905

    Article  CAS  PubMed  Google Scholar 

  • Dewick P (1997) Medicinal natural products. Wiley, Chichester, UK

    Google Scholar 

  • Domadia PN et al (2008) Berberine targets assembly of Escherichia coli cell division protein FtsZ. Biochemistry 47(10):3225–3234

    Article  CAS  PubMed  Google Scholar 

  • Dong J et al (2019) Saponins regulate intestinal inflammation in colon cancer and IBD. Pharmacol Res 144:66–72

    Article  CAS  PubMed  Google Scholar 

  • Dumas NGE, Anderson NTY, Godswill NN, Thiruvengadam M, Ana-Maria G, Ramona P, Crisan GC, Laurian V, Shariati MA, Tokhtarov Z, Emmanuel Y (2020) Secondary metabolite contents and antimicrobial activity of leaf extracts reveal genetic variability of Vernonia amygdalina and Vernonia calvoana morphotypes. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.2017. Epub ahead of print. PMID: 32881085

  • El Aziz M, Ashour A, Melad A (2019) A review on saponins from medicinal plants: chemistry, isolation, and determination. J Nanomed Res 8(1):6–12

    Google Scholar 

  • Evans WC (2009) Trease and evans’ pharmacognosy E-book. Elsevier, Amsterdam

    Google Scholar 

  • Fairus S et al (2018) A phase I single-blind clinical trial to evaluate the safety of oil palm phenolics (OPP) supplementation in healthy volunteers. Sci Rep 8(1):8217

    Article  PubMed  PubMed Central  Google Scholar 

  • Freiesleben S, Jäger A (2014) Correlation between plant secondary metabolites and their antifungal mechanisms–a review. Med Aromat Plants 3(2):1–6

    Google Scholar 

  • Gonçalves J et al (2019) Cannabis and its secondary metabolites: their use as therapeutic drugs, toxicological aspects, and analytical determination. Medicines 6(1):31

    Article  PubMed Central  Google Scholar 

  • Gorlenko CL et al (2020) Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: new heroes or worse clones of antibiotics. Antibiotics 9(4):170

    Article  CAS  PubMed Central  Google Scholar 

  • Górniak I, Bartoszewski R, Króliczewski J (2019) Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev 18(1):241–272

    Article  Google Scholar 

  • Gregus AM, Buczynski MW (2020) Druggable targets in endocannabinoid signaling. Adv Exp Med Biol 1274:177–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin SG et al (1999) The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr J 14(5):322–332

    Article  CAS  Google Scholar 

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55(6):481–504

    Article  CAS  PubMed  Google Scholar 

  • Havsteen B (1983) Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol 32(7):1141–1148

    Article  CAS  PubMed  Google Scholar 

  • Hepokur C et al (2020) Evaluation of antioxidant and anticancer effects of Thymbra sintenisii subsp. isaurica extract. J Cancer Res Ther 16(4):822–827

    Article  CAS  PubMed  Google Scholar 

  • Hussein RA, El-Anssary AA (2018) In: Builders PF (ed) Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants, in herbal medicine. IntechOpen

    Google Scholar 

  • Hyun SH et al (2020) Physiological and pharmacological features of the non-saponin components in Korean red ginseng. J Ginseng Res 44:527–537

    Article  PubMed  PubMed Central  Google Scholar 

  • Issa HB, Phan G, Broutin I (2018) Functional mechanism of the efflux pumps transcription regulators from Pseudomonas aeruginosa based on 3D structures. Front Mol Biosci 5:57

    Article  Google Scholar 

  • Kapoor R, Sharma B, Kanwar S (2017) Antiviral phytochemicals: an overview. Biochem Physiol 6(2):7

    Article  Google Scholar 

  • Khameneh B et al (2015) Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. Drug Dev Ind Pharm 41(6):989–994

    Article  CAS  PubMed  Google Scholar 

  • Kowalczyk T et al (2020) Transgenesis as a tool for the efficient production of selected secondary metabolites from in vitro plant cultures. Plan Theory 9(2):132

    CAS  Google Scholar 

  • Krstin S, Peixoto HS, Wink M (2015) Combinations of alkaloids affecting different molecular targets with the saponin digitonin can synergistically enhance trypanocidal activity against Trypanosoma brucei brucei. Antimicrob Agents Chemother 59(11):7011–7017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lainson R, de Souza MC, Franco CM (2003) Haematozoan parasites of the lizard Ameiva ameiva (Teiidae) from Amazonian Brazil: a preliminary note. Mem Inst Oswaldo Cruz 98(8):1067–1070

    Article  PubMed  Google Scholar 

  • Lakhanpal P, Rai DK (2007) Quercetin: a versatile flavonoid. Int J Med Update 2(2):22–37

    Google Scholar 

  • Lima SL, Colombo AL, de Almeida Junior JN (2019) Fungal cell wall: emerging antifungals and drug resistance. Front Microbiol 10:2573

    Article  PubMed  PubMed Central  Google Scholar 

  • Lima V et al (2020) Uncaria tomentosa reduces osteoclastic bone loss in vivo. Phytomedicine 79:153327

    Article  CAS  PubMed  Google Scholar 

  • Lin D et al (2016) An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21(10):1374

    Article  PubMed Central  Google Scholar 

  • Luganini A et al (2019) The isoquinoline alkaloid berberine inhibits human cytomegalovirus replication by interfering with the viral immediate Early-2 (IE2) protein transactivating activity. Antivir Res 164:52–60

    Article  CAS  PubMed  Google Scholar 

  • Lusebrink I, Dettner K, Seifert K (2008) Stenusine, an antimicrobial agent in the rove beetle genus Stenus (Coleoptera, Staphylinidae). Naturwissenschaften 95(8):751–755

    Article  CAS  PubMed  Google Scholar 

  • Madhumitha G, Saral AM (2009) Free radical scavenging assay of Thevetia neriifolia leaf extracts. Asian J Chem 21(3):2468–2470

    CAS  Google Scholar 

  • Mahizan NA et al (2019) Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules 24(14):2631

    Article  CAS  PubMed Central  Google Scholar 

  • Manila S (1993) Research guidelines for evaluating the safety and efficacy of herbal medicine. WHO publications, Philippines, PA

    Google Scholar 

  • Marchese A et al (2018) The natural plant compound carvacrol as an antimicrobial and anti-biofilm agent: mechanisms, synergies and bio-inspired anti-infective materials. Biofouling 34(6):630–656

    Article  CAS  PubMed  Google Scholar 

  • McClintock JB, Baker BI (2013) Chemistry and ecological role of starfish secondary metabolites. In: Starfish: biology and ecology of the Asteroidea. The Johns Hopkins University Press, Baltimore, MD, p 81

    Google Scholar 

  • Medina E, Pieper DH (2016) Tackling threats and future problems of multidrug-resistant bacteria. In: How to overcome the antibiotic crisis. Springer, Cham, pp 3–33

    Chapter  Google Scholar 

  • Michel CG et al (2011) Phytochemical and biological investigation of the extracts of Nigella sativa L. seed waste. Drug Test Anal 3(4):245–254

    Article  CAS  PubMed  Google Scholar 

  • Middleton E Jr (1993) The impact of plant flavonoids on mammalian biology: implications for immunity, inflammation and cancer. In: The flavonoids: advances in research since 1986. Routledge, Abingdon, UK, pp 337–370

    Google Scholar 

  • Mills CE et al (2017) Mediation of coffee-induced improvements in human vascular function by chlorogenic acids and its metabolites: two randomized, controlled, crossover intervention trials. Clin Nutr 36(6):1520–1529

    Article  CAS  PubMed  Google Scholar 

  • Mirza ZM et al (2011) Piperine as an inhibitor of the MdeA efflux pump of Staphylococcus aureus. J Med Microbiol 60(10):1472–1478

    Article  CAS  PubMed  Google Scholar 

  • Mofidi Tabatabaei S et al (2020) Phytochemical study of Tanacetum Sonbolii aerial parts and the antiprotozoal activity of its components. Iran J Pharm Res 19(1):77–83

    PubMed  PubMed Central  Google Scholar 

  • Moo CL et al (2020) Antibacterial activity and mode of action of β-caryophyllene on Bacillus cereus. Pol J Microbiol 69(1):1–6

    Article  PubMed  Google Scholar 

  • Moo C-L et al (2019) Mechanisms of antimicrobial resistance (AMR) and alternative approaches to overcome AMR. Curr Drug Discov Technol 16:430–447

    Google Scholar 

  • Moore KS et al (1993) Squalamine: an aminosterol antibiotic from the shark. Proc Natl Acad Sci 90(4):1354–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu LH et al (2020) Antiangiogenic effects of AG36, a triterpenoid saponin from Ardisia gigantifolia stapf. J Nat Med 74(4):732–740

    Article  CAS  PubMed  Google Scholar 

  • Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. In: Virulence mechanisms of bacterial pathogens. Wiley, pp 481–511

    Chapter  Google Scholar 

  • Mutuku A et al (2020) Evaluation of the antimicrobial activity and safety of Rhus vulgaris (Anacardiaceae) extracts. BMC Compl Med Ther 20(1):272

    Article  CAS  Google Scholar 

  • Neag MA et al (2018) Berberine: botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front Pharmacol 9:557

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477

    Article  CAS  PubMed  Google Scholar 

  • Newman RA et al (2008) Cardiac glycosides as novel cancer therapeutic agents. Mol Interv 8(1):36

    Article  CAS  PubMed  Google Scholar 

  • Othman L, Sleiman A, Abdel-Massih RM (2019) Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. Front Microbiol 10:911–911

    Article  PubMed  PubMed Central  Google Scholar 

  • Pagès J-M, James CE, Winterhalter M (2008) The porin and the permeating antibiotic: a selective diffusion barrier in gram-negative bacteria. Nat Rev Microbiol 6(12):893–903

    Article  PubMed  Google Scholar 

  • Park SY et al (2020) Anti-metastatic effect of gold nanoparticle-conjugated Maclura tricuspidata extract on human hepatocellular carcinoma cells. Int J Nanomed 15:5317–5331

    Article  CAS  Google Scholar 

  • Pawlik JR (2011) The chemical ecology of sponges on Caribbean reefs: natural products shape natural systems. Bioscience 61(11):888–898

    Article  Google Scholar 

  • Peng L et al (2015) Antibacterial activity and mechanism of berberine against Streptococcus agalactiae. Int J Clin Exp Pathol 8(5):5217

    PubMed  PubMed Central  Google Scholar 

  • Peterson E, Kaur P (2018) Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front Microbiol 9:2928

    Article  PubMed  PubMed Central  Google Scholar 

  • Podolsky SH (2018) The evolving response to antibiotic resistance (1945–2018). Palgrave Commun 4(1):1–8

    Article  Google Scholar 

  • Prestinaci F, Pezzotti P, Pantosti A (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathog Global Health 109(7):309–318

    Article  Google Scholar 

  • Pu X et al (2015) Polyphylla saponin I has antiviral activity against influenza a virus. Int J Clin Exp Med 8(10):18963–18971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qian S et al (2020) Zingerone suppresses cell proliferation via inducing cellular apoptosis and inhibition of the PI3K/AKT/mTOR signaling pathway in human prostate cancer PC-3 cells. J Biochem Mol Toxicol 35:e22611

    PubMed  Google Scholar 

  • Randhir R, Lin Y-T, Shetty K (2004) Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem 39(5):637–646

    Article  CAS  Google Scholar 

  • Rangel-Huerta OD et al (2015) Normal or high polyphenol concentration in Orange juice affects antioxidant activity, blood pressure, and body weight in obese or overweight adults. J Nutr 145(8):1808–1816

    Article  CAS  PubMed  Google Scholar 

  • Rao A et al (2010) Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrob Agents Chemother 54(12):5062–5069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao KN, Venkatachalam S (2000) Inhibition of dihydrofolate reductase and cell growth activity by the phenanthroindolizidine alkaloids pergularinine and tylophorinidine: the in vitro cytotoxicity of these plant alkaloids and their potential as antimicrobial and anticancer agents. Toxicol In Vitro 14(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Razali NA et al (2018) Curcumin derivative, 2,6-bis(2-fluorobenzylidene)cyclohexanone (MS65) inhibits interleukin-6 production through suppression of NF-κB and MAPK pathways in histamine-induced human keratinocytes cell (HaCaT). BMC Complement Altern Med 18(1):217

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribera A, Zuñiga G (2012) Induced plant secondary metabolites for phytopatogenic fungi control: a review. J Soil Sci Plant Nutr 12(4):893–911

    Google Scholar 

  • Robbers JE, Speedie MK, Tyler VE (1996) Pharmacognosy and pharmacobiotechnology. Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  • Roberts SC (2007) Production and engineering of terpenoids in plant cell culture. Nat Chem Biol 3(7):387–395

    Article  CAS  PubMed  Google Scholar 

  • Salvamani S et al (2014) Antiartherosclerotic effects of plant flavonoids. Biomed Res Int 2014:480258

    Article  PubMed  PubMed Central  Google Scholar 

  • Savitzky AH et al (2012) Sequestered defensive toxins in tetrapod vertebrates: principles, patterns, and prospects for future studies. Chemoecology 22(3):141–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seca AML, Pinto DCGA (2019) Biological potential and medical use of secondary metabolites. Medicines 6(2):66

    Article  CAS  PubMed Central  Google Scholar 

  • Shousha WG et al (2019) Evaluation of the biological activity of Moringa oleifera leaves extract after incorporating silver nanoparticles, in vitro study. Bull Nat Res Centre 43(1):212

    Article  Google Scholar 

  • Sieberi BM et al (2020) Screening of the dichloromethane: Methanolic extract of Centella asiatica for antibacterial activities against Salmonella typhi, Escherichia coli, Shigella sonnei, Bacillus subtilis, and Staphylococcus aureus. Sci World J 2020:6378712

    Article  Google Scholar 

  • Silva KB et al (2020) Phytochemical characterization, antioxidant potential and antimicrobial activity of Averrhoa carambola L. (Oxalidaceae) against multiresistant pathogens. Braz J Biol 81(3):509–515

    Article  Google Scholar 

  • Siroli L et al (2015) Effects of sub-lethal concentrations of thyme and oregano essential oils, carvacrol, thymol, citral and trans-2-hexenal on membrane fatty acid composition and volatile molecule profile of Listeria monocytogenes, Escherichia coli and Salmonella enteritidis. Food Chem 182:185–192

    Article  CAS  PubMed  Google Scholar 

  • Sonfack G et al (2019) Saponin with antibacterial activity from the roots of Albizia adianthifolia. Nat Prod Res 2019:1–9

    Google Scholar 

  • Stegelmeier B et al (1999) Pyrrolizidine alkaloid plants, metabolism and toxicity. J Nat Toxins 8(1):95

    CAS  PubMed  Google Scholar 

  • Stynoski JL et al (2014) Evidence of maternal provisioning of alkaloid-based chemical defenses in the strawberry poison frog Oophaga pumilio. Ecology 95(3):587–593

    Article  PubMed  Google Scholar 

  • Tagousop CN et al (2018) Antimicrobial activities of saponins from Melanthera elliptica and their synergistic effects with antibiotics against pathogenic phenotypes. Chem Cent J 12(1):97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang SS, Apisarnthanarak A, Hsu LY (2014) Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community-and healthcare-associated multidrug-resistant bacteria. Adv Drug Deliv Rev 78:3–13

    Article  CAS  PubMed  Google Scholar 

  • Tegos G et al (2002) Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob Agents Chemother 46(10):3133–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toledo Rd, Jared C (1995) Cutaneous granular glands and amphibian venoms. Comp Biochem Physiol A Physiol 111(1):1–29

    Article  Google Scholar 

  • Tran N, Pham B, Le L (2020) Bioactive compounds in anti-diabetic plants: from herbal medicine to modern drug discovery. Biology 9(9):252

    Article  CAS  PubMed Central  Google Scholar 

  • Velderrain-Rodríguez G et al (2014) Phenolic compounds: their journey after intake. Food Funct 5(2):189–197

    Article  PubMed  Google Scholar 

  • Velu G, Palanichamy V, Rajan AP (2018) Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine. In: Roopan SM, Madhumitha G (eds) Bioorganic phase in natural food: an overview. Springer, Cham, pp 135–156

    Chapter  Google Scholar 

  • Vergara D et al (2020) Modeling cannabinoids from a large-scale sample of Cannabis sativa chemotypes. PLoS One 15(9):e0236878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira Júnior GM et al (2015) New steroidal saponin and antiulcer activity from Solanum paniculatum L. Food Chem 186:160–167

    Article  PubMed  Google Scholar 

  • Wang L-H et al (2016) Membrane destruction and DNA binding of Staphylococcus aureus cells induced by carvacrol and its combined effect with a pulsed electric field. J Agric Food Chem 64(32):6355–6363

    Article  CAS  PubMed  Google Scholar 

  • WHO (2001) WHO global strategy for containment of antimicrobial resistance. World Health Organization, Geneva

    Google Scholar 

  • WHO (2014) Antimicrobial resistance: global report on surveillance. World Health Organization, Geneva

    Google Scholar 

  • Wink M (2018) Plant secondary metabolites modulate insect behavior-steps toward addiction? Front Physiol 9:364

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu D et al (2008) Enzymatic characterization and crystal structure analysis of the D-alanine-D-alanine ligase from helicobacter pylori. Proteins: Struct Funct Bioinform 72(4):1148–1160

    Article  CAS  Google Scholar 

  • Xu F et al (2019) Antimicrobial activity of flavonoids from Sedum aizoon L. against Aeromonas in culture medium and in frozen pork. Food Sci Nutr 7(10):3224–3232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L et al (2018a) Antifungal effects of Saponin extract from rhizomes of Dioscorea panthaica Prain et Burk against Candida albicans. Evid Based Complement Alternat Med 2018:6095307

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang S et al (2018b) The biological properties and potential interacting proteins of d-Alanyl-d-alanine ligase a from Mycobacterium tuberculosis. Molecules 23(2):324

    Article  PubMed Central  Google Scholar 

  • Yang S-K et al (2017) Additivity vs synergism: investigation of the additive interaction of cinnamon bark oil and meropenem in combinatory therapy. Molecules 22(11):1733

    Article  PubMed Central  Google Scholar 

  • Yang S-K et al (2018c) Plant-derived antimicrobials: insights into mitigation of antimicrobial resistance. Rec Nat Prod 12(4):295–316

    Article  CAS  Google Scholar 

  • Yang S-K et al (2019) Disruption of KPC-producing Klebsiella pneumoniae membrane via induction of oxidative stress by cinnamon bark (Cinnamomum verum J. Presl) essential oil. PloS One 14(4):e0214326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S-K et al (2020) Antimicrobial activity and mode of action of terpene linalyl anthranilate against carbapenemase-producing Klebsiella pneumoniae. J Pharm Anal 11(2):210–219

    Article  PubMed  PubMed Central  Google Scholar 

  • Yosri M et al (2020) Identification of novel bioactive compound derived from Rheum officinalis against campylobacter jejuni NCTC11168. Sci World J 2020:3591276

    Article  Google Scholar 

  • Zeng X, Lin J (2013) Beta-lactamase induction and cell wall metabolism in gram-negative bacteria. Front Microbiol 4:128

    Article  PubMed  PubMed Central  Google Scholar 

  • Zengin H, Baysal AH (2014) Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules 19(11):17773–17798

    Article  PubMed  PubMed Central  Google Scholar 

  • Zgurskaya HI, Lopez CA, Gnanakaran S (2015) Permeability barrier of gram-negative cell envelopes and approaches to bypass it. ACS Infect Dis 1(11):512–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X et al (2020) Inhibition of growth and lung metastasis of breast cancer by tumor-homing triple-bioresponsive nanotherapeutics. J Control Release 328:454–469

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Higher Colleges of Technology, United Arab Emirates, and UCSI University Research Excellence and Innovation Grant (REIG-FAS-2020/032) for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kok-Song Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maran, S., Yeo, W.W.Y., Lim, SH.E., Lai, KS. (2022). Plant Secondary Metabolites for Tackling Antimicrobial Resistance: A Pharmacological Perspective. In: Kumar, V., Shriram, V., Paul, A., Thakur, M. (eds) Antimicrobial Resistance. Springer, Singapore. https://doi.org/10.1007/978-981-16-3120-7_6

Download citation

Publish with us

Policies and ethics