Skip to main content

Microbial Nanotechnology in Treating Multidrug-Resistance Pathogens

  • Chapter
  • First Online:
Microbial Nanotechnology: Green Synthesis and Applications

Abstract

Multidrug-resistant organisms (MDROs) such as viruses, bacteria, fungi, and parasites have caused significant mortalities worldwide. The continuous misusing of antimicrobial drugs is menacingly emerging infectious diseases that are resistant and difficult to treat. Many mechanisms of resistance have evolved in pathogens to avoid the bioactivities of drugs. Unfortunately, the development of new antibiotics has been limited, owing to the low economic benefits. This has motivated scientists to develop new and novel therapeutic alternatives capable of combating MDROs. Microbial nanotechnology has emerged as one of the most promising alternative therapies to overcome the crisis of antimicrobial resistance. The utilization of nanoparticles (NPs) based materials provides a new class of antimicrobial agents that transcends conventional antibiotic therapy. There are enormous advantages of antimicrobial NPs such as large surface area, direct contact to cell membranes, good biofilm penetration and can be considered as efficient drug delivery systems. Microbial synthesized NPs have shown a great potency, unique physicochemical properties, and easy to synthesis in more eco-friendly method, that have made them ideal antimicrobial agents for combating MDROs. In this chapter, an overview of microbial multidrug-resistant mechanisms and the new therapeutic alternatives to overcome these resistant microorganisms will be explored. The role of microbial NPs in combating various sensitive and resistant microbes, the advantages and challenges that can arise from their application will be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdeen S, Geo S, Praseetha P, Dhanya R (2014) Biosynthesis of silver nanoparticles from Actinomycetes for therapeutic applications. Int J Nanodimens 5:155–162

    Google Scholar 

  • Ademe M, Girma F (2020) Candida auris: from multidrug resistance to pan-resistant strains. Infect Drug Resist 13:1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4(8):3974–3983

    Article  CAS  Google Scholar 

  • Al-Dhabi NA, Mohammed Ghilan A-K, Arasu MV (2018) Characterization of silver nanomaterials derived from marine Streptomyces sp. al-dhabi-87 and its in vitro application against multidrug resistant and extended-spectrum beta-lactamase clinical pathogens. Nanomaterials 8(5):279

    Article  PubMed Central  CAS  Google Scholar 

  • Ali SG, Ansari MA, Alzohairy MA, Alomary MN, AlYahya S, Jalal M, Khan HM, Asiri SM, Ahmad W, Mahdi AA, El-Sherbeeny AM (2020a) Biogenic gold nanoparticles as potent antibacterial and Antibiofilm Nano-antibiotics against Pseudomonas aeruginosa. Antibiotics 9(3):100

    Article  CAS  PubMed Central  Google Scholar 

  • Ali SG, Ansari MA, Alzohairy MA, Alomary MN, Jalal M, AlYahya S, Asiri SM, Khan HM (2020b) Effect of biosynthesized ZnO nanoparticles on multi-drug resistant Pseudomonas Aeruginosa. Antibiotics 9(5):260

    Article  CAS  PubMed Central  Google Scholar 

  • AlMatar M, Makky EA, Var I, Koksal F (2018) The role of nanoparticles in the inhibition of multidrug-resistant bacteria and biofilms. Curr Drug Deliv 15(4):470–484

    Article  CAS  PubMed  Google Scholar 

  • Almatroudi A, Khadri H, Azam M, Rahmani AH, Khaleefah A, Khaleefah F, Khateef R, Ansari MA, Allemailem KS (2020) Antibacterial, Antibiofilm and anticancer activity of biologically synthesized silver nanoparticles using seed extract of Nigella sativa. PRO 8(4):388

    CAS  Google Scholar 

  • Almughem FA, Aldossary AM, Tawfik EA, Alomary MN, Alharbi WS, Alshahrani MY, Alshehri AA (2020) Cystic fibrosis: overview of the current development trends and innovative therapeutic strategies. Pharmaceutics 12(7):616

    Article  CAS  PubMed Central  Google Scholar 

  • Alomary MN, Ansari MA (2021) Proanthocyanins-capped biogenic TiO2 nanoparticles with enhanced penetration, antibacterial and ROS mediated inhibition of bacteria proliferation and biofilm formation: a comparative approach. Chem Eur J 27(18):5817–5829. https://doi.org/10.1002/chem.202004828

    Article  CAS  PubMed  Google Scholar 

  • Ansari MA, Albetran HM, Alheshibri MH, Timoumi A, Algarou NA, Akhtar S, Slimani Y, Almessiere MA, Alahmari FS, Baykal A, Low IM (2020) Synthesis of electrospun TiO2 nanofibers and characterization of their antibacterial and Antibiofilm potential against gram-positive and gram-negative Bacteria. Antibiotics 9(9):572

    Article  CAS  PubMed Central  Google Scholar 

  • Ansari MA, Asiri SMM (2021) Green synthesis, antimicrobial, antibiofilm and antitumor activities of superparamagnetic γ-Fe2O3 NPs and their molecular docking study with cell wall mannoproteins and peptidoglycan. Int J Biol Macromol 171:44–58

    Article  CAS  PubMed  Google Scholar 

  • Ansari MA, Khan HM, Khan A, Cameotra S, Alzohairy M (2015) Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian J Med Microbiol 33(1):101

    Article  CAS  PubMed  Google Scholar 

  • Antony HA, Parija SC (2016) Antimalarial drug resistance: an overview. Trop Parasitol 6(1):30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apte M, Sambre D, Gaikawad S, Joshi S, Bankar A, Kumar AR, Zinjarde S (2013) Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express 3(1):32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashajyothi C, Prabhurajeshwar C, Handral HK (2016) Investigation of antifungal and anti-mycelium activities using biogenic nanoparticles: an eco-friendly approach. Environ Nanotechnol Monit Manag 5:81–87

    Google Scholar 

  • Babic M, Hujer AM, Bonomo RA (2006) What’s new in antibiotic resistance? Focus on beta-lactamases. Drug Resist Updat 9(3):142–156. https://doi.org/10.1016/j.drup.2006.05.005

    Article  CAS  PubMed  Google Scholar 

  • Baker S, Satish S (2015) Biosynthesis of gold nanoparticles by Pseudomonas veronii AS41G inhabiting Annona squamosa L. Spectrochim Acta A Mol Biomol Spectrosc 150:691–695

    Article  CAS  PubMed  Google Scholar 

  • Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR (2018) Nano-strategies to fight multidrug resistant bacteria—“a Battle of the titans”. Front Microbiol 9:1441

    Article  PubMed  PubMed Central  Google Scholar 

  • Baranovich T, Saito R, Suzuki Y, Zaraket H, Dapat C, Caperig-Dapat I, Oguma T, Shabana II, Saito T, Suzuki H (2010) Emergence of H274Y oseltamivir-resistant a (H1N1) influenza viruses in Japan during the 2008–2009 season. J Clin Virol 47(1):23–28

    Article  CAS  PubMed  Google Scholar 

  • Barapatre A, Aadil KR, Jha H (2016) Synergistic antibacterial and antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading fungus. Bioresour Bioprocess 3(1):8

    Article  Google Scholar 

  • Bassetti M, Russo A, Carnelutti A, Wilcox M (2019) Emerging drugs for treating methicillin-resistant Staphylococcus aureus. Expert Opin Emerg Drugs 24(3):191–204. https://doi.org/10.1080/14728214.2019.1677607

    Article  CAS  PubMed  Google Scholar 

  • BioRender.com (2020) Adapted from “Coronavirus Replication Cycle”. Retrieved from https://app.biorender.com/biorender-templates

  • Brandenburg K, Schürholz T (2015) Lack of new antiinfective agents: passing into the pre-antibiotic age? World J Biol Chem 6(3):71–77. https://doi.org/10.4331/wjbc.v6.i3.71

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4(165):165rv113

    Article  CAS  Google Scholar 

  • Capela R, Moreira R, Lopes F (2019) An overview of drug resistance in protozoal diseases. Int J Mol Sci 20(22):5748

    Article  CAS  PubMed Central  Google Scholar 

  • CDC (2018) Antibiotic/antimicrobial resistance (AR/AMR) (trans: https://www.cdc.gov/drugresistance/). Centers for Disease Control and Prevention

  • Chen P, Liu M, Zeng Q, Zhang Z, Liu W, Sang H, Lu L (2019) Uncovering new mutations conferring azole resistance in the Aspergillus fumigatus cyp51A gene. Front Microbiol 10:3127

    Article  PubMed  Google Scholar 

  • Chowdhary A, Sharma C, Meis JF (2017) Candida auris: a rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog 13(5):e1006290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christaki E, Marcou M, Tofarides A (2020) Antimicrobial resistance in Bacteria: mechanisms, evolution, and persistence. J Mol Evol 88(1):26–40. https://doi.org/10.1007/s00239-019-09914-3

    Article  CAS  PubMed  Google Scholar 

  • Coffin JM (1995) HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267(5197):483–489. https://doi.org/10.1126/science.7824947

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33(7):2327–2333

    Article  CAS  PubMed  Google Scholar 

  • de Lima R, Seabra AB, Durán N (2012) Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol 32(11):867–879

    Article  CAS  PubMed  Google Scholar 

  • De Matteis V (2017) Exposure to inorganic nanoparticles: routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics 5(4):29

    Article  PubMed Central  CAS  Google Scholar 

  • De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ (2020) Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 33(3):e00181. https://doi.org/10.1128/cmr.00181-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Martino P (2018) Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS microbiology 4(2):274–288. https://doi.org/10.3934/microbiol.2018.2.274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890. https://doi.org/10.3201/eid0809.020063

    Article  PubMed  PubMed Central  Google Scholar 

  • Du D, Wang-Kan X, Neuberger A, van Veen HW, Pos KM, Piddock LJV, Luisi BF (2018) Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol 16(9):523–539. https://doi.org/10.1038/s41579-018-0048-6

    Article  CAS  PubMed  Google Scholar 

  • Duncan MC, Onguéné PA, Kihara I, Nebangwa DN, Naidu ME, Williams DE, Balgi AD, Andrae-Marobela K, Roberge M, Andersen RJ (2020) Virtual screening identifies Chebulagic acid as an inhibitor of the M2 (S31N) viral Ion Channel and influenza a virus. Molecules 25(12):2903

    Article  CAS  PubMed Central  Google Scholar 

  • Xiang DX, Chen Q, Pang L, Zheng C-l (2011) Inhibitory effects of silver nanoparticles on H1N1 influenza a virus in vitro. J Virol Methods 178(1–2):137–142

    Article  CAS  PubMed  Google Scholar 

  • El-Baz AF, El-Batal AI, Abomosalam FM, Tayel AA, Shetaia YM, Yang ST (2016) Extracellular biosynthesis of anti-Candida silver nanoparticles using Monascus purpureus. J Basic Microbiol 56(5):531–540

    Article  CAS  PubMed  Google Scholar 

  • Elsoud MMA, Al-Hagar OE, Abdelkhalek ES, Sidkey N (2018) Synthesis and investigations on tellurium myconanoparticles. Biotechnology Reports 18:e00247

    Article  Google Scholar 

  • Farouk F, Abdelmageed M, Ansari MA, Azzazy HM (2020) Synthesis of magnetic iron oxide nanoparticles using pulp and seed aqueous extract of Citrullus colocynth and evaluation of their antimicrobial activity. Biotechnol Lett 42(2):231–240

    Article  CAS  PubMed  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6(1):103–109

    Article  CAS  PubMed  Google Scholar 

  • Fitri LE, Alkarimah A, Cahyono AW, Lady WN, Endharti AT, Nugraha RYB (2019) Effect of metabolite extract of Streptomyces hygroscopicus subsp. hygroscopicus on Plasmodium falciparum 3D7 in vitro. Iran J Parasitol 14(3):444

    PubMed  PubMed Central  Google Scholar 

  • Fleming A (1945) Penicillin Nobel lecture. https://www.nobelprize.org/uploads/2018/06/fleming-lecture.pdf

  • Fletcher SM, Stark D, Harkness J, Ellis J (2012) Enteric protozoa in the developed world: a public health perspective. Clin Microbiol Rev 25(3):420–449. https://doi.org/10.1128/cmr.05038-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Gahlawat G, Shikha S, Chaddha BS, Chaudhuri SR, Mayilraj S, Choudhury AR (2016) Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera. Microb Cell Factories 15(1):25

    Article  CAS  Google Scholar 

  • Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N, Russo L, Galdiero S, Galdiero M (2013) Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomedicine 8:4303

    PubMed  PubMed Central  Google Scholar 

  • Gandhi H, Khan S (2016) Biological synthesis of silver nanoparticles and its antibacterial activity. J Nanomed Nanotechnol 7(2):1000366

    Article  CAS  Google Scholar 

  • Gebremichael Tedla D, Bariagabr FH, Abreha HH (2018) Incidence and trends of leishmaniasis and its risk factors in Humera, Western Tigray. J Parasitol Res 2018:8463097

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghadi HH, Mohammed S, Essa RH (2018) Leshmanicidal activity of Fusarium silver nannoparticles against leishmania donovani invitro study. Biochem Cell Arch 18(1):591–596

    Google Scholar 

  • Ghiuță I, Cristea D, Croitoru C, Kost J, Wenkert R, Vyrides I, Anayiotos A, Munteanu D (2018) Characterization and antimicrobial activity of silver nanoparticles, biosynthesized using Bacillus species. Appl Surf Sci 438:66–73

    Article  CAS  Google Scholar 

  • Grasso G, Zane D, Dragone R (2020) Microbial nanotechnology: challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nano 10(1):11

    CAS  Google Scholar 

  • Hanczvikkel A, Víg A, Tóth Á (2019) Survival capability of healthcare-associated, multidrug-resistant bacteria on untreated and on antimicrobial textiles. J Ind Text 48(7):1113–1135

    Article  CAS  Google Scholar 

  • Hulkoti NI, Taranath T (2014) Biosynthesis of nanoparticles using microbes—a review. Colloids Surf B: Biointerfaces 121:474–483

    Article  CAS  PubMed  Google Scholar 

  • Husseiny SM, Salah TA, Anter HA (2015) Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef University J Basic Appl Sci 4(3):225–231

    Article  Google Scholar 

  • Ishida K, Cipriano TF, Rocha GM, Weissmüller G, Gomes F, Miranda K, Rozental S (2014) Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts. Mem Inst Oswaldo Cruz 109(2):220–228

    Article  PubMed  Google Scholar 

  • Jalal M, Ansari MA, Ali SG, Khan HM, Eldaif WA, Alrumman SA (2016) Green synthesis of silver nanoparticles using leaf extract of Cinnamomum tamala and its antimicrobial activity against clinical isolates of bacteria and fungi. Int J Adv Res 4(12):428–440

    Article  CAS  Google Scholar 

  • Jalal M, Ansari MA, Alzohairy MA, Ali SG, Khan HM, Almatroudi A, Raees K (2018) Biosynthesis of silver nanoparticles from oropharyngeal candida glabrata isolates and their antimicrobial activity against clinical strains of bacteria and fungi. Nano 8(8):586

    Google Scholar 

  • Javaid A, Oloketuyi SF, Khan MM, Khan F (2018) Diversity of bacterial synthesis of silver nanoparticles. BioNanoScience 8(1):43–59

    Article  Google Scholar 

  • Jena J, Pradhan N, Dash BP, Panda PK, Mishra BK (2015) Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora sp. and its antimicrobial activity. J Saudi Chem Soc 19(6):661–666

    Article  Google Scholar 

  • Jena J, Pradhan N, Nayak RR, Dash BP, Sukla LB, Panda PK, Mishra BK (2014) Microalga Scenedesmus sp.: a potential low-cost green machine for silver nanoparticle synthesis. J Microbiol Biotechnol 24(4):522–533

    Article  CAS  PubMed  Google Scholar 

  • Jeyabharathi S, Kalishwaralal K, Sundar K, Muthukumaran A (2017) Synthesis of zinc oxide nanoparticles (ZnONPs) by aqueous extract of Amaranthus caudatus and evaluation of their toxicity and antimicrobial activity. Mater Lett 209:295–298

    Article  CAS  Google Scholar 

  • Jo JH, Singh P, Kim YJ, Wang C, Mathiyalagan R, Jin CG, Yang DC (2016) Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles. Artificial cells, nanomedicine, and biotechnology 44(6):1576–1581. https://doi.org/10.3109/21691401.2015.1068792

    Article  CAS  PubMed  Google Scholar 

  • Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S (2010) Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B: Biointerfaces 79(2):340–344

    Article  CAS  PubMed  Google Scholar 

  • Karthik L, Kumar G, Keswani T, Bhattacharyya A, Reddy BP, Rao KB (2013) Marine actinobacterial mediated gold nanoparticles synthesis and their antimalarial activity. Nanomedicine 9(7):951–960

    Article  CAS  PubMed  Google Scholar 

  • Kharissova OV, Dias HR, Kharisov BI, Pérez BO, Pérez VMJ (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31(4):240–248

    Article  CAS  PubMed  Google Scholar 

  • Khiralla GM, El-Deeb BA (2015) Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens. LWT-Food Sci Technol 63(2):1001–1007

    Article  CAS  Google Scholar 

  • Ksiezopolska E, Gabaldón T (2018) Evolutionary emergence of drug resistance in Candida opportunistic pathogens. Genes 9(9):461

    Article  PubMed Central  CAS  Google Scholar 

  • Kumar N, Das S, Jyoti A, Kaushik S (2016) Synergistic effect of silver nanoparticles with doxycycline against Klebsiella pneumoniae. Int J Pharm Pharm Sci 8(7):183–186

    CAS  Google Scholar 

  • Kumar PS, Balachandran C, Duraipandiyan V, Ramasamy D, Ignacimuthu S, Al-Dhabi NA (2015) Extracellular biosynthesis of silver nanoparticle using Streptomyces sp. 09 PBT 005 and its antibacterial and cytotoxic properties. Appl Nanosci 5(2):169–180

    Article  CAS  Google Scholar 

  • Lampejo T (2020) Influenza and antiviral resistance: an overview. Eur J Clin Microbiol Infect Dis 39(7):1201–1208

    Article  PubMed  Google Scholar 

  • Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 8(1):1–10

    Google Scholar 

  • Li X, Xu H, Chen Z-S, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:270974

    Article  Google Scholar 

  • Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22(4):582–610. https://doi.org/10.1128/cmr.00040-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  • Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194. https://doi.org/10.3389/fcimb.2016.00194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarov V, Love A, Sinitsyna O, Makarova S, Yaminsky I, Taliansky M, Kalinina N (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6(1):35–44

    Article  CAS  Google Scholar 

  • Malarkodi C, Rajeshkumar S, Paulkumar K, Vanaja M, Jobitha GDG, Annadurai G (2013) Bactericidal activity of bio mediated silver nanoparticles synthesized by Serratia nematodiphila. Drug invention today 5(2):119–125

    Article  CAS  Google Scholar 

  • Manivasagan P, Alam MS, Kang K-H, Kwak M, Kim S-K (2015) Extracellular synthesis of gold bionanoparticles by Nocardiopsis sp. and evaluation of its antimicrobial, antioxidant and cytotoxic activities. Bioprocess Biosyst Eng 38(6):1167–1177

    Article  CAS  PubMed  Google Scholar 

  • Margeridon-Thermet S, Shafer RW (2010) Comparison of the mechanisms of drug resistance among HIV, hepatitis B, and hepatitis C. Viruses 2(12):2696–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez JL, Coque TM, Baquero F (2015) What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol 13(2):116–123. https://doi.org/10.1038/nrmicro3399

    Article  CAS  PubMed  Google Scholar 

  • McKeegan KS, Borges-Walmsley MI, Walmsley AR (2002) Microbial and viral drug resistance mechanisms. Trends Microbiol 10(10 Suppl):S8–S14. https://doi.org/10.1016/s0966-842x(02)02429-0

    Article  CAS  PubMed  Google Scholar 

  • Meis JF, Chowdhary A, Rhodes JL, Fisher MC, Verweij PE (2016) Clinical implications of globally emerging azole resistance in Aspergillus fumigatus. Philos Trans R Soc B: Biol Sci 371(1709):20150460

    Article  CAS  Google Scholar 

  • Mijnendonckx K, Ali MM, Provoost A, Janssen P, Mergeay M, Leys N, Charlier D, Monsieurs P, Van Houdt R (2019) Spontaneous mutation in the AgrRS two-component regulatory system of Cupriavidus metallidurans results in enhanced silver resistance. Metallomics 11(11):1912–1924

    Article  CAS  PubMed  Google Scholar 

  • Monzote L, Siddiq A (2011) Drug development to protozoan diseases. Open Med Chem J 5:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spectrum 4(2):10. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015

    Article  CAS  Google Scholar 

  • Murugan K, Wei J, Alsalhi MS, Nicoletti M, Paulpandi M, Samidoss CM, Dinesh D, Chandramohan B, Paneerselvam C, Subramaniam J (2017) Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors. Parasitol Res 116(2):495–502

    Article  PubMed  Google Scholar 

  • Musarrat J, Ali K, Ansari MA, Saquib Q, Siddiqui M, Khan ST, Alkhedhairy AA (2015) Green synthesis of nanoparticles and their role as nano-antibiotics and anti-biofilm agents. Planta Medica 81(05):OA44

    Google Scholar 

  • Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 5(4):452–456

    Article  CAS  PubMed  Google Scholar 

  • Naqvi SZH, Kiran U, Ali MI, Jamal A, Hameed A, Ahmed S, Ali N (2013) Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int J Nanomedicine 8:3187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ojo SA, Lateef A, Azeez MA, Oladejo SM, Akinwale AS, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Gueguim-Kana EB (2016) Biomedical and catalytic applications of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of Bacillus safensis LAU 13: antifungal, dye degradation, anti-coagulant and thrombolytic activities. IEEE Trans Nanobioscience 15(5):433–442

    Article  PubMed  Google Scholar 

  • O'Neill J (2016) Tackling drug-resistant infections globally: final report and recommendations. The review on antimicrobial resistance

    Google Scholar 

  • Öztürk BY (2019) Intracellular and extracellular green synthesis of silver nanoparticles using Desmodesmus sp.: their antibacterial and antifungal effects. Caryologia Int J Cytol Cytosyst Cytogenet 72(1):29–43

    Google Scholar 

  • Patterson TF, Kirkpatrick WR, White M, Hiemenz JW, Wingard JR, Dupont B, Rinaldi MG, Stevens DA, Graybill JR, Group PAS (2000) Invasive aspergillosis disease spectrum, treatment practices, and outcomes. Medicine 79(4):250–260

    Article  CAS  PubMed  Google Scholar 

  • Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65(13–14):1803–1815. https://doi.org/10.1016/j.addr.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  • Poole K (2005) Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56(1):20–51. https://doi.org/10.1093/jac/dki171

    Article  CAS  PubMed  Google Scholar 

  • Ramage G, Rajendran R, Sherry L, Williams C (2012) Fungal biofilm resistance. Int J Microbiol 2012:528521. https://doi.org/10.1155/2012/528521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramasamy M, Lee J-H, Lee J (2016) Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold–silver nanoparticles against pathogenic bacteria and their physiochemical characterizations. J Biomater Appl 31(3):366–378

    Article  CAS  PubMed  Google Scholar 

  • Ramya S, Shanmugasundaram T, Balagurunathan R (2015) Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. J Trace Elem Med Biol 32:30–39

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen TB, Givskov M (2006) Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296(2–3):149–161. https://doi.org/10.1016/j.ijmm.2006.02.005

    Article  CAS  PubMed  Google Scholar 

  • Rehman S, Jermy R, Asiri SM, Shah MA, Farooq R, Ravinayagam V, Ansari MA, Alsalem Z, Al Jindan R, Reshi Z (2020) Using Fomitopsis pinicola for bioinspired synthesis of titanium dioxide and silver nanoparticles, targeting biomedical applications. RSC Adv 10(53):32137–32147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riggle BA, Manglani M, Maric D, Johnson KR, Lee M-H, Neto OLA, Taylor TE, Seydel KB, Nath A, Miller LH (2020) CD8+ T cells target cerebrovasculature in children with cerebral malaria. J Clin Invest 130(3):1128–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodenhuis-Zybert IA, Wilschut J, Smit JM (2010) Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci 67(16):2773–2786

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury P, Gopal PK, Paul S, Pal R (2016) Cyanobacteria assisted biosynthesis of silver nanoparticles—a potential antileukemic agent. J Appl Phycol 28(6):3387–3394

    Article  CAS  Google Scholar 

  • Ruddaraju LK, Pammi SVN, Sankar Guntuku G, Padavala VS, VRM K (2020) A review on anti-bacterials to combat resistance: from ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian J Pharm Sci 15(1):42–59

    Article  PubMed  Google Scholar 

  • Saravanakumar K, Chelliah R, MubarakAli D, Jeevithan E, Oh D-H, Kathiresan K, Wang M-H (2018) Fungal enzyme-mediated synthesis of chitosan nanoparticles and its biocompatibility, antioxidant and bactericidal properties. Int J Biol Macromol 118:1542–1549

    Article  CAS  PubMed  Google Scholar 

  • Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H (2009) Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol 53(1):41–44

    Article  CAS  PubMed  Google Scholar 

  • Scroggs SL, Gass JT, Chinnasamy R, Widen SG, Azar SR, Rossi SL, Arterburn JB, Vasilakis N, Hanley KA (2020) Evolution of resistance to fluoroquinolones by dengue virus serotype 4 provides insight into mechanism of action and consequences for viral fitness. Virology 552:94–106

    Article  PubMed  CAS  Google Scholar 

  • Sekyere JO, Asante J (2018) Emerging mechanisms of antimicrobial resistance in bacteria and fungi: advances in the era of genomics. Future Microbiol 13:241–262. https://doi.org/10.2217/fmb-2017-0172

    Article  CAS  PubMed  Google Scholar 

  • Sengupta J, Ghosh S, Datta P, Gomes A, Gomes A (2014) Physiologically important metal nanoparticles and their toxicity. J Nanosci Nanotechnol 14(1):990–1006

    Article  CAS  PubMed  Google Scholar 

  • Shakibaie M, Forootanfar H, Golkari Y, Mohammadi-Khorsand T, Shakibaie MR (2015a) Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J Trace Elem Med Biol 29:235–241

    Article  CAS  PubMed  Google Scholar 

  • Shakibaie M, Mohazab NS, Mousavi SAA (2015b) Antifungal activity of selenium nanoparticles synthesized by Bacillus species Msh-1 against Aspergillus fumigatus and Candida albicans. Jundishapur J Microbiol 8(9):e26381

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao W, Liu H, Liu X, Sun H, Wang S, Zhang R (2015) pH-responsive release behavior and anti-bacterial activity of bacterial cellulose-silver nanocomposites. Int J Biol Macromol 76:209–217

    Article  CAS  PubMed  Google Scholar 

  • Sharma G, Kumar A, Sharma S, Naushad M, Dwivedi RP, Alothman ZA, Mola GT (2019) Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. J King Saud Univ Sci 31(2):257–269

    Article  Google Scholar 

  • Shepard BD, Gilmore MS (2002) Antibiotic-resistant enterococci: the mechanisms and dynamics of drug introduction and resistance. Microbes Infect 4(2):215–224. https://doi.org/10.1016/s1286-4579(01)01530-1

    Article  CAS  PubMed  Google Scholar 

  • Shobha B, Lakshmeesha TR, Ansari MA, Almatroudi A, Alzohairy MA, Basavaraju S, Alurappa R, Niranjana SR, Chowdappa S (2020) Mycosynthesis of ZnO nanoparticles using Trichoderma spp. isolated from rhizosphere soils and its synergistic antibacterial effect against Xanthomonas oryzae pv. Oryzae. J Fungi 6(3):181

    Article  CAS  Google Scholar 

  • Singh N, Yeh PJ (2017) Suppressive drug combinations and their potential to combat antibiotic resistance. J Antibiot 70(11):1033–1042. https://doi.org/10.1038/ja.2017.102

    Article  CAS  Google Scholar 

  • Singh P, Kim Y-J, Zhang D, Yang D-C (2016a) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Singh H, Kim YJ, Mathiyalagan R, Wang C, Yang DC (2016b) Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzym Microb Technol 86:75–83

    Article  CAS  Google Scholar 

  • Singh R, Wagh P, Wadhwani S, Gaidhani S, Kumbhar A, Bellare J, Chopade BA (2013) Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int J Nanomed 8:4277

    Google Scholar 

  • Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15(1):1–20

    Article  CAS  Google Scholar 

  • Stojković V, Noda-Garcia L, Tawfik DS, Fujimori DG (2016) Antibiotic resistance evolved via inactivation of a ribosomal RNA methylating enzyme. Nucleic Acids Res 44(18):8897–8907. https://doi.org/10.1093/nar/gkw699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudha SS, Rajamanickam K, Rengaramanujam J (2013) Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J Exp Biol 51(5):393–399

    CAS  PubMed  Google Scholar 

  • Sumanth B, Lakshmeesha TR, Ansari MA, Alzohairy MA, Udayashankar AC, Shobha B, Niranjana SR, Srinivas C, Almatroudi A (2020) Mycogenic synthesis of extracellular zinc oxide nanoparticles from Xylaria acuta and its Nanoantibiotic potential. Int J Nanomed 15:8519–8536

    Article  CAS  Google Scholar 

  • Suresh AK, Pelletier DA, Wang W, Broich ML, Moon J-W, Gu B, Allison DP, Joy DC, Phelps TJ, Doktycz MJ (2011) Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater 7(5):2148–2152

    Article  CAS  PubMed  Google Scholar 

  • Syed B, Prasad NM, Satish S (2016) Endogenic mediated synthesis of gold nanoparticles bearing bactericidal activity. J Microsc Ultrastruct 4(3):162–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Tăbăran A-F, Matea CT, Mocan T, Tăbăran A, Mihaiu M, Iancu C, Mocan L (2020) Silver nanoparticles for the therapy of tuberculosis. Int J Nanomedicine 15:2231

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanwar J, Das S, Fatima Z, Hameed S (2014) Multidrug resistance: an emerging crisis. Interdiscip Perspect Infect Dis 2014:541340. https://doi.org/10.1155/2014/541340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor LH, Latham SM, Woolhouse ME (2001) Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356(1411):983–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toda M, Williams SR, Berkow EL, Farley MM, Harrison LH, Bonner L, Marceaux KM, Hollick R, Zhang AY, Schaffner W (2019) Population-based active surveillance for culture-confirmed candidemia—four sites, United States, 2012–2016. MMWR Surveill Summ 68(8):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasanth SB, Kurian GA (2017) Toxicity evaluation of silver nanoparticles synthesized by chemical and green route in different experimental models. Artif Cells Nanomed Biotechnol 45(8):1721–1727

    Article  CAS  PubMed  Google Scholar 

  • Verweij PE, Zhang J, Debets AJ, Meis JF, van de Veerdonk FL, Schoustra SE, Zwaan BJ, Melchers WJ (2016) In-host adaptation and acquired triazole resistance in Aspergillus fumigatus: a dilemma for clinical management. Lancet Infect Dis 16(11):e251–e260

    Article  CAS  PubMed  Google Scholar 

  • Vicario-Parés U, Castañaga L, Lacave JM, Oron M, Reip P, Berhanu D, Valsami-Jones E, Cajaraville MP, Orbea A (2014) Comparative toxicity of metal oxide nanoparticles (CuO, ZnO and TiO 2) to developing zebrafish embryos. J Nanopart Res 16(8):2550

    Article  CAS  Google Scholar 

  • Waghmare SR, Mulla MN, Marathe SR, Sonawane KD (2015) Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. 3. Biotech 5(1):33–38

    Google Scholar 

  • Wang C, Kim YJ, Singh P, Mathiyalagan R, Jin Y, Yang DC (2016) Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artif Cells Nanomed Biotechnol 44(4):1127–1132

    CAS  PubMed  Google Scholar 

  • Warheit DB (2018) Hazard and risk assessment strategies for nanoparticle exposures: how far have we come in the past 10 years? F1000 Res 7:376

    Article  CAS  Google Scholar 

  • WHO (1999) Fixed-dose combination tablets for the treatment of tuberculosis (trans: https://www.who.int/tb/publications/fixed-dosecombination-report/en/)

  • WHO (2011) Report on the burden of endemic health care-associated infection worldwide (trans: https://apps.who.int/iris/bitstream/handle/10665/80135/9789241501507_eng.pdf)

  • Wilson DN (2014) Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 12(1):35–48. https://doi.org/10.1038/nrmicro3155

    Article  CAS  PubMed  Google Scholar 

  • World-Bank (2017) Final report: drug resistant infections – a threat to our economic future (trans: http://hdl.handle.net/10986/26707)

  • Wypij M, Czarnecka J, Świecimska M, Dahm H, Rai M, Golinska P (2018) Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World J Microbiol Biotechnol 34(2):23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia Q, Li H, Xiao K (2016) Factors affecting the pharmacokinetics, biodistribution and toxicity of gold nanoparticles in drug delivery. Curr Drug Metab 17(9):849–861

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Wei Q, Yin K, Sun H, Li J, Xiao T, Kong X, Wang Y, Zhao G, Zhu S (2018) Surveillance of antimalarial resistance Pfcrt, Pfmdr1, and Pfkelch13 polymorphisms in African Plasmodium falciparum imported to Shandong Province, China. Sci Rep 8(1):1–9

    Google Scholar 

  • Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769. https://doi.org/10.1038/sj.clpt.6100400

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yan S, Tyagi R, Surampalli R (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82(4):489–494

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Jiang X (2013) Multiple strategies to activate gold nanoparticles as antibiotics. Nanoscale 5(18):8340–8350

    Article  CAS  PubMed  Google Scholar 

  • Zonaro E, Lampis S, Turner RJ, Qazi SJS, Vallini G (2015) Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Front Microbiol 6:584

    Article  PubMed  PubMed Central  Google Scholar 

  • Zulfiqar B, Shelper TB, Avery VM (2017) Leishmaniasis drug discovery: recent progress and challenges in assay development. Drug Discov Today 22(10):1516–1531

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam A. Tawfik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Fahad, A.J. et al. (2021). Microbial Nanotechnology in Treating Multidrug-Resistance Pathogens. In: Ansari, M.A., Rehman, S. (eds) Microbial Nanotechnology: Green Synthesis and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-16-1923-6_10

Download citation

Publish with us

Policies and ethics