Skip to main content

Artificial Intelligence and Cataract

  • Chapter
  • First Online:
Artificial Intelligence and Ophthalmology

Part of the book series: Current Practices in Ophthalmology ((CUPROP))

  • 442 Accesses

Abstract

The use of artificial intelligence for cataract detection, grading and management has been explored in recent years. In this chapter, we review the previous works in this regard, the challenges faced and the potential real-world deployment strategies. Owing to the magnitude of the problem, developments in this field are going to have significant impact on public health policy and healthcare delivery models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;5(12):e1221-e34.

    Article  Google Scholar 

  2. Chua J, Lim B, Fenwick EK, et al. Prevalence, risk factors, and impact of undiagnosed visually significant cataract: the Singapore epidemiology of eye diseases study. PLoS One. 2017;12(1):e0170804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Varma R, Mohanty SA, Deneen J, Wu J, Azen SP. Burden and predictors of undetected eye disease in Mexican-Americans: the Los Angeles Latino Eye Study. Med Care. 2008;46(5):497–506.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Keel S, McGuiness MB, Foreman J, Taylor HR, Dirani M. The prevalence of visually significant cataract in the Australian National Eye Health Survey. Eye (Lond). 2019;33(6):957–64.

    Article  Google Scholar 

  5. Le HG, Ehrlich JR, Venkatesh R, et al. A sustainable model for delivering high-quality, efficient cataract surgery in southern India. Health Aff (Millwood). 2016;35(10):1783–90.

    Article  Google Scholar 

  6. Chylack L, Wolfe J, Singer D, et al. The lens opacities classification system III. The longitudinal study of cataract study group. Arch Ophthalmol. 1993;111:831–6.

    Article  PubMed  Google Scholar 

  7. Resnikoff S, Lansingh VC, Washburn L, et al. Estimated number of ophthalmologists worldwide (International Council of Ophthalmology update): will we meet the needs? Br J Ophthalmol. 2020;104(4):588–92.

    Article  PubMed  Google Scholar 

  8. Bailey IL, Bullimore MA, Raasch TW, Taylor HR. Clinical grading and the effects of scaling. Invest Ophthalmol Vis Sci. 1991;32(2):422–32.

    CAS  PubMed  Google Scholar 

  9. Liu Y-C, Wilkins M, Kim T, Malyugin B, Mehta JS. Cataracts. Lancet. 2017;390(10094):600–12.

    Article  PubMed  Google Scholar 

  10. Aristodemou P, Cartwright NEK, Sparrow JM, Johnston RL. Formula choice: Hoffer Q, Holladay 1, or SRK/T and refractive outcomes in 8108 eyes after cataract surgery with biometry by partial coherence interferometry. J Cataract Refract Surg. 2011;37(1):63–71.

    Article  PubMed  Google Scholar 

  11. Chen C, Xu X, Miao Y, et al. Accuracy of intraocular lens power formulas involving 148 eyes with long axial lengths: a retrospective chart-review study. J Ophthalmol. 2015;2015:976847.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang Y, Liang XY, Liu S, et al. Accuracy of intraocular lens power calculation formulas for highly myopic eyes. J Ophthalmol. 2016;2016:1917268.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rong X, He W, Zhu Q, et al. Intraocular lens power calculation in eyes with extreme myopia: comparison of Barrett Universal II, Haigis, and Olsen formulas. J Cataract Refract Surg. 2019;45(6):732–7.

    Article  PubMed  Google Scholar 

  14. Kane JX, Van Heerden A, Atik A, Petsoglou C. Intraocular lens power formula accuracy: comparison of 7 formulas. J Cataract Refract Surg. 2016;42(10):1490–500.

    Article  PubMed  Google Scholar 

  15. Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand. 2007;85(5):472–85.

    Article  PubMed  Google Scholar 

  16. Wang L, Shirayama M, Ma XJ, Kohnen T, Koch DD. Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm. J Cataract Refract Surg. 2011;37(11):2018–27.

    Article  PubMed  Google Scholar 

  17. Siddiqui AA, Devgan U. Intraocular lens calculations in atypical eyes. Indian J Ophthalmol. 2017;65(12):1289.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen X, Yuan F, Wu L. Metaanalysis of intraocular lens power calculation after laser refractive surgery in myopic eyes. J Cataract Refract Surg. 2016;42(1):163–70.

    Article  PubMed  Google Scholar 

  19. Wang L, Tang M, Huang D, Weikert MP, Koch DD. Comparison of newer intraocular lens power calculation methods for eyes after corneal refractive surgery. Ophthalmology. 2015;122(12):2443–9.

    Article  PubMed  Google Scholar 

  20. Ladas J, Siddiqui A, Devgan U, Jun A. A 3-D “super surface” combining modern intraocular lens formulas to generate a “super formula” and maximize accuracy. JAMA Ophthalmol. 2015;133:1–6.

    Article  Google Scholar 

  21. Tuulonen A, Salminen H, Linna M, Perkola M. The need and total cost of Finnish eyecare services: a simulation model for 2005-2040. Acta Ophthalmol. 2009;87(8):820–9.

    Article  PubMed  Google Scholar 

  22. Turner AW, Mulholland W, Taylor HR. Funding models for outreach ophthalmology services. Clin Exp Ophthalmol. 2011;39(4):350–7.

    Article  PubMed  Google Scholar 

  23. Benzekri R, Marie-Louise J, Chahed S. Cost of teaching cataract surgery in a public hospital. J Fr Ophtalmol. 2017;40(10):860–4.

    Article  CAS  PubMed  Google Scholar 

  24. Yen AJ, Ramanathan S. Advanced cataract learning experience in United States ophthalmology residency programs. J Cataract Refract Surg. 2017;43(10):1350–5.

    Article  PubMed  Google Scholar 

  25. Yu F, Silva Croso G, Kim TS, et al. Assessment of automated identification of phases in videos of cataract surgery using machine learning and deep learning techniques. JAMA Netw Open. 2019;2(4):e191860-e.

    Article  Google Scholar 

  26. Al Hajj H, Lamard M, Conze PH, Cochener B, Quellec G. Monitoring tool usage in surgery videos using boosted convolutional and recurrent neural networks. Med Image Anal. 2018;47:203–18.

    Article  PubMed  Google Scholar 

  27. Hubschman JP, Son J, Allen B, Schwartz SD, Bourges JL. Evaluation of the motion of surgical instruments during intraocular surgery. Eye (Lond). 2011;25(7):947–53.

    Article  Google Scholar 

  28. Golnik KC, Beaver H, Gauba V, et al. Cataract surgical skill assessment. Ophthalmology. 2011;118(2):427.e1-5.

    Article  PubMed  Google Scholar 

  29. Farooqui JH, Jaramillo A, Sharma M, Gomaa A. Use of modified international council of ophthalmology- ophthalmology surgical competency assessment rubric (ICO- OSCAR) for phacoemulsification- wet lab training in residency program. Indian J Ophthalmol. 2017;65(9):898–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yoo TK, Oh E, Kim HK, et al. Deep learning-based smart speaker to confirm surgical sites for cataract surgeries: a pilot study. PLoS One. 2020;15(4):e0231322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maloley L, Morgan LA, High R, Suh DW. Wrong-site surgery in pediatric ophthalmology. J Pediatr Ophthalmol Strabismus. 2018;55(3):152–8.

    Article  PubMed  Google Scholar 

  32. Bian Y, Xiang Y, Tong B, Feng B, Weng X. Artificial intelligence-assisted system in postoperative follow-up of orthopedic patients: exploratory quantitative and qualitative study. J Med Internet Res. 2020;22(5):e16896.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wu X, Chen J, Yun D, et al. Effectiveness of an ophthalmic hospital-based virtual service during COVID-19. Ophthalmology. 2020:S0161-6420(20)31010-1.

    Google Scholar 

  34. Mohammadi SF, Sabbaghi M, H ZM, et al. Using artificial intelligence to predict the risk for posterior capsule opacification after phacoemulsification. J Cataract Refract Surg. 2012;38(3):403–8.

    Article  PubMed  Google Scholar 

  35. Li H, Chutatape O. Boundary detection of optic disk by a modified ASM method. Pattern Recogn. 2003;36(9):2093–104.

    Article  Google Scholar 

  36. Xu Y, Gao X, Lin S, et al., editors. Automatic grading of nuclear cataracts from slit-lamp Lens images using group sparsity regression. Berlin, Heidelberg: Springer; 2013.

    Google Scholar 

  37. Gao X, Lin S, Wong TY. Automatic feature learning to grade nuclear cataracts based on deep learning. IEEE Trans Biomed Eng. 2015;62(11):2693-701.

    Article  PubMed  Google Scholar 

  38. Yu K-H, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719–31.

    Article  PubMed  Google Scholar 

  39. Wu X, Huang Y, Liu Z, et al. Universal artificial intelligence platform for collaborative management of cataracts. Br J Ophthalmol. 2019;103(11):1553.

    Article  PubMed  Google Scholar 

  40. Li H, Lim H, Liu J, et al. An automatic diagnosis system of nuclear cataract using slit-lamp images. In: Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference 2009; p. 3693–6.

    Google Scholar 

  41. Lian JX, Gangwani RA, McGhee SM, et al. Systematic screening for diabetic retinopathy (DR) in Hong Kong: prevalence of DR and visual impairment among diabetic population. Br J Ophthalmol. 2016;100(2):151.

    Article  PubMed  Google Scholar 

  42. Prescott G, Sharp P, Goatman K, et al. Improving the cost-effectiveness of photographic screening for diabetic macular oedema: a prospective, multi-centre, UK study. Br J Ophthalmol. 2014;98(8):1042.

    Article  PubMed  Google Scholar 

  43. Dong Y, Zhang Q, Qiao Z, Yang J, editors. Classification of cataract fundus image based on deep learning. In: 2017 IEEE international conference on imaging systems and techniques (IST); 18–20 Oct 2017.

    Google Scholar 

  44. Ran J, Niu K, He Z, Zhang H, Song H, editors. Cataract detection and grading based on combination of deep convolutional neural network and random forests. In: 2018 international conference on network infrastructure and digital content (IC-NIDC); 22–24 Aug 2018.

    Google Scholar 

  45. Pratap T, Kokil P. Computer-aided diagnosis of cataract using deep transfer learning. Biomed Signal Proc Contr. 2019;53:101533.

    Article  Google Scholar 

  46. Yitao L, Lianlian H, Chao F, Feng W, Wei L, editors. Preprocessing study of retinal image based on component extraction. 2008 IEEE international symposium on it in medicine and education; 12–14 Dec 2008.

    Google Scholar 

  47. Linglin Z, Jianqiang L, et al., editors. Automatic cataract detection and grading using Deep Convolutional Neural Network. In: 2017 IEEE 14th international conference on networking, sensing and control (ICNSC); May 2017. p. 16–8.

    Google Scholar 

  48. Li J, Xu X, Guan Y, et al., editors. Automatic cataract diagnosis by image-based interpretability. In: 2018 IEEE international conference on systems, man, and cybernetics (SMC); 7–10 Oct 2018.

    Google Scholar 

  49. Hee MR. State-of-the-art of intraocular lens power formulas. JAMA Ophthalmol. 2015;133(12):1436–7.

    Article  PubMed  Google Scholar 

  50. Forman D, Newell DG, Fullerton F, et al. Association between infection with Helicobacter pylori and risk of gastric cancer: evidence from a prospective investigation. BMJ. 1991;302(6788):1302–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Melles RB, Kane JX, Olsen T, Chang WJ. Update on intraocular lens calculation formulas. Ophthalmology. 2019;126(9):1334–5.

    Article  PubMed  Google Scholar 

  52. Connell BJ, Kane JX. Comparison of the Kane formula with existing formulas for intraocular lens power selection. BMJ Open Ophthalmol. 2019;4(1):e000251.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nemeth G, Modis L Jr. Accuracy of the Hill-radial basis function method and the Barrett Universal II formula. Eur J Ophthalmol. 2020:1120672120902952.

    Google Scholar 

  54. Hoffer KJ. Intraocular lens power calculation after previous laser refractive surgery. J Cataract Refract Surg. 2009;35(4):759–65.

    Article  PubMed  Google Scholar 

  55. Alio JL, Abdelghany AA, Abdou AA, Maldonado M. Cataract surgery on the previous corneal refractive surgery patient. Surv Ophthalmol. 2016;61(6):769–77.

    Article  PubMed  Google Scholar 

  56. Al Hajj H, Lamard M, Conze P-H, et al. CATARACTS: challenge on automatic tool annotation for cataRACT surgery. Med Image Anal. 2019;52:24–41.

    Article  PubMed  Google Scholar 

  57. Zisimopoulos O, Flouty E, Luengo I, et al. DeepPhase: surgical phase recognition in CATARACTS videos. arXivorg. 2018.

    Google Scholar 

  58. Maier-Hein L, Speidel S, Navab N, et al. Surgical data science: enabling next-generation surgery. arXivorg. 2017;1(9).

    Google Scholar 

  59. Lecuyer G, Ragot M, Martin N, Launay L, Jannin P. Assisted phase and step annotation for surgical videos. Int J Comput Assist Radiol Surg. 2020;15(4):673–80.

    Article  PubMed  Google Scholar 

  60. Morita S, Tabuchi H, Masumoto H, Yamauchi T, Kamiura N. Real-time extraction of important surgical phases in cataract surgery videos. Sci Rep. 2019;9(1):16590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Tian S, Yin X-C, Wang Z-B, Zhou F, Hao H-WA. VidEo-based intelligent recognition and decision system for the phacoemulsification cataract surgery. Comput Math Methods Med. 2015;2015:202934.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lalys F, Bouget D, Riffaud L, Jannin P. Automatic knowledge-based recognition of low-level tasks in ophthalmological procedures. Int J Comput Assist Radiol Surg. 2013;8(1):39–49.

    Article  PubMed  Google Scholar 

  63. Long E, Chen J, Wu X, et al. Artificial intelligence manages congenital cataract with individualized prediction and telehealth computing. NPJ Digit Med. 2020;3:112.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lin H, Li R, Liu Z, et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial. EClinicalMedicine. 2019;9:52–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

YCT is supported by the National Medical Research Council, Singapore [NMRC/MOH-TA18nov-0002]. The funding organization had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yih-Chung Tham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thakur, S., Goh, J.H.L., Tham, YC. (2021). Artificial Intelligence and Cataract. In: Ichhpujani, P., Thakur, S. (eds) Artificial Intelligence and Ophthalmology. Current Practices in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0634-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0634-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0633-5

  • Online ISBN: 978-981-16-0634-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics