Skip to main content

The Role of H2S in the Gastrointestinal Tract and Microbiota

  • Chapter
  • First Online:
Advances in Hydrogen Sulfide Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1315))

Abstract

The pathways and mechanisms of the production of H2S in the gastrointestinal tract are briefly described, including endogenous H2S produced by the organism and H2S from microorganisms in the gastrointestinal tract. In addition, the physiological regulatory functions of H2S on gastrointestinal motility, sensation, secretion and absorption, endocrine system, proliferation and differentiation of stem cells, and the possible mechanisms involved are introduced. In view of the complexity of biosynthesis, physiological roles, and the mechanism of H2S, this chapter focuses on the interactions and dynamic balance among H2S, gastrointestinal microorganisms, and the host. Finally, we focus on some clinical gastrointestinal diseases, such as inflammatory bowel disease, colorectal cancer, functional gastrointestinal disease, which might occur or develop when the above balance is broken. Pharmacological regulation of H2S or the intestinal microorganisms related to H2S might provide new therapeutic approaches for some gastrointestinal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-MP:

3-Mercaptopyruvate

3-MST:

3-Mercaptopyruvate sulfurtransferase

AC:

Adenylate cyclase

AOAA:

Amino-oxyacetic acid

Apr:

Adenosine-5′-phosphosulfate reductase

APS:

Adenosine-phosphosulphate

BCA:

β-cyano-l-alanine

CAT:

Cysteine aminotransferase

CBS:

Cystathionine β-synthase

CD:

Crohn’s disease

CRC:

Colorectal cancer

CRD:

Colorectal distension

CSE:

Cystathionine γ-lyase

CT:

Cholera toxin

CVH:

Chronic visceral hyperalgesia

DADS:

Diallyl disulfide

DAO:

D-amino acid oxidase

DRG:

Dorsal root ganglia

Dsr:

Dissimilatory sulfite reductase

DSS:

Dextran sodium sulfate

FD:

Functional dyspepsia

FGID:

Functional gastrointestinal diseases

H2S:

Hydrogen sulfide

HAEC:

Congenital megacolon-associated enterocolitis

HSCR:

Congenital hirschsprung disease

IBS:

Irritable bowel syndrome

ICCs:

Interstitial cells of Cajal

IJP:

Inhibitory junction potential

ISCs:

Intestinal stem cells

LDHA:

Lactate dehydrogenase A

L-NAME:

N(G)-Nitro-l-Arginine Methyl Ester

MDSCs:

Marrow-derived suppressor cells

MLCP:

Myosin light chain phosphatase

MP:

Myenteric plexus

NANC:

Noncholinergic and nonadrenergic

NCI:

Neonatal colitis

NMD:

Neonatal maternal deprivation

NOS:

Nitric oxide synthase

NSAID:

Non-steroidal anti-inflammatory drugs

PAG:

dl-propargylglycine

SMP:

Submuscular plexus

SQR:

Sulfide quinone oxidoreductase

SRB:

Sulfate-reducing bacteria

TEA:

Tetraethylamine

TLR:

Toll-like receptor

TRPA1:

Transient receptor potential ankyrin 1 channel

TRPV1:

Transient receptor potential vanilloid 1

UC:

Ulcerative colitis

References

  1. Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16(3):1066–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237(3):527–531

    Article  CAS  PubMed  Google Scholar 

  3. Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, Fukui K, Nagahara N, Kimura H (2013) A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 4:1366

    Article  PubMed  CAS  Google Scholar 

  4. Xiao A, Wang H, Lu X, Zhu J, Huang D, Xu T, Guo J, Liu C, Li J (2015) H2S, a novel gasotransmitter, involves in gastric accommodation. Sci Rep 5:16086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martin GR, McKnight GW, Dicay MS, Coffin CS, Ferraz JG, Wallace JL (2010) Hydrogen sulphide synthesis in the rat and mouse gastrointestinal tract. Dig Liver Dis 42(2):103–109

    Article  CAS  PubMed  Google Scholar 

  6. Magierowski M, Magierowska K, Szmyd J, Surmiak M, Sliwowski Z, Kwiecien S, Brzozowski T (2016) Hydrogen sulfide and carbon monoxide protect gastric mucosa compromised by mild stress against alendronate injury. Dig Dis Sci 61(11):3176–3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tang S, Huang D, An N, Chen D, Zhao D (2016) A novel pathway for the production of H2 S by DAO in rat jejunum. Neurogastroenterol Motil 28(5):687–692

    Article  CAS  PubMed  Google Scholar 

  8. Xiao A, Li J, Liu T, Liu Z, Wei C, Xu X, Li Q, Li J (2016) L-Cysteine enhances nutrient absorption via a cystathionine-beta-synthase-derived H2 S pathway in rodent jejunum. Clin Exp Pharmacol Physiol 43(5):562–568

    Article  CAS  PubMed  Google Scholar 

  9. Guo X, Huang X, Wu YS, Liu DH, Lu HL, Kim YC, Xu WX (2012) Down-regulation of hydrogen sulfide biosynthesis accompanies murine interstitial cells of Cajal dysfunction in partial ileal obstruction. PLoS One 7(11):e48249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hirata I, Naito Y, Takagi T, Mizushima K, Suzuki T, Omatsu T, Handa O, Ichikawa H, Ueda H, Yoshikawa T (2011) Endogenous hydrogen sulfide is an anti-inflammatory molecule in dextran sodium sulfate-induced colitis in mice. Dig Dis Sci 56(5):1379–1386

    Article  CAS  PubMed  Google Scholar 

  11. Souza LK, Araujo TS, Sousa NA, Sousa FB, Nogueira KM, Nicolau LA, Medeiros JV (2017) Evidence that d-cysteine protects mice from gastric damage via hydrogen sulfide produced by d-amino acid oxidase. Nitric Oxide 64:1–6

    Article  CAS  PubMed  Google Scholar 

  12. Wu C, Xu Z, Huang K (2016) Effects of dietary selenium on inflammation and hydrogen sulfide in the gastrointestinal tract in chickens. Biol Trace Elem Res 174(2):428–435

    Article  CAS  PubMed  Google Scholar 

  13. Stipanuk MH (1986) Metabolism of sulfur-containing amino acids. Annu Rev Nutr 6:179–209

    Article  CAS  PubMed  Google Scholar 

  14. Chen X, Jhee KH, Kruger WD (2004) Production of the neuromodulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocysteine. J Biol Chem 279(50):52082–52086

    Article  CAS  PubMed  Google Scholar 

  15. Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2009) 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11(4):703–714

    Article  CAS  PubMed  Google Scholar 

  16. Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R (2009) H2S biogenesis by human cystathionine gamma-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 284(17):11601–11612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R (2009) Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem 284(33):22457–22466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hildebrandt TM, Grieshaber MK (2008) Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J 275(13):3352–3361

    Article  CAS  PubMed  Google Scholar 

  19. Kabil O, Zhou Y, Banerjee R (2006) Human cystathionine beta-synthase is a target for sumoylation. Biochemistry 45(45):13528–13536

    Article  CAS  PubMed  Google Scholar 

  20. Nagahara N, Ito T, Kitamura H, Nishino T (1998) Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat: confocal laser fluorescence and immunoelectron microscopic studies combined with biochemical analysis. Histochem Cell Biol 110(3):243–250

    Article  CAS  PubMed  Google Scholar 

  21. Bouillaud F, Blachier F (2011) Mitochondria and sulfide: a very old story of poisoning, feeding, and signaling? Antioxid Redox Signal 15(2):379–391

    Article  CAS  PubMed  Google Scholar 

  22. Gould SJ, Keller GA, Subramani S (1988) Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J Cell Biol 107(3):897–905

    Article  CAS  PubMed  Google Scholar 

  23. Schumann U, Subramani S (2008) Special delivery from mitochondria to peroxisomes. Trends Cell Biol 18(6):253–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fischbach MA, Sonnenburg JL (2011) Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe 10(4):336–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stams AJ, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7(8):568–577

    Article  CAS  PubMed  Google Scholar 

  26. Frohlich J, Sass H, Babenzien HD, Kuhnigk T, Varma A, Saxena S, Nalepa C, Pfeiffer P, Konig H (1999) Isolation of Desulfovibrio intestinalis sp. nov. from the hindgut' of the lower termite Mastotermes darwiniensis. Can J Microbiol 45(2):145–152

    Article  CAS  PubMed  Google Scholar 

  27. Loubinoux J, Bronowicki JP, Pereira IA, Mougenel JL, Faou AE (2002) Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol Ecol 40(2):107–112

    Article  CAS  PubMed  Google Scholar 

  28. Nava GM, Carbonero F, Croix JA, Greenberg E, Gaskins HR (2012) Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISME J 6(1):57–70

    Article  CAS  PubMed  Google Scholar 

  29. Zinkevich VV, Beech IB (2000) Screening of sulfate-reducing bacteria in colonoscopy samples from healthy and colitic human gut mucosa. FEMS Microbiol Ecol 34(2):147–155

    Article  CAS  PubMed  Google Scholar 

  30. Peck HD Jr, LeGall J (1982) Biochemistry of dissimilatory sulphate reduction. Philos Trans R Soc Lond Ser B Biol Sci 298(1093):443–466

    CAS  Google Scholar 

  31. Willis CL, Cummings JH, Neale G, Gibson GR (1997) Nutritional aspects of dissimilatory sulfate reduction in the human large intestine. Curr Microbiol 35(5):294–298

    Article  CAS  PubMed  Google Scholar 

  32. Agostinho M, Oliveira S, Broco M, Liu MY, LeGall J, Rodrigues-Pousada C (2000) Molecular cloning of the gene encoding flavoredoxin, a flavoprotein from Desulfovibrio gigas. Biochem Biophys Res Commun 272(3):653–656

    Article  CAS  PubMed  Google Scholar 

  33. Guo FF, Yu TC, Hong J, Fang JY (2016) Emerging roles of hydrogen sulfide in inflammatory and neoplastic colonic diseases. Front Physiol 7:156

    Article  PubMed  PubMed Central  Google Scholar 

  34. Barton LL, Ritz NL, Fauque GD, Lin HC (2017) Sulfur cycling and the intestinal microbiome. Dig Dis Sci 62(9):2241–2257

    Article  CAS  PubMed  Google Scholar 

  35. Peck SC, Denger K, Burrichter A, Irwin SM, Balskus EP, Schleheck D (2019) A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium Bilophila wadsworthia. Proc Natl Acad Sci USA 116(8):3171–3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu DH, Huang X, Meng XM, Zhang CM, Lu HL, Kim YC, Xu WX (2014a) Exogenous H2 S enhances mice gastric smooth muscle tension through S-sulfhydration of KV 4.3, mediating the inhibition of the voltage-dependent potassium current. Neurogastroenterol Motil 26(12):1705–1716

    Article  CAS  PubMed  Google Scholar 

  37. Meng XM, Huang X, Zhang CM, Liu DH, Lu HL, Kim YC, Xu WX (2015) Hydrogen sulfide-induced enhancement of gastric fundus smooth muscle tone is mediated by voltage-dependent potassium and calcium channels in mice. World J Gastroenterol 21(16):4840–4851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shafigullin MY, Zefirov RA, Sabirullina GI, Zefirov AL, Sitdikova GF (2014) Effects of a hydrogen sulfide donor on spontaneous contractile activity of rat stomach and jejunum. Bull Exp Biol Med 157(3):302–306

    Article  CAS  PubMed  Google Scholar 

  39. Gallego D, Clave P, Donovan J, Rahmati R, Grundy D, Jimenez M, Beyak MJ (2008) The gaseous mediator, hydrogen sulphide, inhibits in vitro motor patterns in the human, rat and mouse colon and jejunum. Neurogastroenterol Motil 20(12):1306–1316

    Article  CAS  PubMed  Google Scholar 

  40. Dhaese I, Lefebvre RA (2009) Myosin light chain phosphatase activation is involved in the hydrogen sulfide-induced relaxation in mouse gastric fundus. Eur J Pharmacol 606(1–3):180–186

    Article  CAS  PubMed  Google Scholar 

  41. Schicho R, Krueger D, Zeller F, Von Weyhern CW, Frieling T, Kimura H, Ishii I, De Giorgio R, Campi B, Schemann M (2006) Hydrogen sulfide is a novel prosecretory neuromodulator in the Guinea-pig and human colon. Gastroenterology 131(5):1542–1552

    Article  CAS  PubMed  Google Scholar 

  42. Parajuli SP, Choi S, Lee J, Kim YD, Park CG, Kim MY, Kim HI, Yeum CH, Jun JY (2010) The inhibitory effects of hydrogen sulfide on pacemaker activity of interstitial cells of cajal from mouse small intestine. Korean J Physiol Pharmacol 14(2):83–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yoon PJ, Parajuli SP, Zuo DC, Shahi PK, Oh HJ, Shin HR, Lee MJ, Yeum CH, Choi S, Jun JY (2011) Interplay of hydrogen sulfide and nitric oxide on the pacemaker activity of interstitial cells of cajal from mouse small intestine. Chonnam Med J 47(2):72–79

    Article  PubMed  PubMed Central  Google Scholar 

  44. Huizinga JD, Martz S, Gil V, Wang XY, Jimenez M, Parsons S (2011) Two independent networks of interstitial cells of cajal work cooperatively with the enteric nervous system to create colonic motor patterns. Front Neurosci 5:93

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gil V, Parsons S, Gallego D, Huizinga J, Jimenez M (2013) Effects of hydrogen sulphide on motility patterns in the rat colon. Br J Pharmacol 169(1):34–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mane N, Gil V, Martinez-Cutillas M, Martin MT, Gallego D, Jimenez M (2014) Dynamics of inhibitory co-transmission, membrane potential and pacemaker activity determine neuromyogenic function in the rat colon. Pflugers Arch 466(12):2305–2321

    Article  CAS  PubMed  Google Scholar 

  47. Gil V, Gallego D, Grasa L, Martin MT, Jimenez M (2010) Purinergic and nitrergic neuromuscular transmission mediates spontaneous neuronal activity in the rat colon. Am J Physiol Gastrointest Liver Physiol 299(1):G158–G169

    Article  CAS  PubMed  Google Scholar 

  48. Martinez-Cutillas M, Gil V, Mane N, Clave P, Gallego D, Martin MT, Jimenez M (2015) Potential role of the gaseous mediator hydrogen sulphide (H2S) in inhibition of human colonic contractility. Pharmacol Res 93:52–63

    Article  CAS  PubMed  Google Scholar 

  49. Matsuda NM, Miller SM (2010) Non-adrenergic non-cholinergic inhibition of gastrointestinal smooth muscle and its intracellular mechanism(s). Fundam Clin Pharmacol 24(3):261–268

    Article  CAS  PubMed  Google Scholar 

  50. Lim JJ, Liu YH, Khin ES, Bian JS (2008) Vasoconstrictive effect of hydrogen sulfide involves downregulation of cAMP in vascular smooth muscle cells. Am J Physiol Cell Physiol 295(5):C1261–C1270

    Article  CAS  PubMed  Google Scholar 

  51. Bucci M, Papapetropoulos A, Vellecco V, Zhou Z, Pyriochou A, Roussos C, Roviezzo F, Brancaleone V, Cirino G (2010) Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler Thromb Vasc Biol 30(10):1998–2004

    Article  CAS  PubMed  Google Scholar 

  52. Nalli AD, Bhattacharya S, Wang H, Kendig DM, Grider JR, Murthy KS (2017a) Augmentation of cGMP/PKG pathway and colonic motility by hydrogen sulfide. Am J Physiol Gastrointest Liver Physiol 313(4):G330–g341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao P, Huang X, Wang ZY, Qiu ZX, Han YF, Lu HL, Kim YC, Xu WX (2009) Dual effect of exogenous hydrogen sulfide on the spontaneous contraction of gastric smooth muscle in guinea-pig. Eur J Pharmacol 616(1–3):223–228

    Article  CAS  PubMed  Google Scholar 

  54. Nagao M, Duenes JA, Sarr MG (2012) Role of hydrogen sulfide as a gasotransmitter in modulating contractile activity of circular muscle of rat jejunum. J Gastrointest Surg 16(2):334–343

    Article  PubMed  Google Scholar 

  55. Lu W, Li J, Gong L, Xu X, Han T, Ye Y, Che T, Luo Y, Li J, Zhan R, Yao W, Liu K, Cui S, Liu C (2014) H2 S modulates duodenal motility in male rats via activating TRPV1 and K(ATP) channels. Br J Pharmacol 171(6):1534–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tang Q, Quan X, Yan L, Ren H, Chen W, Xia H, Luo H (2018) Mechanism of sodium hydrosulfide modulation of L-type calcium channels in rat colonic smooth muscle cells. Eur J Pharmacol 818:356–363

    Article  CAS  PubMed  Google Scholar 

  57. Strege PR, Bernard CE, Kraichely RE, Mazzone A, Sha L, Beyder A, Gibbons SJ, Linden DR, Kendrick ML, Sarr MG, Szurszewski JH, Farrugia G (2011) Hydrogen sulfide is a partially redox-independent activator of the human jejunum Na+ channel, Nav1.5. Am J Physiol Gastrointest Liver Physiol 300(6):G1105–G1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445(7127):541–545

    Article  CAS  PubMed  Google Scholar 

  59. Quan X, Luo H, Liu Y, Xia H, Chen W, Tang Q (2015) Hydrogen sulfide regulates the colonic motility by inhibiting both L-type calcium channels and BKCa channels in smooth muscle cells of rat colon. PLoS One 10(3):e0121331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Nalli AD, Rajagopal S, Mahavadi S, Grider JR, Murthy KS (2015) Inhibition of RhoA-dependent pathway and contraction by endogenous hydrogen sulfide in rabbit gastric smooth muscle cells. Am J Physiol Cell Physiol 308(6):C485–C495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nalli AD, Wang H, Bhattacharya S, Blakeney BA, Murthy KS (2017b) Inhibition of RhoA/Rho kinase pathway and smooth muscle contraction by hydrogen sulfide. Pharmacol Res Perspect 5:5

    Article  CAS  Google Scholar 

  62. Kimura H (2019) Signaling molecules hydrogen sulfide (H2S), polysulfides (H2Sn), and sulfite (H2SO3). Nihon Yakurigaku Zasshi 154(3):115–120

    Article  CAS  PubMed  Google Scholar 

  63. Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G, Wang R, Snyder SH (2009) H2S signals through protein S-sulfhydration. Sci Signal 2(96):ra72

    Article  PubMed  PubMed Central  Google Scholar 

  64. Distrutti E (2011) Hydrogen sulphide and pain. Inflamm Allergy Drug Targets 10(2):123–132

    Article  CAS  PubMed  Google Scholar 

  65. Distrutti E, Cipriani S, Renga B, Mencarelli A, Migliorati M, Cianetti S, Fiorucci S (2010) Hydrogen sulphide induces micro opioid receptor-dependent analgesia in a rodent model of visceral pain. Mol Pain 6:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Xu X, Li S, Shi Y, Tang Y, Lu W, Han T, Xue B, Li J, Liu C (2019) Hydrogen sulfide downregulates colonic afferent sensitivity by a nitric oxide synthase-dependent mechanism in mice. Neurogastroenterol Motil 31(1):e13471

    Article  PubMed  CAS  Google Scholar 

  67. Matsunami M, Tarui T, Mitani K, Nagasawa K, Fukushima O, Okubo K, Yoshida S, Takemura M, Kawabata A (2009) Luminal hydrogen sulfide plays a pronociceptive role in mouse colon. Gut 58(6):751–761

    Article  CAS  PubMed  Google Scholar 

  68. Xu GY, Winston JH, Shenoy M, Zhou S, Chen JD, Pasricha PJ (2009) The endogenous hydrogen sulfide producing enzyme cystathionine-beta synthase contributes to visceral hypersensitivity in a rat model of irritable bowel syndrome. Mol Pain 5:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Fukushima O, Nishimura S, Matsunami M, Aoki Y, Nishikawa H, Ishikura H, Kawabata A (2010) Phosphorylation of ERK in the spinal dorsal horn following pancreatic pronociceptive stimuli with proteinase-activated receptor-2 agonists and hydrogen sulfide in rats: evidence for involvement of distinct mechanisms. J Neurosci Res 88(14):3198–3205

    Article  CAS  PubMed  Google Scholar 

  70. Matsunami M, Kirishi S, Okui T, Kawabata A (2011) Chelating luminal zinc mimics hydrogen sulfide-evoked colonic pain in mice: possible involvement of T-type calcium channels. Neuroscience 181:257–264

    Article  CAS  PubMed  Google Scholar 

  71. Matsunami M, Kirishi S, Okui T, Kawabata A (2012) Hydrogen sulfide-induced colonic mucosal cytoprotection involves T-type calcium channel-dependent neuronal excitation in rats. J Physiol Pharmacol 63(1):61–68

    CAS  PubMed  Google Scholar 

  72. Okubo K, Matsumura M, Kawaishi Y, Aoki Y, Matsunami M, Okawa Y, Sekiguchi F, Kawabata A (2012) Hydrogen sulfide-induced mechanical hyperalgesia and allodynia require activation of both Cav3.2 and TRPA1 channels in mice. Br J Pharmacol 166(5):1738–1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Okubo K, Takahashi T, Sekiguchi F, Kanaoka D, Matsunami M, Ohkubo T, Yamazaki J, Fukushima N, Yoshida S, Kawabata A (2011) Inhibition of T-type calcium channels and hydrogen sulfide-forming enzyme reverses paclitaxel-evoked neuropathic hyperalgesia in rats. Neuroscience 188:148–156

    Article  CAS  PubMed  Google Scholar 

  74. Li L, Xie R, Hu S, Wang Y, Yu T, Xiao Y, Jiang X, Gu J, Hu CY (2012) Xu GY. Upregulation of cystathionine beta-synthetase expression by nuclear factor-kappa B activation contributes to visceral hypersensitivity in adult rats with neonatal maternal deprivation. Mol Pain 8:89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hu S, Xu W, Miao X, Gao Y, Zhu L, Zhou Y, Xiao Y, Xu GY (2013) Sensitization of sodium channels by cystathionine beta-synthetase activation in colon sensory neurons in adult rats with neonatal maternal deprivation. Exp Neurol 248:275–285

    Article  CAS  PubMed  Google Scholar 

  76. Qi F, Zhou Y, Xiao Y, Tao J, Gu J, Jiang X, Xu GY (2013) Promoter demethylation of cystathionine-beta-synthetase gene contributes to inflammatory pain in rats. Pain 154(1):34–45

    Article  CAS  PubMed  Google Scholar 

  77. Qu R, Tao J, Wang Y, Zhou Y, Wu G, Xiao Y, Hu CY, Jiang X, Xu GY (2013) Neonatal colonic inflammation sensitizes voltage-gated Na(+) channels via upregulation of cystathionine beta-synthetase expression in rat primary sensory neurons. Am J Physiol Gastrointest Liver Physiol 304(9):G763–G772

    Article  CAS  PubMed  Google Scholar 

  78. Yuan B, Tang WH, Lu LJ, Zhou Y, Zhu HY, Zhou YL, Zhang HH, Hu CY, Xu GY (2015) TLR4 upregulates CBS expression through NF-kappaB activation in a rat model of irritable bowel syndrome with chronic visceral hypersensitivity. World J Gastroenterol 21(28):8615–8628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhu L, Zhao L, Qu R, Zhu HY, Wang Y, Jiang X, Xu GY (2015) Adrenergic stimulation sensitizes TRPV1 through upregulation of cystathionine beta-synthetase in a rat model of visceral hypersensitivity. Sci Rep 5:16109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhao L, Xiao Y, Weng RX, Liu X, Zhang PA, Hu CY, Yu SP, Neonatal Colonic XGY (2017) Inflammation increases spinal transmission and cystathionine beta-synthetase expression in spinal dorsal horn of rats with visceral hypersensitivity. Front Pharmacol 8:696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pouokam E, Althaus M (2016) Epithelial electrolyte transport physiology and the gasotransmitter hydrogen sulfide. Oxidative Med Cell Longev 2016:4723416

    Article  CAS  Google Scholar 

  82. Krueger D, Foerster M, Mueller K, Zeller F, Slotta-Huspenina J, Donovan J, Grundy D, Schemann M (2010) Signaling mechanisms involved in the intestinal pro-secretory actions of hydrogen sulfide. Neurogastroenterol Motil 22(11):1224–1231. e1319-1220

    Article  CAS  PubMed  Google Scholar 

  83. Takeuchi K, Ise F, Takahashi K, Aihara E, Hayashi S (2015) H2S-induced HCO3- secretion in the rat stomach--involvement of nitric oxide, prostaglandins, and capsaicin-sensitive sensory neurons. Nitric Oxide 46:157–164

    Article  CAS  PubMed  Google Scholar 

  84. Sun H, Zhang J, Shi Y, Gao Y, Shi G, Wang X, Guo P, Huang Y, Ren Y, Zheng S (2016a) Effect of exogenous hydrogen sulfide on gastric acid secretion. J Gastroenterol Hepatol 31(7):1280–1283

    Article  CAS  PubMed  Google Scholar 

  85. Sousa FBM, Souza LKM, Sousa NA, Araujo TSL, de Araujo S, Pacifico DM, Silva IS, Silva RO, Nicolau LAD, Souza FM, Filgueiras MC, Oliveira JS, Souza M, Medeiros JVR (2018) H2S is a key antisecretory molecule against cholera toxin-induced diarrhoea in mice: Evidence for non-involvement of the AC/cAMP/PKA pathway and AMPK. Nitric Oxide 76:152–163

    Article  CAS  PubMed  Google Scholar 

  86. Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I (2015) Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7(4):2839–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 7(4):e35240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chimerel C, Emery E, Summers DK, Keyser U, Gribble FM, Reimann F (2014) Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep 9(4):1202–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pichette J, Fynn-Sackey N, Gagnon J (2017) Hydrogen sulfide and sulfate prebiotic stimulates the secretion of GLP-1 and improves glycemia in male mice. Endocrinology 158(10):3416–3425

    Article  CAS  PubMed  Google Scholar 

  90. Slade E, Williams L, Gagnon J (2018) Hydrogen sulfide suppresses ghrelin secretion in vitro and delays postprandial ghrelin secretion while reducing appetite in mice. Physiol Rep 6(19):e13870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Chan WS, Sideris A, Sutachan JJ, Montoya GJ, Blanck TJ, Recio-Pinto E (2013) Differential regulation of proliferation and neuronal differentiation in adult rat spinal cord neural stem/progenitors by ERK1/2, Akt, and PLCgamma. Front Mol Neurosci 6:23

    Article  PubMed  PubMed Central  Google Scholar 

  92. Li C, Guo Z, Guo B, Xie Y, Yang J, Wang A (2014) Inhibition of the endogenous CSE/H(2)S system contributes to hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells. Mol Med Rep 9(6):2467–2472

    Article  CAS  PubMed  Google Scholar 

  93. Liu Y, Yang R, Liu X, Zhou Y, Qu C, Kikuiri T, Wang S, Zandi E, Du J, Ambudkar IS, Shi S (2014b) Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca(2+) channel sulfhydration. Cell Stem Cell 15(1):66–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang J, Wang CD, Zhang N, Tong WX, Zhang YF, Shan SZ, Zhang XL, Li QF (2016) Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1. Cell Death Dis 7:e2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gambari L, Lisignoli G, Cattini L, Manferdini C, Facchini A, Grassi F (2014) Sodium hydrosulfide inhibits the differentiation of osteoclast progenitor cells via NRF2-dependent mechanism. Pharmacol Res 87:99–112

    Article  CAS  PubMed  Google Scholar 

  96. Aykan A, Ozturk S, Sahin I, Avcu F, Sagkan RI, Isik S (2015) The effects of hydrogen sulfide on adipocyte viability in human adipocyte and adipocyte-derived mesenchymal stem cell cultures under ischemic conditions. Ann Plast Surg 75(6):657–665

    Article  CAS  PubMed  Google Scholar 

  97. Guo Z, Li CS, Wang CM, Xie YJ, Wang ALCSE (2015) H2S system protects mesenchymal stem cells from hypoxia and serum deprivationinduced apoptosis via mitochondrial injury, endoplasmic reticulum stress and PI3K/Akt activation pathways. Mol Med Rep 12(2):2128–2134

    Article  CAS  PubMed  Google Scholar 

  98. Kaiko GE, Ryu SH, Koues OI, Collins PL, Solnica-Krezel L, Pearce EJ, Pearce EL, Oltz EM, Stappenbeck TS (2016) The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 165(7):1708–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mihaylova MM, Cheng CW, Cao AQ, Tripathi S, Mana MD, Bauer-Rowe KE, Abu-Remaileh M, Clavain L, Erdemir A, Lewis CA, Freinkman E, Dickey AS, La Spada AR, Huang Y, Bell GW, Deshpande V, Carmeliet P, Katajisto P, Sabatini DM, Yilmaz OH (2018) Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging. Cell Stem Cell 22(5):769–778. e764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Meta HITC, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sartor RB (2008) Microbial influences in inflammatory bowel diseases. Gastroenterology 134(2):577–594

    Article  CAS  PubMed  Google Scholar 

  102. Wallace JL, Motta JP, Buret AG (2018) Hydrogen sulfide: an agent of stability at the microbiome-mucosa interface. Am J Physiol Gastrointest Liver Physiol 314(2):G143–g149

    Article  PubMed  CAS  Google Scholar 

  103. Motta JP, Flannigan KL, Agbor TA, Beatty JK, Blackler RW, Workentine ML, Da Silva GJ, Wang R, Buret AG, Wallace JL (2015) Hydrogen sulfide protects from colitis and restores intestinal microbiota biofilm and mucus production. Inflamm Bowel Dis 21(5):1006–1017

    Article  PubMed  Google Scholar 

  104. Li Y, Wang H, Wu X, Wang L (2015) Influence of hydrogen sulfide on the intestinal biological barrier of rats with severe burn injury. Zhonghua Shao Shang Za Zhi 31(1):37–41

    PubMed  Google Scholar 

  105. Kashfi K, Olson KR (2013) Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem Pharmacol 85(5):689–703

    Article  CAS  PubMed  Google Scholar 

  106. Uejima M, Kinouchi T, Kataoka K, Hiraoka I, Ohnishi Y (1996) Role of intestinal bacteria in ileal ulcer formation in rats treated with a nonsteroidal antiinflammatory drug. Microbiol Immunol 40(8):553–560

    Article  CAS  PubMed  Google Scholar 

  107. Watanabe T, Higuchi K, Kobata A, Nishio H, Tanigawa T, Shiba M, Tominaga K, Fujiwara Y, Oshitani N, Asahara T, Nomoto K, Takeuchi K, Arakawa T (2008) Non-steroidal anti-inflammatory drug-induced small intestinal damage is Toll-like receptor 4 dependent. Gut 57(2):181–187

    Article  CAS  PubMed  Google Scholar 

  108. Blackler RW, De Palma G, Manko A, Da Silva GJ, Flannigan KL, Bercik P, Surette MG, Buret AG, Wallace JL (2015a) Deciphering the pathogenesis of NSAID enteropathy using proton pump inhibitors and a hydrogen sulfide-releasing NSAID. Am J Physiol Gastrointest Liver Physiol 308(12):994–1003

    Article  CAS  Google Scholar 

  109. Blachier F, Beaumont M, Andriamihaja M, Davila AM, Lan A, Grauso M, Armand L, Benamouzig R, Tome D (2017) Changes in the luminal environment of the colonic epithelial cells and physiopathological consequences. Am J Pathol 187(3):476–486

    Article  CAS  PubMed  Google Scholar 

  110. Linden DR (2014) Hydrogen sulfide signaling in the gastrointestinal tract. Antioxid Redox Signal 20(5):818–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen S, Bu D, Ma Y, Zhu J, Sun L, Zuo S, Ma J, Li T, Chen Z, Zheng Y, Wang X, Pan Y, Wang P, Liu Y (2016) GYY4137 ameliorates intestinal barrier injury in a mouse model of endotoxemia. Biochem Pharmacol 118:59–67

    Article  CAS  PubMed  Google Scholar 

  112. Blackler RW, Motta JP, Manko A, Workentine M, Bercik P, Surette MG, Wallace JL (2015b) Hydrogen sulphide protects against NSAID-enteropathy through modulation of bile and the microbiota. Br J Pharmacol 172(4):992–1004

    Article  CAS  PubMed  Google Scholar 

  113. Flannigan KL, Ferraz JG, Wang R, Wallace JL (2013) Enhanced synthesis and diminished degradation of hydrogen sulfide in experimental colitis: a site-specific, pro-resolution mechanism. PLoS One 8(8):e71962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wallace JL, Vong L, McKnight W, Dicay M, Martin GR (2009) Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology 137(2):569–578

    Article  CAS  PubMed  Google Scholar 

  115. Gong R, Xue Y, Xu H, Gao L, Lu G, Zhou J, Zhang M (2018) Effects of exogenous hydrogen sulfide on intestinal function in rabbits after cardiopulmonary resuscitation. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 30(12):1178–1183

    PubMed  Google Scholar 

  116. Chen SW, Zhu J, Zuo S, Zhang JL, Chen ZY, Chen GW, Wang X, Pan YS, Liu YC, Wang PY (2015) Protective effect of hydrogen sulfide on TNF-alpha and IFN-gamma-induced injury of intestinal epithelial barrier function in Caco-2 monolayers. Inflamm Res 64(10):789–797

    Article  CAS  PubMed  Google Scholar 

  117. Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 105(39):15064–15069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mills DJ, Tuohy KM, Booth J, Buck M, Crabbe MJ, Gibson GR, Ames JM (2008) Dietary glycated protein modulates the colonic microbiota towards a more detrimental composition in ulcerative colitis patients and non-ulcerative colitis subjects. J Appl Microbiol 105(3):706–714

    Article  CAS  PubMed  Google Scholar 

  119. Verma R, Verma AK, Ahuja V, Paul J (2010) Real-time analysis of mucosal flora in patients with inflammatory bowel disease in India. J Clin Microbiol 48(11):4279–4282

    Article  PubMed  PubMed Central  Google Scholar 

  120. Levine J, Ellis CJ, Furne JK, Springfield J, Levitt MD (1998) Fecal hydrogen sulfide production in ulcerative colitis. Am J Gastroenterol 93(1):83–87

    Article  CAS  PubMed  Google Scholar 

  121. Ijssennagger N, Belzer C, Hooiveld GJ, Dekker J, van Mil SW, Muller M, Kleerebezem M, van der Meer R (2015) Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc Natl Acad Sci USA 112(32):10038–10043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ijssennagger N, van der Meer R, van Mil SWC (2016) Sulfide as a mucus barrier-breaker in inflammatory bowel disease? Trends Mol Med 22(3):190–199

    Article  CAS  PubMed  Google Scholar 

  123. Goubern M, Andriamihaja M, Nubel T, Blachier F, Bouillaud F (2007) Sulfide, the first inorganic substrate for human cells. FASEB J 21(8):1699–1706

    Article  CAS  PubMed  Google Scholar 

  124. Beaumont M, Andriamihaja M, Lan A, Khodorova N, Audebert M, Blouin JM, Grauso M, Lancha L, Benetti PH, Benamouzig R, Tome D, Bouillaud F, Davila AM, Blachier F (2016) Detrimental effects for colonocytes of an increased exposure to luminal hydrogen sulfide: the adaptive response. Free Radic Biol Med 93:155–164

    Article  CAS  PubMed  Google Scholar 

  125. Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M, Weber J, Hoffmann U, Schreiber S, Dietel M, Lochs H (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122(1):44–54

    Article  PubMed  Google Scholar 

  126. Mottawea W, Chiang CK, Muhlbauer M, Starr AE, Butcher J, Abujamel T, Deeke SA, Brandel A, Zhou H, Shokralla S, Hajibabaei M, Singleton R, Benchimol EI, Jobin C, Mack DR, Figeys D, Stintzi A (2016) Altered intestinal microbiota-host mitochondria crosstalk in new onset Crohn’s disease. Nat Commun 7:13419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kamdar K, Khakpour S, Chen J, Leone V, Brulc J, Mangatu T, Antonopoulos DA, Chang EB, Kahn SA, Kirschner BS, Young G, DePaolo RW (2016) Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease. Cell Host Microbe 19(1):21–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang L, Zhang J, Guo Z, Kwok L, Ma C, Zhang W, Lv Q, Huang W, Zhang H (2014) Effect of oral consumption of probiotic Lactobacillus planatarum P-8 on fecal microbiota, SIgA, SCFAs, and TBAs of adults of different ages. Nutrition 30(7–8):776–783. e771

    Article  CAS  PubMed  Google Scholar 

  129. Sawin EA, De Wolfe TJ, Aktas B, Stroup BM, Murali SG, Steele JL, Ney DM (2015) Glycomacropeptide is a prebiotic that reduces Desulfovibrio bacteria, increases cecal short-chain fatty acids, and is anti-inflammatory in mice. Am J Physiol Gastrointest Liver Physiol 309(7):G590–G601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Coutinho C, Coutinho-Silva R, Zinkevich V, Pearce CB, Ojcius DM, Beech I (2017) Sulphate-reducing bacteria from ulcerative colitis patients induce apoptosis of gastrointestinal epithelial cells. Microb Pathog 112:126–134

    Article  CAS  PubMed  Google Scholar 

  131. Figliuolo VR, Dos Santos LM, Abalo A, Nanini H, Santos A, Brittes NM, Bernardazzi C, de Souza HSP, Vieira LQ, Coutinho-Silva R, Coutinho C (2017) Sulfate-reducing bacteria stimulate gut immune responses and contribute to inflammation in experimental colitis. Life Sci 189:29–38

    Article  CAS  PubMed  Google Scholar 

  132. Mimoun S, Andriamihaja M, Chaumontet C, Atanasiu C, Benamouzig R, Blouin JM, Tome D, Bouillaud F, Blachier F (2012) Detoxification of H(2)S by differentiated colonic epithelial cells: implication of the sulfide oxidizing unit and of the cell respiratory capacity. Antioxid Redox Signal 17(1):1–10

    Article  CAS  PubMed  Google Scholar 

  133. Nugent SG, Kumar D, Rampton DS, Evans DF (2001) Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut 48(4):571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ma N, Tian Y, Wu Y, Ma X (2017) Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Curr Protein Pept Sci 18(8):795–808

    Article  CAS  PubMed  Google Scholar 

  135. Medani M, Collins D, Docherty NG, Baird AW, O'Connell PR, Winter DC (2011) Emerging role of hydrogen sulfide in colonic physiology and pathophysiology. Inflamm Bowel Dis 17(7):1620–1625

    Article  PubMed  Google Scholar 

  136. Sun J, Shen X, Li Y, Guo Z, Zhu W, Zuo L, Zhao J, Gu L, Gong J, Li J (2016b) Therapeutic potential to modify the mucus barrier in inflammatory bowel disease. Nutrients 8:1

    Article  CAS  Google Scholar 

  137. Flannigan KL, Agbor TA, Blackler RW, Kim JJ, Khan WI, Verdu EF, Ferraz JG, Wallace JL (2014) Impaired hydrogen sulfide synthesis and IL-10 signaling underlie hyperhomocysteinemia-associated exacerbation of colitis. Proc Natl Acad Sci USA 111(37):13559–13564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fasolino I, Izzo AA, Clavel T, Romano B, Haller D, Borrelli F (2015) Orally administered allyl sulfides from garlic ameliorate murine colitis. Mol Nutr Food Res 59(3):434–442

    Article  CAS  PubMed  Google Scholar 

  139. Zhao H, Yan R, Zhou X, Ji F, Zhang B (2016) Hydrogen sulfide improves colonic barrier integrity in DSS-induced inflammation in Caco-2 cells and mice. Int Immunopharmacol 39:121–127

    Article  CAS  PubMed  Google Scholar 

  140. Lin WC, Pan WY, Liu CK, Huang WX, Song HL, Chang KS, Li MJ, Sung HW (2018) In situ self-spray coating system that can uniformly disperse a poorly water-soluble H2S donor on the colorectal surface to treat inflammatory bowel diseases. Biomaterials 182:289–298

    Article  CAS  PubMed  Google Scholar 

  141. Taniguchi E, Matsunami M, Kimura T, Yonezawa D, Ishiki T, Sekiguchi F, Nishikawa H, Maeda Y, Ishikura H, Kawabata A (2009) Rhodanese, but not cystathionine-gamma-lyase, is associated with dextran sulfate sodium-evoked colitis in mice: a sign of impaired colonic sulfide detoxification? Toxicology 264(1–2):96–103

    Article  CAS  PubMed  Google Scholar 

  142. Tomuschat C, O'Donnell AM, Coyle D, Puri P (2018) Reduction of hydrogen sulfide synthesis enzymes cystathionine-beta-synthase and cystathionine-gamma-lyase in the colon of patients with Hirschsprungs disease. J Pediatr Surg 53(3):525–530

    Article  PubMed  Google Scholar 

  143. Dryahina K, Smith D, Bortlik M, Machkova N, Lukas M, Spanel P (2017) Pentane and other volatile organic compounds, including carboxylic acids, in the exhaled breath of patients with Crohn's disease and ulcerative colitis. J Breath Res 12(1):016002

    Article  PubMed  CAS  Google Scholar 

  144. De Cicco P, Sanders T, Cirino G, Maloy KJ, Ianaro A (2018) Hydrogen sulfide reduces myeloid-derived suppressor cell-mediated inflammatory response in a model of Helicobacter hepaticus-induced colitis. Front Immunol 9:499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Figliuolo VR, Coutinho-Silva R, Coutinho C (2018) Contribution of sulfate-reducing bacteria to homeostasis disruption during intestinal inflammation. Life Sci 215:145–151

    Article  CAS  PubMed  Google Scholar 

  146. Kushkevych I, Lescanova O, Dordevic D, Jancikova S, Hosek J, Vitezova M, Bunkova L, Drago L (2019) The sulfate-reducing microbial communities and meta-analysis of their occurrence during diseases of small-large intestine axis. J Clin Med 8:10

    Article  Google Scholar 

  147. Sitkin SI, Tkachenko EI, Vakhitov TY (2016) Metabolic dysbiosis of the gut microbiota and its biomarkers. Eksp Klin Gastroenterol 12(12):6–29

    CAS  PubMed  Google Scholar 

  148. Cao X, Ding L, Xie ZZ, Yang Y, Whiteman M, Moore PK, Bian JS (2019) A review of hydrogen sulfide synthesis, metabolism, and measurement: is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid Redox Signal 31(1):1–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Phillips CM, Zatarain JR, Nicholls ME, Porter C, Widen SG, Thanki K, Johnson P, Jawad MU, Moyer MP, Randall JW, Hellmich JL, Maskey M, Qiu S, Wood TG, Druzhyna N, Szczesny B, Modis K, Szabo C, Chao C, Hellmich MR (2017) Upregulation of cystathionine-beta-synthase in colonic epithelia reprograms metabolism and promotes carcinogenesis. Cancer Res 77(21):5741–5754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhu H, Blake S, Chan KT, Pearson RB, Kang J (2018) Cystathionine beta-synthase in physiology and cancer. Biomed Res Int 2018:3205125

    Article  PubMed  PubMed Central  Google Scholar 

  151. Augsburger F, Szabo C (2018) Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H2S) pathway in cancer cells. Pharmacol Res 154:104083

    Article  PubMed  CAS  Google Scholar 

  152. Untereiner AA, Olah G, Modis K, Hellmich MR, Szabo C (2017) H2S-induced S-sulfhydration of lactate dehydrogenase a (LDHA) stimulates cellular bioenergetics in HCT116 colon cancer cells. Biochem Pharmacol 136:86–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Chen S, Yue T, Huang Z, Zhu J, Bu D, Wang X, Pan Y, Liu Y, Wang P (2019) Inhibition of hydrogen sulfide synthesis reverses acquired resistance to 5-FU through miR-215-5p-EREG/TYMS axis in colon cancer cells. Cancer Lett 466:49–60

    Article  CAS  PubMed  Google Scholar 

  154. An L, Wang X, Rui X, Lin J, Yang H, Tian Q, Tao C, Yang S (2018) The in situ sulfidation of Cu2 O by endogenous H2S for colon cancer theranostics. Angew Chem Int Ed Engl 57(48):15782–15786

    Article  CAS  PubMed  Google Scholar 

  155. Foster JC, Radzinski SC, Zou X, Finkielstein CV, Matson JB (2017) H2S-releasing polymer micelles for studying selective cell toxicity. Mol Pharm 14(4):1300–1306

    Article  CAS  PubMed  Google Scholar 

  156. Libiad M, Vitvitsky V, Bostelaar T, Bak DW, Lee HJ, Sakamoto N, Fearon E, Lyssiotis CA, Weerapana E, Banerjee R (2019) Hydrogen sulfide perturbs mitochondrial bioenergetics and triggers metabolic reprogramming in colon cells. J Biol Chem 294(32):12077–12090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hale VL, Jeraldo P, Mundy M, Yao J, Keeney G, Scott N, Cheek EH, Davidson J, Greene M, Martinez C, Lehman J, Pettry C, Reed E, Lyke K, White BA, Diener C, Resendis-Antonio O, Gransee J, Dutta T, Petterson XM, Boardman L, Larson D, Nelson H, Chia N (2018a) Synthesis of multi-omic data and community metabolic models reveals insights into the role of hydrogen sulfide in colon cancer. Methods 149:59–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Nguyen LH, Ma W, Wang DD, Cao Y, Mallick H, Gerbaba TK, Lloyd-Price J, Abu-Ali G, Hall AB, Sikavi D, Drew DA, Mehta RS, Arze C, Joshi AD, Yan Y, Branck T, DuLong C, Ivey KL, Ogino S, Rimm EB, Song M, Garrett WS, Izard J, Huttenhower C, Chan AT (2020) Association between sulfur-metabolizing bacterial communities in stool and risk of distal colorectal cancer in men. Gastroenterology 158:1313

    Article  CAS  PubMed  Google Scholar 

  159. Yazici C, Wolf PG, Kim H, Cross TL, Vermillion K, Carroll T, Augustus GJ, Mutlu E, Tussing-Humphreys L, Braunschweig C, Xicola RM, Jung B, Llor X, Ellis NA, Gaskins HR (2017) Race-dependent association of sulfidogenic bacteria with colorectal cancer. Gut 66(11):1983–1994

    Article  CAS  PubMed  Google Scholar 

  160. Hale VL, Jeraldo P, Chen J, Mundy M, Yao J, Priya S, Keeney G, Lyke K, Ridlon J, White BA, French AJ, Thibodeau SN, Diener C, Resendis-Antonio O, Gransee J, Dutta T, Petterson XM, Sung J, Blekhman R, Boardman L, Larson D, Nelson H, Chia N (2018b) Distinct microbes, metabolites, and ecologies define the microbiome in deficient and proficient mismatch repair colorectal cancers. Genome Med 10(1):78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ford AC, Thabane M, Collins SM, Moayyedi P, Garg AX, Clark WF, Marshall JK (2010) Prevalence of uninvestigated dyspepsia 8 years after a large waterborne outbreak of bacterial dysentery: a cohort study. Gastroenterology 138(5):1727–1736

    Article  PubMed  Google Scholar 

  162. Marshall JK, Thabane M, Garg AX, Clark WF, Moayyedi P, Collins SM (2010) Walkerton health study I. Eight year prognosis of postinfectious irritable bowel syndrome following waterborne bacterial dysentery. Gut 59(5):605–611

    Article  PubMed  Google Scholar 

  163. Walker MM, Talley NJ, Inganas L, Engstrand L, Jones MP, Nyhlin H, Agreus L, Kjellstrom L, Ost A, Andreasson A (2015) Colonic spirochetosis is associated with colonic eosinophilia and irritable bowel syndrome in a general population in Sweden. Hum Pathol 46(2):277–283

    Article  PubMed  Google Scholar 

  164. Walker MM, Talley NJ (2014) Review article: bacteria and pathogenesis of disease in the upper gastrointestinal tract--beyond the era of Helicobacter pylori. Aliment Pharmacol Ther 39(8):767–779

    Article  CAS  PubMed  Google Scholar 

  165. Coeffier M, Gloro R, Boukhettala N, Aziz M, Lecleire S, Vandaele N, Antonietti M, Savoye G, Bole-Feysot C, Dechelotte P, Reimund JM, Ducrotte P (2010) Increased proteasome-mediated degradation of occludin in irritable bowel syndrome. Am J Gastroenterol 105(5):1181–1188

    Article  CAS  PubMed  Google Scholar 

  166. Liebregts T, Adam B, Bredack C, Roth A, Heinzel S, Lester S, Downie-Doyle S, Smith E, Drew P, Talley NJ, Holtmann G (2007) Immune activation in patients with irritable bowel syndrome. Gastroenterology 132(3):913–920

    Article  CAS  PubMed  Google Scholar 

  167. Liebregts T, Adam B, Bredack C, Gururatsakul M, Pilkington KR, Brierley SM, Blackshaw LA, Gerken G, Talley NJ, Holtmann G (2011) Small bowel homing T cells are associated with symptoms and delayed gastric emptying in functional dyspepsia. Am J Gastroenterol 106(6):1089–1098

    Article  CAS  PubMed  Google Scholar 

  168. Marshall JK, Thabane M, Garg AX, Clark W, Meddings J, Collins SM, Investigators WEL (2004) Intestinal permeability in patients with irritable bowel syndrome after a waterborne outbreak of acute gastroenteritis in Walkerton, Ontario. Aliment Pharmacol Ther 20(11–12):1317–1322

    Article  CAS  PubMed  Google Scholar 

  169. Shulman RJ, Jarrett ME, Cain KC, Broussard EK, Heitkemper MM (2014) Associations among gut permeability, inflammatory markers, and symptoms in patients with irritable bowel syndrome. J Gastroenterol 49(11):1467–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Vazquez-Roque MI, Camilleri M, Smyrk T, Murray JA, O'Neill J, Carlson P, Lamsam J, Eckert D, Janzow D, Burton D, Ryks M, Rhoten D, Zinsmeister AR (2012) Association of HLA-DQ gene with bowel transit, barrier function, and inflammation in irritable bowel syndrome with diarrhea. Am J Physiol Gastrointest Liver Physiol 303(11):G1262–G1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhong L, Shanahan ER, Raj A, Koloski NA, Fletcher L, Morrison M, Walker MM, Talley NJ, Holtmann G (2017) Dyspepsia and the microbiome: time to focus on the small intestine. Gut 66(6):1168–1169

    Article  CAS  PubMed  Google Scholar 

  172. Chassard C, Dapoigny M, Scott KP, Crouzet L, Del'homme C, Marquet P, Martin JC, Pickering G, Ardid D, Eschalier A, Dubray C, Flint HJ, Bernalier-Donadille A (2012) Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment Pharmacol Ther 35(7):828–838

    Article  CAS  PubMed  Google Scholar 

  173. Pusceddu MM, Gareau MG (2018) Visceral pain: gut microbiota, a new hope? J Biomed Sci 25(1):73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chichlowski M, Rudolph C (2015) Visceral pain and gastrointestinal microbiome. J Neurogastroenterol Motil 21(2):172–181

    Article  PubMed  PubMed Central  Google Scholar 

  175. Crouzet L, Gaultier E, Del'Homme C, Cartier C, Delmas E, Dapoigny M, Fioramonti J, Bernalier-Donadille A (2013) The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota. Neurogastroenterol Motil 25(4):e272–e282

    Article  CAS  PubMed  Google Scholar 

  176. Ford AC, Quigley EM, Lacy BE, Lembo AJ, Saito YA, Schiller LR, Soffer EE, Spiegel BM, Moayyedi P (2014) Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. Am J Gastroenterol 109(10):1547–1561

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Liang Fan (Obstetrics and Gynecology Hospital of Fudan University) in sketch drawing.

Competing Interests

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiao, A., Liu, C., Li, J. (2021). The Role of H2S in the Gastrointestinal Tract and Microbiota. In: Zhu, YC. (eds) Advances in Hydrogen Sulfide Biology. Advances in Experimental Medicine and Biology, vol 1315. Springer, Singapore. https://doi.org/10.1007/978-981-16-0991-6_4

Download citation

Publish with us

Policies and ethics