Skip to main content

From the Understanding of Fluorination Process to Hydrophobic Natural Fibers

  • Chapter
  • First Online:
Vegetable Fiber Composites and their Technological Applications

Abstract

Composites are constantly studied with the aim of making these materials more efficient and more environmental friendly. With this second aim, vegetal fibers are commonly considered as substitutes of glass fibers in order to make eco-composite. However, when dealing with mechanical performances of composite, one of the main critical point is the filler/matrix interface. Nonetheless, vegetal fiber hydrophilicity does not allow the compatibility with hydrophobic polymers, which are the most frequently used. To solve this issue, the use of direct fluorination was investigated to modify the surface chemistry of lignocellulosic substrates, through a more environment-friendly way than “generic” methods (e.g. chemical or thermal treatment). Chemical modification, i.e. covalent grafting of fluorine atoms on the outmost surface of lignocellulosic material surface, has allowed to significantly increase the hydrophobicity of samples by reducing at 0 the polar component of the surface tension; this route makes it possible vegetal products to be compatibilized with hydrophobic polymers (e.g. polyethylene, polyethylene, polyester, etc.). This compatibilization allows to significantly increase the composite health and its mechanical properties because of a better load transfer between fillers and the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dhaliwal JS (2019) Natural fibers: applications. In: Abbas M, Jeon H-Y (eds) Generation, development and modifications of natural fibers. IntechOpen

    Google Scholar 

  2. Charlet K (2006) Contribution à l’étude de composites unidirectionnels renforcés par des fibres de lin : relation entre la microstructure de la fibre et ses propriétés mécaniques. Université de Caen, Thèse en chimie des matériaux

    Google Scholar 

  3. Moudood A, Rahman A, Öchsner A et al (2019) Flax fiber and its composites: an overview of water and moisture absorption impact on their performance. J Reinf Plast Compos 38:323–339. https://doi.org/10.1177/0731684418818893

    Article  CAS  Google Scholar 

  4. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58:80–86. https://doi.org/10.1007/s11837-006-0234-2

    Article  CAS  Google Scholar 

  5. Wu C-M, Lai W-Y, Wang C-Y (2016) Effects of surface modification on the mechanical properties of flax/β-polypropylene composites. Materials 9:314–324. https://doi.org/10.3390/ma9050314

    Article  CAS  Google Scholar 

  6. Shaker K, Nawab Y, Jabbar M (2020) Bio-composites: eco-friendly substitute of glass fiber composites. In: Kharissova OV, Martínez LMT, Kharisov BI (eds) Handbook of nanomaterials and nanocomposites for energy and environmental applications. Springer, Cham, pp 1–25

    Google Scholar 

  7. Patel HK, Ren G, Hogg PJ, Peijs T (2010) Hemp fibre as alternative to glass fibre in sheet moulding compound part 1—influence of fibre content and surface treatment on mechanical properties. Plast Rubber Compos 39:268–276. https://doi.org/10.1179/174328910X12647080902853

    Article  CAS  Google Scholar 

  8. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264. https://doi.org/10.1016/S0266-3538(03)00096-4

    Article  CAS  Google Scholar 

  9. Conrad E, Cassar L (2014) Decoupling economic growth and environmental degradation: reviewing progress to date in the small island state of malta. Sustainability 6:6729–6750. https://doi.org/10.3390/su6106729

    Article  Google Scholar 

  10. Fischer-Kowalski M, Swilling M, von Weizsäcker EU et al (2011) Decoupling natural resource use and environmental impacts from economic growth, a report of the working group on decoupling to the international resource panel. UNEP

    Google Scholar 

  11. Patera A, Derome D, Griffa M, Carmeliet J (2013) Hysteresis in swelling and in sorption of wood tissue. J Struct Biol 182:226–234. https://doi.org/10.1016/j.jsb.2013.03.003

    Article  Google Scholar 

  12. Kollmann FFP, Côté WA (1968) Principles of wood science and technology: I solid wood. Springer

    Google Scholar 

  13. Derome D, Rafsanjani A, Patera A et al (2012) Hygromorphic behaviour of cellular material: hysteretic swelling and shrinkage of wood probed by phase contrast X-ray tomography. Philos Mag A 92:3680–3698. https://doi.org/10.1080/14786435.2012.715248

    Article  CAS  Google Scholar 

  14. Dhakal H, Zhang Z, Richardson M (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67:1674–1683. https://doi.org/10.1016/j.compscitech.2006.06.019

    Article  CAS  Google Scholar 

  15. Chotirat L, Chaochanchaikul K, Sombatsompop N (2007) On adhesion mechanisms and interfacial strength in acrylonitrile–butadiene–styrene/wood sawdust composites. Int J Adhes Adhes 27:669–678. https://doi.org/10.1016/j.ijadhadh.2007.02.001

    Article  CAS  Google Scholar 

  16. Kazayawoko M, Balatinecz JJ, Matuana LM (1999) Surface modification and adhesion mechanisms in woodfiber-polypropylene composites. J Mat Sci 6189–6199

    Google Scholar 

  17. Klason C, Kubát J, Strömvall H-E (1984) The efficiency of cellulosic fillers in common thermoplastics. part 1. filling without processing aids or coupling agents. Int J Polym Mat Po 10:159–187. https://doi.org/10.1080/00914038408080268

    Article  CAS  Google Scholar 

  18. Célino A, Fréour S, Jacquemin F, Casari P (2014) The hygroscopic behavior of plant fibers: a review. Front Chem 1:1–12. https://doi.org/10.3389/fchem.2013.00043

    Article  CAS  Google Scholar 

  19. AL-Oqla FM, Salit MS (2017) Natural fiber composites. In: Materials selection for natural fiber composites. Elsevier, pp 23–48

    Google Scholar 

  20. Thakur VK, Thakur M, Kessler MR (2017) Handbook of composites from renewable materials. Scrivener Publishing LLC

    Google Scholar 

  21. Stamm AJ, Burr HK, Kline AA (1946) Staybwood—heat-stabilized wood. Ind eng chem 38:630–634. https://doi.org/10.1021/ie50438a027

    Article  CAS  Google Scholar 

  22. Mburu F, Dumarçay S, Bocquet JF et al (2008) Effect of chemical modifications caused by heat treatment on mechanical properties of Grevillea robusta wood. Polym Degrad Stabil 93:401–405

    Article  CAS  Google Scholar 

  23. Podgorski L, Chevet B, Onic L (2000) Modification of wood wettability by plasma and corona treatments. Int J Adhes Adhes 103–111. https://doi.org/10.1016/S0143-7496(99)00043-3

  24. Lux C, Szalay Z, Beikircher W et al (2013) Investigation of the plasma effects on wood after activation by diffuse coplanar surface barrier discharge. Eur J Wood Prod 71:539–549. https://doi.org/10.1007/s00107-013-0706-3

    Article  CAS  Google Scholar 

  25. Ashori A, Babaee M, Jonoobi M, Hamzeh Y (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydr Polym 102:369–375. https://doi.org/10.1016/j.carbpol.2013.11.067

    Article  CAS  Google Scholar 

  26. Chowdhury MJA, Humphrey PE (1999) The effect of acetylation on the shear strength development kinetics of phenolic resin-to-wood bonds. Wood Fiber Sci 31:293–299

    CAS  Google Scholar 

  27. Jonoobi M, Harun J, Mathew AP et al (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17:299–307. https://doi.org/10.1007/s10570-009-9387-9

    Article  CAS  Google Scholar 

  28. Tserki V, Zafeiropoulos NE, Simon F, Panayiotou C (2005) A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos Part A Appl Sci Manuf 36:1110–1118. https://doi.org/10.1016/j.compositesa.2005.01.004

    Article  CAS  Google Scholar 

  29. Youngquist JA, Rowell RM (1986) Dimensional stability of acetylated aspen flakeboard. Wood Fiber Sci 18:90–98

    CAS  Google Scholar 

  30. Kazayawoko M, Balatinecz JJ, Woodhams RT, Sodhi RNS (1998) X-ray photoelectron spectroscopy of lignocellulosic materials treated with malea ted polypropylenes. J Wood Chem Technol 18:1–26. https://doi.org/10.1080/02773819809350122

    Article  CAS  Google Scholar 

  31. Mohebby B, Fallah-Moghadam P, Ghotbifar AR, Kazemi-Najafi S (2011) Influence of maleic-anhydride-polypropylene (MAPP) on wettability of polypropylene/wood flour/glass fiber hybrid composites. J Agr Sci Tech 13:877–884

    Google Scholar 

  32. Li Y, Mai Y-W, Ye L (2000) Sisal fibre and its composites: a review of recent developments. Compos Sci Technol 60:2037–2055. https://doi.org/10.1016/S0266-3538(00)00101-9

    Article  CAS  Google Scholar 

  33. Cui Y, Lee S, Noruziaan B et al (2008) Fabrication and interfacial modification of wood/recycled plastic composite materials. Compos Part A Appl Sci Manuf 39:655–661. https://doi.org/10.1016/j.compositesa.2007.10.017

    Article  CAS  Google Scholar 

  34. Dányádi L, Móczó J, Pukánszky B (2010) Effect of various surface modifications of wood flour on the properties of PP/wood composites. Compos Part A Appl Sci Manuf 41:199–206. https://doi.org/10.1016/j.compositesa.2009.10.008

    Article  CAS  Google Scholar 

  35. Dominkovics Z, Dányádi L, Pukánszky B (2007) Surface modification of wood flour and its effect on the properties of PP/wood composites. Compos Part A Appl Sci Manuf 38:1893–1901. https://doi.org/10.1016/j.compositesa.2007.04.001

    Article  CAS  Google Scholar 

  36. Ichazo MN, Albano C, Gonza J (2001) Polypropylene/wood flour composites: treatments and properties. Compos Struct 54:207–214. https://doi.org/10.1016/S0263-8223(01)00089-7

    Article  Google Scholar 

  37. Kharitonov AP (2008) Direct fluorination of polymers. Nova Publishers

    Google Scholar 

  38. Kharitonov AP, Taege R, Ferrier G et al (2005) Direct fluorination—useful tool to enhance commercial properties of polymer articles. J Fluor Chem 126:251–263. https://doi.org/10.1016/j.jfluchem.2005.01.016

    Article  CAS  Google Scholar 

  39. Kharitonov AP (2000) Practical applications of the direct fluorination of polymers. J Fluor Chem 103:123–127. https://doi.org/10.1016/S0022-1139(99)00312-7

    Article  CAS  Google Scholar 

  40. DeCorpo JJ, Steiger RP, Franklin JL, Margrave JL (1970) Dissociation energy of F2. J Chem Phys 53:936–938

    Article  CAS  Google Scholar 

  41. Lide DR (ed) (2005) CRC handbook of chemistry and physics, internet version 2005. CRC Presse, Boca Raton, FL

    Google Scholar 

  42. Brauns FE, Brauns DA (1960) The chemistry of lignin: covering the literature for the years 1949–1958. Elsevier

    Google Scholar 

  43. Sapieha S, Verreault M, Klemberg-Sapieha JE et al (1990) X-ray photoelectron study of the plasma fluorination of lignocellulose. Appl Surf Sci 44:165–169

    Article  CAS  Google Scholar 

  44. Sahin HT, Manolache S, Young RA, Denes F (2002) Surface fluorination of paper in CF4-RF plasma environments. Cellulose 9:171–181

    Article  CAS  Google Scholar 

  45. Fridman A (2008) Plasma chemistry. Cambridge University Press

    Book  Google Scholar 

  46. Hegemann D, Brunner H, Oehr C (2003) Plasma treatment of polymers for surface and adhesion improvement. Nucl Instrum Meth B 208:281–286

    Article  CAS  Google Scholar 

  47. Ali A, Shaker K, Nawab Y et al (2018) Hydrophobic treatment of natural fibers and their composites—a review. J Ind Text 47:2153–2183. https://doi.org/10.1177/1528083716654468

    Article  CAS  Google Scholar 

  48. Lee SG, Choi S-S, Park WH, Cho D (2003) Characterization of surface modified flax fibers and their biocomposites with PHB. Macromol Symp 197:089–100

    Article  CAS  Google Scholar 

  49. Martin AR, Manolache S, Denes FS, Mattoso LHC (2002) Functionalization of sisal fibers and high-density polyethylene by cold plasma treatment. J Appl Polym Sci 85:2145–2154

    Article  CAS  Google Scholar 

  50. Wakida T (1996) Surface modification of fibre and polymeric materials by discharge treatment and its application to textile processing. Indian J Fibre Text 21:69–78

    CAS  Google Scholar 

  51. Wong KK, Tao XM, Yuen CWM, Yeung KW (2000) Topographical study of low temperature plasma treated flax fibers. Text Res J 70:886–893

    Article  CAS  Google Scholar 

  52. Sun D, Stylios GK (2004) Effect of low temperature plasma treatment on the scouring and dyeing of natural fabrics. Text Res J 74:751–756

    Article  CAS  Google Scholar 

  53. Sun D (2016) Surface modification of natural fibers using plasma treatment. In: Kalia S (ed) Biodegradable green composites. Wiley, Hoboken, pp 18–39

    Chapter  Google Scholar 

  54. Sinha E, Panigrahi S (2009) Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite. J Compos Mater 43:1791–1802

    Article  CAS  Google Scholar 

  55. Sun D, Stylios GK (2005) Investigating the plasma modification of natural fiber fabrics-the effect on fabric surface and mechanical properties. Text Res J 75:639–644

    Article  CAS  Google Scholar 

  56. Cardinaud C (2018) Fluorine-based plasmas: main features and application in micro-and nanotechnology and in surface treatment. C R Chim 21:723–739

    Article  CAS  Google Scholar 

  57. Kharitonov AP, Simbirtseva GV, Tressaud A et al (2014) Comparison of the surface modifications of polymers induced by direct fluorination and rf-plasma using fluorinated gases. J Fluor Chem 165:49–60. https://doi.org/10.1016/j.jfluchem.2014.05.002

    Article  CAS  Google Scholar 

  58. Han Y, Manolach SO, Denes F, Rowell RM (2011) Cold plasma treatment on starch foam reinforced with wood fiber for its surface hydrophobicity. Carbohydr Polym 86:1031–1037. https://doi.org/10.1016/j.carbpol.2011.05.056

    Article  CAS  Google Scholar 

  59. Shul RJ, Pearton SJ (2011) Handbook of advanced plasma processing techniques. Springer Science & Business Media

    Google Scholar 

  60. Vourdas N, Tserepi A, Gogolides E (2007) Nanotextured super-hydrophobic transparent poly(methyl methacrylate) surfaces using high-density plasma processing. Nanotechnology 18:125304

    Article  Google Scholar 

  61. Sparavigna A (2008) Plasma treatment advantages for textiles

    Google Scholar 

  62. McCord M, Hauser P, Qiu Y, Cuomo J (1999) A novel non-aqueous fabric finishing process. National textile center annual report

    Google Scholar 

  63. Xie L, Tang Z, Jiang L et al (2015) Creation of superhydrophobic wood surfaces by plasma etching and thin-film deposition. Surf Coat Tech 281:125–132. https://doi.org/10.1016/j.surfcoat.2015.09.052

    Article  CAS  Google Scholar 

  64. Sun D, Stylios GK (2006) Fabric surface properties affected by low temperature plasma treatment. J Mater Process Technol 173:172–177. https://doi.org/10.1016/j.jmatprotec.2005.11.022

    Article  CAS  Google Scholar 

  65. Navarro F, Davalos F, Denes F et al (2003) Highly hydrophobic sisal chemithermomechanical pulp (CTMP) paper by fluorotrimethylsilane plasma treatment. Cellulose 10:411–424

    Article  CAS  Google Scholar 

  66. Otsuka AJ, Lagow RJ (1974) The direct fluorination of hydrocarbon polymers. J Fluor Chem 4:371–380

    Article  CAS  Google Scholar 

  67. Lagow RJ, Margrave JL (1979) Direct fluorination: a “new” approach to fluorine chemistry. In: Lippard SJ (ed) Progress in inorganic chemistry. Wiley, Hoboken, pp 161–210

    Google Scholar 

  68. Maity J, Jacob C, Das CK et al (2008) Direct fluorination of UHMWPE fiber and preparation of fluorinated and non-fluorinated fiber composites with LDPE matrix. Polym Test 27:581–590. https://doi.org/10.1016/j.polymertesting.2008.03.001

    Article  CAS  Google Scholar 

  69. Luo L, Hong D, Zhang L et al (2018) Surface modification of PBO fibers by direct fluorination and corresponding chemical reaction mechanism. Compos Sci Technol 165:106–114. https://doi.org/10.1016/j.compscitech.2018.06.014

    Article  CAS  Google Scholar 

  70. Pouzet M, Dubois M, Charlet K, Béakou A (2018) From hydrophilic to hydrophobic wood using direct fluorination: a localized treatment. C R Chim 21:800–807. https://doi.org/10.1016/j.crci.2018.03.009

    Article  CAS  Google Scholar 

  71. Kharitonov AP, Kharitonova LN (2009) Surface modification of polymers by direct fluorination: a convenient approach to improve commercial properties of polymeric articles. Pure Appl Chem 81:451–471. https://doi.org/10.1351/PAC-CON-08-06-02

    Article  CAS  Google Scholar 

  72. Tressaud A, Durand E, Labrugère C et al (2007) Modification of surface properties of carbon-based and polymeric materials through fluorination routes: from fundamental research to industrial applications. J Fluor Chem 128:378–391

    Article  CAS  Google Scholar 

  73. Kharitonov AP, Moskvin YuL, Syrtsova DA et al (2004) Direct fluorination of the polyimide matrimid® 5218: the formation kinetics and physicochemical properties of the fluorinated layers: direct Fluorination of matrimid® 5218. J Appl Polym Sci 92:6–17. https://doi.org/10.1002/app.13565

    Article  CAS  Google Scholar 

  74. Esumi K (1999) Polymer interfaces and emulsions. CRC Press

    Google Scholar 

  75. van Krevelen DW, te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure: their numerical estimation and prediction from additive group contributions, 4th, completely revised, edition. Elsevier, Amsterdam

    Google Scholar 

  76. Maity J, Jacob C, Das CK, Singh RP (2008) Direct fluorination of twaron fiber and investigation of mechanical thermal and morphological properties of high density polyethylene and twaron fiber composites. J Appl Polym Sci 107:3739–3749. https://doi.org/10.1002/app.27510

    Article  CAS  Google Scholar 

  77. Luo L, Wu P, Cheng Z et al (2016) Direct fluorination of para-aramid fibers 1: fluorination reaction process of PPTA fiber. J Fluor Chem 186:12–18. https://doi.org/10.1016/j.jfluchem.2016.04.002

    Article  CAS  Google Scholar 

  78. Lv J, Cheng Z, Wu H et al (2020) In-situ polymerization and covalent modification on aramid fiber surface via direct fluorination for interfacial enhancement. Compos B Eng 182:107608

    Article  CAS  Google Scholar 

  79. Bismarck A, Tahhan R, Springer J et al (1997) Influence of fluorination on the properties of carbon fibres. J Fluor Chem 84:127–134. https://doi.org/10.1016/S0022-1139(97)00029-8

    Article  CAS  Google Scholar 

  80. Ho KKC, Beamson G, Shia G et al (2007) Surface and bulk properties of severely fluorinated carbon fibres. J Fluor Chem 128:1359–1368. https://doi.org/10.1016/j.jfluchem.2007.06.005

    Article  CAS  Google Scholar 

  81. Kruppke I, Scheffler C, Simon F et al (2019) Surface treatment of carbon fibers by Oxy-fluorination. Materials 12:565

    Article  CAS  Google Scholar 

  82. Teraube O, Agopian J-C, Petit E et al (2020) Surface modification of sized vegetal fibers through direct fluorination for eco-composites. J Fluor Chem 238:109618. https://doi.org/10.1016/j.jfluchem.2020.109618

    Article  CAS  Google Scholar 

  83. Agopian J-C, Teraube O, Dubois M, Charlet K (2020) Fluorination of carbon fibre sizing without mechanical or chemical loss of the fibre. Appl Surf Sci 534:147647. https://doi.org/10.1016/j.apsusc.2020.147647

    Article  CAS  Google Scholar 

  84. Saulnier F, Dubois M, Charlet K et al (2013) Direct fluorination applied to wood flour used as a reinforcement for polymers. Carbohydr Polym 94:642–646. https://doi.org/10.1016/j.carbpol.2013.01.060

    Article  CAS  Google Scholar 

  85. Pouzet M, Gautier D, Charlet K et al (2015) How to decrease the hydrophilicity of wood flour to process efficient composite materials. Appl Surf Sci 353:1234–1241. https://doi.org/10.1016/j.apsusc.2015.06.100

    Article  CAS  Google Scholar 

  86. Pouzet M (2017) Modification de l’énergie de surface du bois par fluoration. Université Clermont Auvergne, Thèse en chimie des matériaux

    Google Scholar 

  87. Belov NA (2020) Direct fluorination of acetyl and ethyl celluloses in perfluorinated liquid medium. J Polym Res 27:290–301

    Article  CAS  Google Scholar 

  88. Dubois M, Giraudet J, Guérin K et al (2006) EPR and solid-state NMR studies of poly(dicarbon monofluoride) (C2F)n. J Phys Chem B 110:11800–11808. https://doi.org/10.1021/jp061291m

    Article  CAS  Google Scholar 

  89. Pouzet M, Dubois M, Charlet K, Béakou A (2017) The effect of lignin on the reactivity of natural fibres towards molecular fluorine. Mater Des 120:66–74. https://doi.org/10.1016/j.matdes.2017.01.086

    Article  CAS  Google Scholar 

  90. Pouzet M (2019) Fluorination renders the wood surface hydrophobic without any loss of physical and mechanical properties. Ind Crops Prod 133:133–141. https://doi.org/10.1016/j.indcrop.2019.02.044

    Article  CAS  Google Scholar 

  91. Komuraiah A, Kumar NS, Prasad BD (2014) Chemical composition of natural fibers and its influence on their mechanical properties. Mech Compos Mater 50:509–528

    Article  Google Scholar 

  92. Bhatnagar R, Gupta G, Yadav S (2015) A review on composition and properties of banana fibers. Int J Sci Eng Res 6:49–52

    Google Scholar 

  93. Van Dam JEG, Elbersen HW, Daza Montaño CM (2018) Bamboo production for industrial utilization. In: Perennial grasses for bioenergy and bioproducts. Elsevier, pp 175–216

    Google Scholar 

  94. Sathishkumar T, Navaneethakrishnan P, Shankar S et al (2013) Characterization of natural fiber and composites – a review. J Reinf Plast Compos 32:1457–1476

    Article  Google Scholar 

  95. Razali N, Salit MS, Jawaid M et al (2015) A study on chemical composition, physical, tensile, morphological, and thermal properties of roselle fibre: effect of fibre maturity. BioResources 10:1803–1824

    Article  Google Scholar 

  96. Asim M, Abdan K, Jawaid M et al (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015:1–16. https://doi.org/10.1155/2015/950567

    Article  Google Scholar 

  97. Rakotovelo A, Peruch F, Grelier S (2019) Lignine: structure, production et valorisation chimique. (Edition TI ref. article : in 235:33)

    Google Scholar 

  98. Sjöström E (1993) The structure of wood. In: Wood chemistry (2nd edn). Elsevier, pp 1–20

    Google Scholar 

  99. Panshin AJ, Zeeuw C de (1964) Textbook of wood technology: structure, identification, uses, and properties of the commercial woods of the United States and Canada. Textbook of wood technology vol I structure, identification, uses, and properties of the commercial woods of the United States 1

    Google Scholar 

  100. Peyroux J (2014) Enhancement of surface properties on commercial polymer packaging films using various surface treatment processes (fluorination and plasma). Appl Surf Sci 315:426–431

    Article  CAS  Google Scholar 

  101. Charlet K, Saulnier F, Gautier D et al (2016) Fluorination as an effective way to reduce natural fibers hydrophilicity. In: Fangueiro R, Rana S (eds) Natural fibres: advances in science and technology towards industrial applications. Springer, Netherlands, Dordrecht, pp 211–229

    Chapter  Google Scholar 

  102. Garcia RA (2005) Amélioration de la stabilité dimensionnelle des panneaux de fibres de bois MDF par traitements physico-chimiques. Université de Laval

    Google Scholar 

  103. Nachtigall SMB, Cerveira GS, Rosa SML (2007) New polymeric-coupling agent for polypropylene/wood-flour composites. Polym Test 26:619–628. https://doi.org/10.1016/j.polymertesting.2007.03.007

    Article  CAS  Google Scholar 

  104. Stamatakis G, Knuutinen U, Laitinen K, Spyros A (2010) Analysis and aging of unsaturated polyester resins in contemporary art installations by NMR spectroscopy. Anal Bioanal Chem 398:3203–3214. https://doi.org/10.1007/s00216-010-4233-3

    Article  CAS  Google Scholar 

  105. Odegard GM, Bandyopadhyay A (2011) Physical aging of epoxy polymers and their composites. J Polym Sci B Polym Phys 49:1695–1716. https://doi.org/10.1002/polb.22384

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their acknowledgments to Région Auvergne-Rhône-Alpes for funding this work through the FLUONAT Project. We also express our gratitude to Solvay Group to encourage this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Teraube .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teraube, O., Agopian, JC., Pouzet, M., Charlet, K., Dubois, M. (2021). From the Understanding of Fluorination Process to Hydrophobic Natural Fibers. In: Jawaid, M., Khan, A. (eds) Vegetable Fiber Composites and their Technological Applications. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-1854-3_21

Download citation

Publish with us

Policies and ethics