Skip to main content

PET-CT Physics, Instrumentation, and Techniques

  • Chapter
  • First Online:
PET-CT in Infection and Inflammation
  • 823 Accesses

Abstract

PET-CT is Positron Emission Tomography and Computed Tomography. This has become an important imaging modality for the diagnosis of the diseases to evaluate the metabolic and biological activities at the cellular level. There are many pathologies with blend of the pathological processes which need to be evaluated in the early stages. Most of the available imaging modalities are anatomic modalities with no information regarding the metabolic changes or functional parameters in that particular pathology can be identified. PET-CT is an excellent imaging modality that has the blend of the anatomic information from the CT and metabolic information from the PET. This combined imaging modality provided information about these two components at one go. The basic physics of PET is based on the basics of electron, which combines and interacts with the positron by the Annihilation process producing Annihilation proton of 511 keV in the opposite direction of 180°. The PET is based on quantitative imaging where the image is formed by each voxel depending on the amount of radioactive tracer in that particular region. Here the function is also based on the sensor technology of the PET detectors, which has changed since the advent of the initial PET-CT scanners. The radiotracers are produced in a cyclotron which is an important component of radiotracer productions. In this chapter, we will be discussing the basic principles, physics, and techniques of the PET-CT imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mankoff DA. A definition of molecular imaging. J Nucl Med. 2007;48(6):18N, 21N.

    PubMed  Google Scholar 

  2. Pichler BJ, Judenhofer MS, Pfannenberg C. Multimodal imaging approaches: PET/CT and PET/MRI—part 1. Handb Exp Pharmacol. 2008;185:109–32.

    Article  CAS  Google Scholar 

  3. Mittra E, Quon A. Positron emission tomography/computed tomography: the current technology and applications. Radiol Clin N Am. 2009;47:147–60.

    Article  PubMed  Google Scholar 

  4. Ownsend DW, Carney J, Yap JT, Hall NC. PET/CT today and tomorrow. J Nucl Med. 2004;45(suppl):4S–14S.

    Google Scholar 

  5. van der Vos CS, Koopman D, Rijnsdorp S, Arends AJ, Boellaard R, van Dalen JA, et al. Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):4–16.

    PubMed  PubMed Central  Google Scholar 

  6. Slomka PJ, Pan T, Germano G. Recent advances and future progress in PET instrumentation. Semin Nucl Med. 2016;46:5–19.

    Article  PubMed  Google Scholar 

  7. Phelps ME, Hoffmann EJ, Mullani NA, et al. Application of annihilation coincidence detection to trans-axial reconstruction tomography. Nucl Med. 1975;16:210–24.

    CAS  Google Scholar 

  8. Omami G, Tamimi D, Barton F. Branstetter basic principles and applications of 18F-FDG-PET/CT in oral and maxillofacial imaging: a pictorial essay. Imaging Sci Dent. 2014;44(4):325–32.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Synowiecki MA, Perk LR, Frank J, Nijsen W. Production of novel diagnostic radionuclides in small medical cyclotrons. EJNMMI Radiopharm Chem. 2018;3:3.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Peng H, Levin CS. Recent developments in PET instrumentation. Curr Pharm Biotechnol. 2010;11(6):555–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vandenbroucke A, Foudray AMK, Olcott PD, Levin CS. Performance characterization of a new high-resolution PET scintillation detector. Phys Med Biol. 2010;55:5895–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kułakowski A, et al. The contribution of Marie Skłodowska-Curie to the development of modern oncology. Anal Bioanal Chem. 2011;400(6):1583–6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shahhosseini S. PET radiopharmaceuticals. Iran J Pharm Res. 2011;10(1):1–2.

    PubMed  PubMed Central  Google Scholar 

  14. Tanaka S, Nishio T, Tsuneda M, et al. Improved proton CT imaging using a bismuth germanium oxide scintillator. Phys Med Biol. 2018;63(3):035030.

    Article  PubMed  Google Scholar 

  15. Berger A. Positron emission tomography. BMJ. 2003;326(7404):1449.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee JP, Ito M, Lee JS. Evaluation of a fast photomultiplier tube for time-of-flight PET. Biomed Eng Lett. 2011;1:174–9.

    Article  CAS  Google Scholar 

  17. Dash A, Chakravarty R. Radionuclide generators: the prospect of availing PET radiotracers to meet current clinical needs and future research demands. Am J Nucl Med Mol Imaging. 2019;9(1):30–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Almuhaideb A, Papathanasiou N, Bomanji J. 18F-FDG PET/CT imaging in oncology. Ann Saudi Med. 2011;31(1):3–13.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shen B, Huang T, Sun Y. Revisit 18F-fluorodeoxyglucose oncology positron emission tomography: “systems molecular imaging” of glucose metabolism. Oncotarget. 2017;8(26):43536–42.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yamada T, Uchida M, Kwang-Lee K, et al. Correlation of metabolism/hypoxia markers and fluoro-deoxyglucose uptake in oral squamous cell carcinomas. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113:464–71.

    Article  PubMed  Google Scholar 

  21. Kinahan PE, Fletcher JW. PET/CT standardized uptake values (SUVs) in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31(6):496–505.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Benamor M, Ollivier L, Brisse H, Moulin-Romsee G, et al. PET/CT imaging: what radiologists need to know. Cancer Imaging. 2007;7(Special issue A):S95–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sprinz C, Zanon M, Altmayer S, et al. Effects of blood glucose level on 18F fluorodeoxyglucose (18F-FDG) uptake for PET/CT in normal organs: an analysis on 5623 patients. Sci Rep. 2018;8:2126.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Berthelsen AK, Holm S, Loft A, et al. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients. Eur J Nucl Med Mol Imaging. 2005;32:1167–75.

    Article  CAS  PubMed  Google Scholar 

  25. Mawlawi O, Pan T, Macapinlac HA, et al. PET/CT imaging techniques, considerations, and artifacts. J Thorac Imaging. 2006;21(2):99–110.

    Article  PubMed  Google Scholar 

  26. Shammas A, Lim R, Charron M. Pediatric FDG PET/CT: physiologic uptake, normal variants, and benign conditions. Radiographics. 2009;29(5):1467–86.

    Article  PubMed  Google Scholar 

  27. Abouzied MM, Crawford ES, Nabi HA. 18F-FDG imaging: pitfalls and artifacts. J Nucl Med Technol. 2005;33(3):145–55.

    PubMed  Google Scholar 

  28. Jennings M, Marcu LG, Bezak E. PET-specific parameters and radiotracers in theoretical tumour modeling. Comput Math Methods Med. 2015;2015:415923.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Freedenberg M, Badawi RD, Tarantal AF, et al. Performance and limitations of positron emission tomography (PET) scanners for imaging very low activity sources. Physica Med. 2014;30(1):104. https://doi.org/10.1016/j.ejmp.2013.04.001.

    Article  Google Scholar 

  30. Pettinato C, Nanni C, Farsad M. Artifacts of PET/CT images. Biomed Imaging Interv J. 2006;2(4):e60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cazzato RL, Garnon J, Shaygi B, et al. PET/CT-guided interventions: indications, advantages, disadvantages and the state of the art. Minim Invasive Ther Allied Technol. 2018 Feb;27(1):27–32.

    Article  PubMed  Google Scholar 

  32. Ell PJ. The contribution of PET/CT to improved patient management. Br J Radiol. 2006;79:32–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaikh, S. (2021). PET-CT Physics, Instrumentation, and Techniques. In: PET-CT in Infection and Inflammation. Springer, Singapore. https://doi.org/10.1007/978-981-15-9801-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9801-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9800-5

  • Online ISBN: 978-981-15-9801-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics