Skip to main content

Is There a Better Way to Assess Parkinsonian Motor Symptoms?—Experimental and Modelling Approach

  • Chapter
  • First Online:
Techniques for Assessment of Parkinsonism for Diagnosis and Rehabilitation

Abstract

Neurodegenerative diseases such as Parkinson’s Disease (PD) and Alzheimer’s Disease severely impact patients and make their day-to-day life activities difficult. We still lack accurate diagnostic measures that can correctly assess the disease condition and its severity. Our study aims to bridge the gap between the predominantly subjective evaluation criterion towards a more enhanced technology-driven evaluation system that gives an accurate indication of the disease progression and helps decide on the optimized therapeutic intervention. In the subsequent sections, we briefly highlight the current evaluation criteria such as MDS-UPDRS and discuss how a quantitatively driven assessment approach would be useful. This study also touches upon assessing different symptoms, different stages of the disease, and classifying the patients. This study tries to cover assessment techniques for the early stage non-motor and motor symptoms, the cardinal symptoms of PD, and also explores the impact of PD on cognitive abilities. We have also briefly touched upon various therapeutic strategies and tried to review a few of the modeling approaches that we believe would go a long way in fine-tuning the disease management of PD itself. PD has a wide range of symptoms, and due to overlapping similarities with other diseases, it becomes incredibly challenging to classify the patients and design therapeutic regimes. We are optimistic that with a combination of experimental and modeling studies, we would be able to bridge this gap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ray Dorsey, E., et al.: Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 17(11):939–953 (2018), doi: https://doi.org/10.1016/S1474-4422(18)30295-3

  2. Muddapu, V.R., Dharshini, S.A.P., Chakravarthy, V.S., Gromiha, M.M.: Neurodegenerative diseases – is metabolic deficiency the root cause? Front. Neurosci. 14, 213 (2020). https://doi.org/10.3389/fnins.2020.00213

  3. Muddapu, V.R., Mandali, A., Chakravarthy, V.S., Ramaswamy, S.: A computational model of loss of dopaminergic cells in Parkinson’s disease due to glutamate-induced excitotoxicity. Front. Neural Circ. 13, 11 (2019). https://doi.org/10.3389/FNCIR.2019.00011

    Article  Google Scholar 

  4. Muddapu, V.R., Chakravarthy, V.S.: A multi-scale computational model of excitotoxic loss of dopaminergic cells in Parkinson’s Disease. Front. Neuroinform. 14, 34 (2020). https://doi.org/10.3389/FNINF.2020.00034

    Article  Google Scholar 

  5. Pacelli, C., Giguère, N., Bourque, M.-J., Lévesque, M., Slack, R.S., Trudeau, L.-É.: Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr. Biol. 25(18), 2349–2360 (2015). https://doi.org/10.1016/j.cub.2015.07.050

    Article  Google Scholar 

  6. Fu, H., Hardy, J., Duff, K.E.: Selective vulnerability in neurodegenerative diseases. Nat. Neurosci. 21(10), 1350–1358 (2018). https://doi.org/10.1038/s41593-018-0221-2

    Article  Google Scholar 

  7. Zampese, E., Surmeier, D.J.: Calcium, bioenergetics, and Parkinson’s Disease. Cells 9(9), 2045 (2020). https://doi.org/10.3390/cells9092045

    Article  Google Scholar 

  8. Muddapu, V.R., Chakravarthy, V.S.: Influence of energy deficiency on the subcellular processes of substantia nigra pars compacta cell for understanding Parkinsonian Neurodegeneration. Sci. Rep. 11(1), 1754 (2021). https://doi.org/10.1038/s41598-021-81185-9

    Article  Google Scholar 

  9. Nair, S.S., Muddapu, V.R., Chakravarthy, V.S.: A multiscale, systems-level, neuropharmacological model of cortico-basal ganglia system for arm reaching under normal, parkinsonian and levodopa medication conditions. bioRxiv, 2021.02.10.430544 p, (2021). https://doi.org/10.1101/2021.02.10.430544

  10. Muddapu, V.R., Vijaykumar, K., Ramakrishnan, K., Chakravarthy, V.S.: A computational model of levodopa-induced toxicity in substantia nigra pars compacta in parkinson’s disease. bioRxiv, pp 1–55 (2020). https://doi.org/10.1101/2020.04.05.026807

  11. Ramaker, C., Marinus, J., Stiggelbout, A.M., van Hilten, B.J.: Systematic evaluation of rating scales for impairment and disability in Parkinson’s disease. Movement Disorders 17(5):867–876 (2002) (John Wiley & Sons, Ltd). https://doi.org/10.1002/mds.10248.

  12. Braak, H., Del Tredici, K., Rüb, U., De Vos, R.A.I., Jansen Steur, E.N.H., Braak, E.: Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24(2):197–211 (2003). https://doi.org/10.1016/S0197-4580(02)00065-9

  13. Balestrino, R., Schapira, A.H.V.: Parkinson disease. Eur. J. Neurol. 27(1), 27–42 (2020). https://doi.org/10.1111/ene.14108

    Article  Google Scholar 

  14. Auxiliadora de Paula Vasconcelos, L.: Parkinson’s Disease rehabilitation: effectiveness approaches and new perspectives. In: Physical Therapy Effectiveness, IntechOpen (2020)

    Google Scholar 

  15. Patel, M., et al.: Effects of deep brain stimulation on postural control in Parkinson’s disease. Comput. Biol. Med. 122:103828 (2020). https://doi.org/10.1016/j.compbiomed.2020.103828

  16. Pourghayoomi, E., Behzadipour, S., Ramezani, M., Joghataei, M.T., Shahidi, G.A.: A new postural stability-indicator to predict the level of fear of falling in Parkinson’s disease patients. Biomed. Eng. 19(1):64 (2020). doi: https://doi.org/10.1186/s12938-020-00808-w

  17. Ozinga, S.J., Machado, A.G., Miller Koop, M., Rosenfeldt, A.B., Alberts, J. L.: Objective assessment of postural stability in Parkinson’s disease using mobile technology. Mov. Disord. 30(9): 1214–1221 (2015). https://doi.org/10.1002/mds.26214

  18. Pelicioni, P.H.S., Menant, J.C., Latt, M.D., Lord, S.R.: Falls in Parkinson’s Disease subtypes: risk factors, locations and circumstances. Int. J. Environ. Res. Public Health 16(12), 2216 ( 2019). https://doi.org/10.3390/ijerph16122216

    Article  Google Scholar 

  19. Allen, N.E., Schwarzel, A.K., Canning, C.G.: Recurrent falls in Parkinson’s disease: a systematic review. Parkinson’s Disease. (2013). https://doi.org/10.1155/2013/906274

    Article  Google Scholar 

  20. Vijiaratnam, N., Wirth, T., Morris, H.R.: Revisiting the assessment of tremor: clinical review. Br. J. Gen. Pract. 70(701), 611–614 (2020). https://doi.org/10.3399/bjgp20X713849

    Article  Google Scholar 

  21. Kuosmanen, E., et al.: Smartphone-based monitoring of Parkinson Disease: quasi-experimental study to quantify hand tremor severity and medication effectiveness. JMIR mHealth uHealth 8(11):e21543 (2020). https://doi.org/10.2196/21543

  22. Thenganatt, M.A., Louis, E.D.: Distinguishing essential tremor from Parkinson’s disease: Bedside tests and laboratory evaluations. Expert Rev. Neurotherapeutics 12(6): 687–696 (2012). (Taylor & Francis). https://doi.org/10.1586/ern.12.49

  23. Crawford, P., Zimmerman, E.E.: Differentiation and diagnosis of tremor. Am. Fam. Phys. 83(6), 697–702 (2011)

    Google Scholar 

  24. Magrinelli, F., et al.: Pathophysiology of motor dysfunction in Parkinson’s Disease as the rationale for drug treatment and rehabilitation. Parkinson’s Disease 2016(2016) (Hindawi Limited). https://doi.org/10.1155/2016/9832839

  25. Kimmeskamp, S., Hennig, E.M.: Heel to toe motion characteristics in Parkinson patients during free walking. Clin. Biomech. 16(9): 806–812 (2001). https://doi.org/10.1016/S0268-0033(01)00069-9

  26. Hausdorff, J.M., Cudkowicz, M.E., Firtion, R., Wei, J.Y., Goldberger, A.L.: Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov. Disord. 13(3):428–437 (1998). https://doi.org/10.1002/mds.870130310

  27. Morris, M., Iansek, R., Smithson, F., Huxham, F.: Postural instability in Parkinson’s disease: a comparison with and without a concurrent task. Gait Posture 12(3), 205–216 (2000). https://doi.org/10.1016/S0966-6362(00)00076-X

    Article  Google Scholar 

  28. Muralidharan, V., Balasubramani, P.P., Chakravarthy, V.S., Gilat, M., Lewis, S.J.G., Moustafa, A.A.: A neurocomputational model of the effect of cognitive load on freezing of gait in Parkinson’s Disease. Front. Hum. Neurosci. 10:649 (2017). https://doi.org/10.3389/fnhum.2016.00649

  29. Latt, M.D., Lord, S.R., Morris, J.G.L., Fung, V.S.C.: Clinical and physiological assessments for elucidating falls risk in Parkinson’s disease. Mov. Disord. 24(9): 1280–1289 (2009). https://doi.org/10.1002/mds.22561

  30. Miller, N., Noble, E., Jones, D., Allcock, L., Burn, D.J.: How do I sound to me? Perceived changes in communication in Parkinson’s disease. Clin. Rehabil. 22(1):14–22 (2008). https://doi.org/10.1177/0269215507079096

  31. Dashtipour, K., Tafreshi, A., Lee, J., Crawley, B.: Speech disorders in Parkinson’s disease: pathophysiology, medical management and surgical approaches. Neurodegener. Dis. Manag. 8(5), 337–348 (2018). https://doi.org/10.2217/nmt-2018-0021

    Article  Google Scholar 

  32. Skodda, S., Grönheit, W., Mancinelli, N., Schlegel, U.: Progression of voice and speech impairment in the course of Parkinson’s disease: a longitudinal study. Parkinsons. Dis. 2013 (2013). https://doi.org/10.1155/2013/389195.

  33. Goyal, V., Behari, M., Srivastava, A., Sood, S., Shukla, G., Sharma, R.: Saccadic eye movements in Parkinson′s disease. Indian J. Ophthalmol. 62(5), 538 (2014). https://doi.org/10.4103/0301-4738.133482

    Article  Google Scholar 

  34. Jehangir, N., et al.: Slower saccadic reading in Parkinson’s disease. PLoS ONE 13(1),(2018). https://doi.org/10.1371/journal.pone.0191005

  35. Lisi, M., Solomon, J.A., Morgan, M.J.: Gain control of saccadic eye movements is probabilistic. Proc. Natl. Acad. Sci. U.S.A. 116(32), 16137–16142 (2019). https://doi.org/10.1073/pnas.1901963116

    Article  Google Scholar 

  36. Wu, T., Zhang, J., Hallett, M., Feng, T., Hou, Y., Chan, P.: Neural correlates underlying micrographia in Parkinson’s disease. Brain 139(1), 144–160 (2016). https://doi.org/10.1093/brain/awv319

  37. Shukla, A.W., Ounpraseuth, S., Okun, M.S., Gray, V., Schwankhaus, J., Metzer, W.S.: Micrographia and related deficits in Parkinson’s disease: A cross-sectional study. BMJ Open 2(3),(2012). https://doi.org/10.1136/bmjopen-2011-000628

  38. Zham, P., et al.: A kinematic study of progressive micrographia in Parkinson’s disease. Front. Neurol. 10(Apr): 1–8 (2019). https://doi.org/10.3389/fneur.2019.00403.

  39. Gangadhar, G., et al.: A computational model of Parkinsonian handwriting that highlights the role of the indirect pathway in the basal ganglia. Hum. Mov. Sci. 28(5), 602–618 (2009). https://doi.org/10.1016/j.humov.2009.07.008

    Article  Google Scholar 

  40. Sveinbjornsdottir, S.: The clinical symptoms of Parkinson’s disease. J. Neurochem. (2016). https://doi.org/10.1111/jnc.13691

    Article  Google Scholar 

  41. Schrag, A., Horsfall, L., Walters, K., Noyce, A., Petersen, I.: Prediagnostic presentations of Parkinson’s disease in primary care: a case-control study. Lancet Neurol. 14(1) (2015). https://doi.org/10.1016/S1474-4422(14)70287-X

  42. Williams-Gray, C.H., Foltynie, T., Brayne, C.E.G., Robbins, T.W., Barker, R.A.: Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain 130(7), 1787–1798 (2007). https://doi.org/10.1093/brain/awm111

    Article  Google Scholar 

  43. Hong, J.Y., et al.: Rapid drug increase and early onset of levodopa-induced dyskinesia in Parkinson’s disease. PLoS ONE 15(8),(2020). https://doi.org/10.1371/journal.pone.0237472

  44. Perlmutter, J.S.: Assessment of Parkinson Disease manifestations. Curr. Protoc. Neurosci. 49(1):10.1.1–10.1.14 (2009). https://doi.org/10.1002/0471142301.ns1001s49

  45. Holden, S.K., Finseth, T., Sillau, S.H., Berman, B.D.: Progression of MDS-UPDRS scores over five years in De Novo Parkinson Disease from the Parkinson’s Progression Markers Initiative Cohort. Mov. Disord. Clin. Pract. 5(1) (2018). https://doi.org/10.1002/mdc3.12553.

  46. Di. Biase, L., et al.: Tremor stability index: A new tool for differential diagnosis in tremor syndromes. Brain 140(7), 1977–1986 (2017). https://doi.org/10.1093/brain/awx104

    Article  Google Scholar 

  47. Rizzo, G., Copetti, M., Arcuti, S., Martino, D., Fontana, A., Logroscino, G.: Accuracy of clinical diagnosis of Parkinson disease. Neurology 86(6), 566–576 (2016). https://doi.org/10.1212/WNL.0000000000002350

    Article  Google Scholar 

  48. Heldman, D.A., et al.: The modified bradykinesia rating scale for Parkinson’s disease: reliability and comparison with kinematic measures. Mov. Disord. 26(10), 1859–1863 (2011). https://doi.org/10.1002/mds.23740

    Article  Google Scholar 

  49. Butt, A.H., Rovini, E., Esposito, D., Rossi, G., Maremmani, C., Cavallo, F.: Biomechanical parameter assessment for classification of Parkinson’s disease on clinical scale. Int. J. Distrib. Sens. Netw. 13(5) (2017). https://doi.org/10.1177/1550147717707417.

  50. Kandaswamy, D., Muthukumar, M., Alexander, M., Prabhu, M.G.S, Krothapalli, S.B.: Quantitative assessment of hand dysfunction in patients with early Parkinson’s Disease and focal hand dystonia. J. Mov. Disord. 11(1):35–44 (2018). https://doi.org/10.14802/jmd.17046.

  51. Schoneburg, B., Mancini, M., Horak, F., Nutt, J.G.: Framework for understanding balance dysfunction in Parkinson’s disease. Movement Disorders 28(11): 1474–1482 (2013) (John Wiley & Sons, Ltd). https://doi.org/10.1002/mds.25613.

  52. Winser, S.J., Kannan, P., Bello, U.M., Whitney, S.L.: Measures of balance and falls risk prediction in people with Parkinson’s disease: a systematic review of psychometric properties. Clinical Rehabilitation 33(12): 1949–1962 (2019) (SAGE Publications Ltd.). https://doi.org/10.1177/0269215519877498

  53. Pasluosta, C.F., Barth, J., Gassner, H., Klucken, J., Eskofier, B.M.: Pull test estimation in Parkinson’s disease patients using wearable sensor technology. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, vol. 2015, pp 3109–3112 (2015). https://doi.org/10.1109/EMBC.2015.7319050.

  54. Rozenfeld, S., Miskovic, A., Nitsch, K.P., Ehrlich-Jones, L.: Measurement characteristics and clinical utility of the freezing of gait questionnaire in individuals with Parkinson Disease. Arch. Phys. Med. Rehabil. 98(10), 2106–2107 (2017). https://doi.org/10.1016/j.apmr.2017.04.027

    Article  Google Scholar 

  55. Hulzinga, F., et al.: The new freezing of gait questionnaire: unsuitable as an outcome in clinical trials? Mov. Disord. Clin. Pract. 7(2), 199–205 (2020). https://doi.org/10.1002/mdc3.12893

    Article  Google Scholar 

  56. Franchignoni, F., Giordano, A., Ronconi, G., Rabini, A., Ferriero, G.: Rasch validation of the activities-specific balance confidence scale and its short versions in patients with Parkinson’s disease. J. Rehabil. Med. 46(6), 532–539 (2014). https://doi.org/10.2340/16501977-1808

    Article  Google Scholar 

  57. Mazzetta, I., Zampogna, A., Suppa, A., Gumiero, A., Pessione, M., Irrera, F.: Wearable sensors system for an improved analysis of freezing of gait in Parkinson’s Disease using electromyography and inertial signals. Sensors 19(4), 948 (2019). https://doi.org/10.3390/s19040948

    Article  Google Scholar 

  58. Hubble, R.P., Naughton, G.A., Silburn, P.A, Cole, M.H.: Wearable sensor use for assessing standing balance and walking stability in people with Parkinson’s disease: a systematic review. PLoS One 10(4) (2015). https://doi.org/10.1371/journal.pone.0123705.

  59. Weiss, A., Herman, T., Giladi, N., Hausdorff, J.M.: Objective assessment of fall risk in Parkinson’s Disease using a body-fixed sensor worn for 3 days. PLoS ONE 9(5),(2014). https://doi.org/10.1371/journal.pone.0096675

  60. Rovini, E., Maremmani, C., Cavallo, F.: How wearable sensors can support parkinson’s disease diagnosis and treatment: a systematic review. Front. Neurosci. 11(Oct): 555 (2017) (Frontiers Media S.A.). https://doi.org/10.3389/fnins.2017.00555

  61. McKay, G.N., Harrigan, T.P., Brašić, J.R.: A low-cost quantitative continuous measurement of movements in the extremities of people with Parkinson’s disease. MethodsX 6, 169–189 (2019). https://doi.org/10.1016/j.mex.2018.12.017

    Article  Google Scholar 

  62. Suzuki, M., Mitoma, H., Yoneyama, M.: Quantitative analysis of motor status in Parkinson’s Disease using wearable devices: from methodological considerations to problems in clinical applications. Parkinson’s Disease 2017 (2017) (Hindawi Limited). https://doi.org/10.1155/2017/6139716.

  63. Brognara, L., Palumbo, P., Grimm, B., Palmerini, L.: Assessing gait in Parkinson’s disease using wearable motion sensors: a systematic review. Diseases 7(1), 18 (2019). https://doi.org/10.3390/diseases7010018

    Article  Google Scholar 

  64. Herman, T., Weiss, A., Brozgol, M., Giladi, N., Hausdorff, J.M.: Gait and balance in Parkinson’s disease subtypes: objective measures and classification considerations. J. Neurol. 261(12), 2401–2410 (2014). https://doi.org/10.1007/s00415-014-7513-6

    Article  Google Scholar 

  65. Hasmann, S.E. et al.: Instrumented functional reach test differentiates individuals at high risk for Parkinson’s disease from controls. Front. Aging Neurosci. 6(Oct), 286 (2014). 3389/fnagi.2014.00286

    Google Scholar 

  66. Borzì, L., et al.: A new index to assess turning quality and postural stability in patients with Parkinson’s disease. Biomed. Signal Process. Control 62 (2020). https://doi.org/10.1016/j.bspc.2020.102059

  67. Hasegawa, N., Shah, V.V., Carlson-Kuhta, P., Nutt, J.G., Horak, F.B., Mancini, M.: How to select balance measures sensitive to parkinson’s disease from body-worn inertial sensors—separating the trees from the forest. Sensors (Switzerland) 19(15) (2019). https://doi.org/10.3390/s19153320

  68. di Biase, L., et al.: Quantitative analysis of bradykinesia and rigidity in Parkinson’s disease. Front. Neurol. 9(Mar): 1–12 (2018). https://doi.org/10.3389/fneur.2018.00121

  69. Helmich, R.C., Dirkx, M.F.: Pathophysiology and management of Parkinsonian Tremor. Semin. Neurol. 37(2), 127–134 (2017). https://doi.org/10.1055/s-0037-1601558

    Article  Google Scholar 

  70. Brittain, J.S., Cagnan, H., Mehta, A.R., Saifee, T.A., Edwards, M.J., Brown, P.: Distinguishing the central drive to tremor in Parkinson’s disease and essential tremor. J. Neurosci. 35(2), 795–806 (2015). https://doi.org/10.1523/JNEUROSCI.3768-14.2015

    Article  Google Scholar 

  71. Pretegiani, E., Optican, L.M.: Eye movements in Parkinson’s disease and inherited parkinsonian syndromes. Front. Neurol. 8(Nov) (2017). https://doi.org/10.3389/fneur.2017.00592

  72. Srivastava, A., Sharma, R., Sood, S.K., Shukla, G., Goyal, V., Behari, M.: Saccadic eye movements in Parkinson’s disease. Indian J. Ophthalmol. 62(5) (2014). https://doi.org/10.4103/0301-4738.133482

  73. Pinkhardt, E.H., Kassubek, J.: Ocular motor abnormalities in Parkinsonian syndromes. Parkinsonism Related Disorders 17(4): 223–230 (2011) (Elsevier). https://doi.org/10.1016/j.parkreldis.2010.08.004.

  74. Schott, G.D.: Penfield’s homunculus: a note on cerebral cartography. J. Neurol. Neurosurgery Psych. 56(4) (1993). https://doi.org/10.1136/jnnp.56.4.329.

  75. Thomas, M., Lenka, A., Kumar Pal, P.: Handwriting analysis in Parkinson’s Disease: current status and future directions. Movement Disorders Clinical Practice 4(6) (2017). https://doi.org/10.1002/mdc3.12552.

  76. Zham, P., Kumar, D.K., Dabnichki, P., Arjunan, S.P., Raghav, S.: Distinguishing different stages of Parkinson’s disease using composite index of speed and pen-pressure of sketching a spiral. Front. Neurol. 8(Sep): 1–7 (2017). https://doi.org/10.3389/fneur.2017.00435.

  77. Aarsland, D., Brønnick, K., Larsen, J.P., Tysnes, O.B., Alves, G.: Cognitive impairment in incident, untreated parkinson disease: the norwegian parkwest study. Neurology 72(13), 1121–1126 (2009). https://doi.org/10.1212/01.wnl.0000338632.00552.cb

    Article  Google Scholar 

  78. Lewis, S.J.G., Dove, A., Robbins, T.W., Barker, R.A., Owen, A.M.: Behavioral/systems/cognitive cognitive impairments in early Parkinson’s Disease are accompanied by reductions in activity in frontostriatal neural circuitry (2003)

    Google Scholar 

  79. Croskerry, P.: Clinical cognition and diagnostic error: applications of a dual process model of reasoning. Adv. Heal. Sci. Educ. 14(1) (2009). https://doi.org/10.1007/s10459-009-9182-2

  80. Herz, D.M., Bogacz, R., Brown, P.: Neuroscience: impaired decision-making in Parkinson’s Disease. Curr. Biol. 26(14) (2016). https://doi.org/10.1016/j.cub.2016.05.075

  81. Bechara, A., Damasio, A.R., Damasio, H., Anderson, S.W.: Insensitivity to future consequences following damage to human prefrontal cortex (1994)

    Google Scholar 

  82. Brand, M., Fujiwara, E., Borsutzky, S., Kalbe, E., Kessler, J., Markowitsch, H.J.: Decision-making deficits of korsakoff patients in a new gambling task with explicit rules: associations with executive functions (2005). https://doi.org/10.1037/0894

  83. Shiv, B., Loewenstein, G., Bechara, A., Damasio, H., Damasio, A.R.: Investment behavior and the negative side of emotion. Psychol. Sci. 16(6), 435–439 (2005). https://doi.org/10.1111/j.0956-7976.2005.01553.x

    Article  Google Scholar 

  84. Van Der Vegt, J.P.M., et al.: Attenuated neural response to gamble outcomes in drug-naive patients with Parkinson’s disease. Brain 136(4), 1192–1203 (2013). https://doi.org/10.1093/brain/awt027

    Article  Google Scholar 

  85. Watson, G.S., Leverenz, J.B.: Profile of cognitive impairment in parkinson’s disease. Brain Pathol. 20(3), 640–645 (2010). https://doi.org/10.1111/j.1750-3639.2010.00373.x

    Article  Google Scholar 

  86. Kjær, S.W., Damholdt, M.F., Callesen, M.B.: A systematic review of decision-making impairments in Parkinson’s Disease: dopaminergic medication and methodological variability. Basal Ganglia 14(2018). https://doi.org/10.1016/j.baga.2018.07.003.

  87. de Rezende Costa, F.H., et al. Jumping to conclusions in untreated patients with Parkinson’s disease. Neuropsychologia 85(2016). https://doi.org/10.1016/j.neuropsychologia.2016.03.002.

  88. Gescheidt, T., et al.: Iowa Gambling Task in patients with early-onset Parkinson’s disease: Strategy analysis. Neurol. Sci. 33(6), 1329–1335 (2012). https://doi.org/10.1007/s10072-012-1086-x

    Article  Google Scholar 

  89. Rossi, M., et al.: Decision-making in Parkinson’s disease patients with and without pathological gambling. Eur. J. Neurol. 17(1), 97–102 ( 2010). https://doi.org/10.1111/j.1468-1331.2009.02792.x

    Article  Google Scholar 

  90. Odekerken, V.J.J., et al.: Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): A randomised controlled trial. Lancet Neurol. 12(1), 37–44 (2013). https://doi.org/10.1016/S1474-4422(12)70264-8

    Article  Google Scholar 

  91. Santamato, A., et al.: Postural and balance disorders in patients with Parkinson’s disease: a prospective open-label feasibility study with two months of action observation treatment. Parkinson’s Disease 2015 (2015). https://doi.org/10.1155/2015/902738

  92. Canning, C.G., Allen, N.E., Nackaerts, E., Paul, S.S., Nieuwboer, A., Gilat, M.: Virtual reality in research and rehabilitation of gait and balance in Parkinson disease. Nat. Rev. Neurol. 16(8) (2020). https://doi.org/10.1038/s41582-020-0370-2

  93. Dahmen-Zimmer, K., Jansen, P.: Karate and dance training to improve balance and stabilize mood in patients with Parkinson’s disease: a feasibility study. Front. Med. 4(Dec) (2017). https://doi.org/10.3389/fmed.2017.00237

  94. Gandolfi, M., et al.: Virtual reality telerehabilitation for postural instability in Parkinson’s Disease: a multicenter, single-blind, randomized, controlled trial. BioMed Res. Int. 2017 (2017). https://doi.org/10.1155/2017/7962826

  95. F. Véronneau-Veilleux, P. Robaey, M. Ursino, and F. Nekka, “An integrative model of Parkinson’s disease treatment including levodopa pharmacokinetics, dopamine kinetics, basal ganglia neurotransmission and motor action throughout disease progression,” J. Pharmacokinet. Pharmacodyn., vol. 0123456789, 2020, doi: https://doi.org/10.1007/s10928-020-09723-y.

  96. Muralidharan, V., Mandali, A., Balasubramani, P.P., Mehta, H., Srinivasa Chakravarthy, V., Jahanshahi, M.: A cortico-basal ganglia model to understand the neural dynamics of targeted reaching in normal and Parkinson’s conditions. In: V. S. Chakravarthy and A. A. Moustafa, Eds. Computational Neuroscience Models of the Basal Ganglia, Singapore: Springer Singapore, 2018, pp. 167–195.

    Google Scholar 

  97. Gupta, A., Balasubramani, P. P., Chakravarthy, V.S.: Computational model of precision grip in Parkinson’s disease: a utility based approach. Front. Comput. Neurosci. 7(Dec), 172, Dec. 2013, doi: https://doi.org/10.3389/fncom.2013.00172

  98. Chauhan, A., Soman, K., Srinivasa Chakravarthy, V.: Saccade velocity driven oscillatory network model of grid cells. Front. Comput. Neurosci. 12(2019). https://doi.org/10.3389/fncom.2018.00107

  99. Schultz, W., Dayan, P., Montague, P.R.: A neural substrate of prediction and reward. Science 275(5306) (1997). doi: https://doi.org/10.1126/science.275.5306.159

  100. Mandali, A., Chakravarthy, V.S., Rajan, R., Sarma, S., Kishore, A.: Electrode position and current amplitude modulate impulsivity after subthalamic stimulation in Parkinsons Disease—a computational study. Front. Physiol. 7(November), 1–12 (2016). https://doi.org/10.3389/fphys.2016.00585

    Article  Google Scholar 

  101. Narayanamurthy, R., Jayakumar, S., Elango, S., Muralidharan, V., Chakravarthy, V.S.: A cortico- basal ganglia model for choosing an optimal rehabilitation strategy in Hemiparetic Stroke. Sci. Rep. 9(1), 13472 (2019). https://doi.org/10.1038/s41598-019-49670-4

    Article  Google Scholar 

  102. Zenon, A., Olivier, E.: Contribution of the basal ganglia to spoken language: Is speech production like the other motor skills? Behav. Brain Sci. 37(6), 576–576 (2014). https://doi.org/10.1017/S0140525X13004238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasa Chakravarthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nair, S.S., Muddapu, V.R.J., Sriram, M., Aditya, R., Gupta, R., Chakravarthy, S. (2022). Is There a Better Way to Assess Parkinsonian Motor Symptoms?—Experimental and Modelling Approach. In: Arjunan, S.P., Kumar, D.K. (eds) Techniques for Assessment of Parkinsonism for Diagnosis and Rehabilitation. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-3056-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3056-9_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3055-2

  • Online ISBN: 978-981-16-3056-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics