Skip to main content

Processing and Properties of Starch-Based Thermoplastic Matrix for Green Composites

  • Chapter
  • First Online:
  • 875 Accesses

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

The high availability and low cost, added to its renewable, biobased and biodegradable nature, make TPS a promising alternative to the non-biodegradable plastics produced from fossil resources. However, in order to be competitive, its mechanical and water vapor barrier properties, as well as its stability in high moisture environments, must be improved. In this chapter, strategies for the development of TPS matrix composites such as those obtained from starch/biodegradable polyester blends are developed. In particular, two systems are deeply described: PBAT/starch and PHB/starch. The chosen polyesters have the important advantage of being biodegradable in soil, very stable in water due to their hydrophobic character and mechanically good enough to improve starch’s properties. The inclusion of fillers and strategies to improve polymer compatibility, including the use of compatibilizers, polymer modifications and special processing conditions, are reported. The properties of these materials are studied from three key points for their application: thermal, barrier and mechanical. The results show that the combination of the two strategies, making a blend and including fillers, leads to the best results. However, there is still much to improve, especially regarding the compatibility between the involved phases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACR:

Acrylonitrile-chlorinated polyethylene styrene

a w :

Water activity

bio-PE:

Bio-polyethylene

bio-PEF:

Bio-polyethylene furanoate

bio-PET:

Bio-polyethylene terephthalate

BP:

Benzoyl peroxide

BT:

Bentonite

C/OS:

Corn/octenylsuccinated starch

C30B:

Organically modified montmorillonite

CA:

Contact angle

CAc:

Citric acid

CF:

Cellulose fiber

ChCl:

Choline chloride

CNF:

Cellulose nanofiber

CNFs:

Cellulose nanofibrils

CS:

Corn starch

1D:

One-dimensional

2D:

Two-dimensional

DES:

Deep eutectic solvent

DMSO:

Dimethyl sulfoxide

DMTA:

Dynamic mechanical thermal analysis

DSC:

Differential scanning calorimetry

EB:

Elongation at break

EMA:

Ethylene–methyl acrylate

EVA:

Ethylene-vinyl acetate

EVOH:

Poly(ethylene-co-vinyl alcohol)

Gl:

Glycerol

GMA:

Glycidyl methacrylate

HPDSP:

Hydroxypropyl distarch phosphate

HSM:

High-speed mixer

HV:

3-Hydroxyvalerate

Im:

Imidazole

M0:

Monolayer moisture content

MA:

Maleic anhydride

MCC:

Microcrystalline cellulose

MFI:

Melt flow index

MMT:

Montmorillonite

MMTDA:

Modified MMT

NCC:

Nanocrystalline cellulose

nCOM:

Nanoclay organically modified

O/W:

Oil-in-water

OMMT:

Derivate of montmorillonite

OP:

Oxygen permeability

OS:

Octenylsuccinated starch

OSA starch:

Octenyl succinic anhydride-modified starch

PBAT:

Polybutylene adipate-co-terephthalate

PBAT-g-MA:

Maleate PBAT

PBT:

Polybutylene terephthalate

PCF:

Plasma-treated cellulose fiber

PCL:

Polycaprolactone

PDA:

Polydopamine

PE:

Polyethylene

PEG:

Polyethylene glycol

PET:

Polyethylene terephthalate

pEVOH:

Plasticized EVOH

PHA:

Polyhydroxyalkanoate

PHB:

Polyhydroxybutyrate

PHB-g-AA:

Acrylic-acid-grafted PHB

PHBV:

Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate)

PLA:

Polylactic acid

POE-g-GMA:

Glycidyl methacrylate-functionalized polyolefin elastomer

POE-g-MAH:

Maleic anhydride-grafted ethylene–octene copolymer

PPG:

Poly propylene glycol

PS:

Polystyrene

PVA:

Polyvinyl alcohol

PVC:

Polyvinyl alcohol

SEM:

Scanning electron microcopy

SF6:

Sulfur hexafluoride

SME:

Specific mechanical energy

SNC:

Starch nanocrystal

SO:

Soybean oil

SSE:

Single-screw extruder

TA:

Tartaric acid

TBC:

Tributyl citrate

TBoAC:

Tributyl o-acetylcitrate

T d :

Decomposition temperature

TEC:

Triethyl citrate

T g :

Glass transition temperature

T m :

Melting temperature

TOMC:

Oxidized MCC

TPS:

Thermoplastic starch

TS:

Tensile strength

TSE:

Twin-screw extruder

U:

Urea

UM:

Urea-intercalated montmorillonite

VAc:

Vinyl acetate

WC:

Water content

WF:

Wood fiber

WS:

Water sorption

WSNC:

Waxy starch nanocrystal

WVP:

Water vapor permeability

References

  1. Rameshkumar S, Shaiju P, O’Connor KE (2020) Bio-based and biodegradable polymers—state of the art, challenges and emerging trends. Curr Opin Green Sustain Chem 21:75–81

    Google Scholar 

  2. Skoczinski P, Chinthapalli R, Carus M, Baltus W, de Guzman D, Käb H, Raschka A, Ravenstijn J (2020) Global markets and trends of bio-based building blocks and polymers 2019–2024. Carus M (Publ) Nova-Institut GmbH, Germany

    Google Scholar 

  3. Villar MA, Barbosa SE, García MA, Castillo LA, López OV (eds) (2017) Starch-based materials in food packaging. Processing, characterization and applications. Academic Press, United Kingdom and United States

    Google Scholar 

  4. Visakh PM (2015) Starch: state-of-the-art, new challenges and opportunities. In: Visakh PM, Yu L (eds) Starch-based blends, composites and nanocomposites. RSC Green Chemistry, United Kigndom, pp 1–16

    Chapter  Google Scholar 

  5. Ribba L, Garcia NL, D’Accorso N, Goyanes S (2017) Disadvantages of starch-based materials, feasible alternatives in order to overcome these limitations. In: Villa MA, Barbosa SE, Garcia MA, Castillo LA, Lopez OV (eds) Starch-based materials in food packaging, 1st edn. Academic Press, Cambridge, pp 37–76

    Google Scholar 

  6. Xie F, Zhang B, Wang DK (2017) Starch thermal processing: technologies at laboratory and semi-industrial scales. In: Villa MA, Barbosa SE, Garcia MA, Castillo LA, Lopez OV (eds) Starch-based materials in food packaging, 1st edn. Academic Press, Cambridge, pp 187–227

    Google Scholar 

  7. Thunwall M, Boldizar A, Rigdahl M, Kuthanová V (2006) On the stress-strain behavior of thermoplastic starch melts. Int J Polym Anal Charact 11(6):419–428

    Article  CAS  Google Scholar 

  8. González-Seligra P, Guz L, Ochoa-Yepes O, Goyanes S, Famá L (2017) Influence of extrusion process conditions on starch film morphology. LWT 84:520–528

    Article  CAS  Google Scholar 

  9. von Borries-Medrano E, Jaime-Fonseca MR, Aguilar-Mendez MA (2016) Starch–guar gum extrudates: microstructure, physicochemical properties and in-vitro digestion. Food Chem 194:891–899

    Article  CAS  Google Scholar 

  10. Bouvier JM, Campanella OH (2014) Extrusion processing technology: food and non-food biomaterials. Wiley, Hoboken

    Google Scholar 

  11. Lawal A, Kalyon DM (1995) Mechanisms of mixing in single and co-rotating twin screw extruders. Polym Eng Sci 35(17):1325–1338

    Article  CAS  Google Scholar 

  12. Lai LS, Kokini JL (1991) Physicochemical changes and rheological properties of starch during extrusion (a review). Biotechnol Prog 7(3):251–266

    Article  CAS  Google Scholar 

  13. García NL, Famá L, D’Accorso NB, Goyanes S (2015) Biodegradable starch nanocomposites. Adv Struct Mater 75:17–77

    Article  Google Scholar 

  14. Jebalia I, Maigret JE, Réguerre AL, Novales B, Guessasma S, Lourdin D, Della Valle G, Kristiawan M (2019) Morphology and mechanical behaviour of pea-based starch-protein composites obtained by extrusion. Carbohydr Polym 223:115086

    Article  CAS  Google Scholar 

  15. Nessi V, Falourd X, Maigret JE, Cahier K, D’orlando A, Descamps N, Gaucher V, Chevigny C, Lourdin D (2019) Cellulose nanocrystals-starch nanocomposites produced by extrusion: structure and behavior in physiological conditions. Carbohydr Polym 225:115123

    Google Scholar 

  16. Estevez-Areco S, Guz L, Famá L, Candal R, Goyanes S (2019) Bioactive starch nanocomposite films with antioxidant activity and enhanced mechanical properties obtained by extrusion followed by thermo-compression. Food Hydrocolloids 96:518–528

    Article  CAS  Google Scholar 

  17. Gutiérrez TJ, Toro-Márquez LA, Merino D, Mendieta JR (2019) Hydrogen-bonding interactions and compostability of bionanocomposite films prepared from corn starch and nano-fillers with and without added Jamaica flower extract. Food Hydrocolloids 89:283–293

    Article  CAS  Google Scholar 

  18. Drobny JG, (2014) Handbook of thermoplastic elastomers. PDL (Plastics Design Library)/William Andrew, Pensilvania

    Google Scholar 

  19. Thunwall M, Kuthanova V, Boldizar A, Rigdahl M (2008) Film blowing of thermoplastic starch. Carbohydr Polym 71(4):583–590

    Article  CAS  Google Scholar 

  20. Fishman ML, Coffin DR, Onwulata CI, Willett JL (2006) Two stage extrusion of plasticized pectin/poly (vinyl alcohol) blends. Carbohydr Polym 65(4):421–429

    Article  CAS  Google Scholar 

  21. Jana T, Maiti S (1999) A biodegradable film, 1. Pilot plant investigation for production of the biodegradable film. Angew Makromolek Chem 267(1):16–19

    Google Scholar 

  22. Otey FH, Westhoff RP, Doane WM (1987) Starch-based blown films. 2. Ind Eng Chem Res 26(8):1659–1663

    Google Scholar 

  23. Halley P, Rutgers R, Coombs S, Kettels J, Gralton J, Christie G, Jenkins M, Beh H, Griffin K, Jayasekara R, Lonergan G (2001) Developing biodegradable mulch films from starch-based polymers. Starch-Stärke 53(8):362–367

    Article  CAS  Google Scholar 

  24. Matzinos P, Tserki V, Kontoyiannis A, Panayiotou C (2002) Processing and characterization of starch/polycaprolactone products. Polym Degrad Stabil 77(1):17–24

    Article  CAS  Google Scholar 

  25. Huntrakul K, Yoksan R, Sane A, Harnkarnsujarit N (2020) Effects of pea protein on properties of cassava starch edible films produced by blown-film extrusion for oil packaging. Food Packaging Shelf 24:100480

    Article  Google Scholar 

  26. Dang KM, Yoksan R (2016) Morphological characteristics and barrier properties of thermoplastic starch/chitosan blown film. Carbohyd Polym 150:40–47

    Article  CAS  Google Scholar 

  27. Abbégs B, Ayad R, Prudhomme JC, Onteniente JP (1998) Numerical simulation of thermoplastic wheat starch injection molding process. Polym Eng Sci 38(12):2029–2038

    Article  Google Scholar 

  28. Onteniente JP, Abbès B, Safa LH (2000) Fully biodegradable lubricated thermoplastic wheat starch: mechanical and rheological properties of an injection grade. Starch-Stärke 52(4):112–117

    Article  CAS  Google Scholar 

  29. Stepto RFT (2009) Thermoplastic starch. Macromol Symp 279:163–168

    Article  CAS  Google Scholar 

  30. Ye J, Luo S, Huang A, Chen J, Liu C, McClements DJ (2019) Synthesis and characterization of citric acid esterified rice starch by reactive extrusion: a new method of producing resistant starch. Food Hydrocolloids 92:135–142

    Article  CAS  Google Scholar 

  31. Siyamak S, Luckman P, Laycock B (2020) Rapid and solvent-free synthesis of pH-responsive graft-copolymers based on wheat starch and their properties as potential ammonium sorbents. Int J Biol Macromol 149:477–486

    Article  CAS  Google Scholar 

  32. Okonkwoa EG, Aigbodiona VS, Akinlabib ET, Daniel-Mkpumea CC (2020) Starch-based composites and their applications. In: Al-Ahmed A, Inamuddin (eds) Advanced applications of polysaccharides and their composites, 1st edn. Materials Research Forum LLC, Millersville, pp 73–198

    Google Scholar 

  33. Ilyas RA, Sapuan SM, Ibrahim R, Abral H, Ishak MR, Zainudin ES, Atiqah A, Atikah MSN, Syafri E, Jumaidin R (2020) Thermal, biodegradability and water barrier properties of bio-nanocomposites based on plasticised sugar palm starch and nanofibrillated celluloses from sugar palm fibres. J Biobased Mater Bio 14(2):234–248

    Article  CAS  Google Scholar 

  34. Valencia-Sullca C, Jiménez M, Jiménez A, Atarés L, Vargas M, Chiralt A (2016) Influence of liposome encapsulated essential oils on properties of chitosan films. Polym Int 65(8):979–987

    Article  CAS  Google Scholar 

  35. Talón E, Vargas M, Chiralt A, González-Martínez C (2019) Eugenol incorporation into thermoprocessed starch films using different encapsulating materials. Food Packaging Shelf 21:100326

    Article  Google Scholar 

  36. Wandrey C, Bartkowiak A, Harding SE (2010) Materials for encapsulation. In: Zuidam NJ, Nedovic V (eds) Encapsulation technologies for active food ingredients and food processing, 1st edn. Springer Science & Business Media, New York, pp 31–100

    Chapter  Google Scholar 

  37. Jin Y, Li JZ, Nik AM (2018) Starch-based microencapsulation. In: Sjöö M, Nilsson L (eds) Starch in food: structure, function and applications, 1st edn. Woodhead Publishing, Cambridge, pp 661–690

    Chapter  Google Scholar 

  38. Castro N, Durrieu V, Raynaud C, Rouilly A, Rigal L, Quellet C (2016) Melt extrusion encapsulation of flavors: a review. Polym Rev 56(1):137–186

    Article  CAS  Google Scholar 

  39. Chen S, Zong J, Jiang L, Ma C, Li H, Zhang D (2020) Improvement of resveratrol release performance and stability in extruded microparticle by the α-amylase incorporation. J Food Eng 274:109842

    Article  CAS  Google Scholar 

  40. Zhu F (2017) Encapsulation and delivery of food ingredients using starch based systems. Food Chem 229:542–552

    Article  CAS  Google Scholar 

  41. Yuliani S, Torley PJ, D’Arcy B, Nicholson T, Bhandari B (2006) Extrusion of mixtures of starch and d-limonene encapsulated with β-cyclodextrin: flavour retention and physical properties. Food Res Int 39(3):318–331

    Article  CAS  Google Scholar 

  42. Ochoa-Yepes O, Di Giogio L, Goyanes S, Mauri A, Famá L (2019) Influence of process (extrusion/thermo-compression, casting) and lentil protein content on physicochemical properties of starch films. Carbohydr Polym 208:221–231

    Article  CAS  Google Scholar 

  43. Ghanbari A, Tabarsa T, Ashori A, Shakeri A, Mashkour M (2018) Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: extrusion processing. Int J Biol Macromol 112:442–447

    Article  CAS  Google Scholar 

  44. Dean K, Yu L, Wu DY (2007) Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites. Compos Sci Technol 67(3–4):413–421

    Article  CAS  Google Scholar 

  45. Chaves da Silva NM, Fakhouri FM, Fialho RLL, Cabral Albuquerque ECDM (2018) Starch–recycled gelatin composite films produced by extrusion: physical and mechanical properties. J Appl Polym Sci 135(19):46254

    Article  CAS  Google Scholar 

  46. Huang MF, Yu JG, Ma XF (2004) Studies on the properties of montmorillonite-reinforced thermoplastic starch composites. Polymer 45(20):7017–7023

    Article  CAS  Google Scholar 

  47. González K, Iturriaga L, González A, Eceiza A, Gabilondo N (2020) Improving mechanical and barrier properties of thermoplastic starch and polysaccharide nanocrystals nanocomposites. Eur Polym J 123:109415

    Article  CAS  Google Scholar 

  48. Fourati Y, Magnin A, Putaux JL, Boufi S (2020) One-step processing of plasticized starch/cellulose nanofibrils nanocomposites via twin-screw extrusion of starch and cellulose fibers. Carbohydr Polym 229:115554

    Article  CAS  Google Scholar 

  49. Grylewicz A, Spychaj T, Zdanowicz M (2019) Thermoplastic starch/wood biocomposites processed with deep eutectic solvents. Compos Part A Appl Sci Manuf 121:517–524

    Google Scholar 

  50. Manepalli PH, Alavi S (2019) Mathematical modeling of mechanical and barrier properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/thermoplastic starch based nanocomposites. J Food Eng 261:60–65

    Article  CAS  Google Scholar 

  51. Chivrac F, Pollet E, Dole P, Avérous L (2010) Starch-based nano-biocomposites: plasticizer impact on the montmorillonite exfoliation process. Carbohydr Polym 79(4):941–947

    Article  CAS  Google Scholar 

  52. Adamus J, Spychaj T, Zdanowicz M, Jędrzejewski R (2018) Thermoplastic starch with deep eutectic solvents and montmorillonite as a base for composite materials. Ind Crop Prod 123:278–284

    Article  CAS  Google Scholar 

  53. Utracki LA (ed) (2002) Polymer blends handbook. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  54. Muthuraj R, Misra M, Mohanty AK (2018) Biodegradable compatibilized polymer blends for packaging applications: a literature review. J Appl Polym Sci 135(24):45726

    Article  CAS  Google Scholar 

  55. Nunes MABS, Marinho VAD, Falcão GAM, Canedo EL, Bardi MAG, Carvalho LH (2018) Rheological, mechanical and morphological properties of poly(butylene adipate-co-terephthalate)/thermoplastic starch blends and its biocomposite with babassu mesocarp. Polym Test 70:281–288

    Article  CAS  Google Scholar 

  56. Dammak M, Fourati Y, Tarrés Q, Delgado-Aguilar M, Mutjé P, Boufi S (2020) Blends of PBAT with plasticized starch for packaging applications: mechanical properties, rheological behaviour and biodegradability. Ind Crop Prod 144:112061

    Article  CAS  Google Scholar 

  57. de Campos SS, de Oliveira A, Moreira TFM, da Silva TBV, da Silva MV, Pinto JA, Bilck AP, Gonçalves OH, Fernandes IP, Barreiro M-F, Yamashita F, Valderrama P, Shirai MA, Leimann FV (2019) TPCS/PBAT blown extruded films added with curcumin as a technological approach for active packaging materials. Food Packaging Shelf 22:100424

    Article  Google Scholar 

  58. Nesic A, Castillo C, Castaño P, Cabrera-Barjas G, Serrano J (2020) Bio-based packaging materials. In: Galanakis CM (ed) Biobased products and industries, 1st edn. Elsevier, Amsterdam, pp 279–309

    Google Scholar 

  59. Platt DK (2006) Biodegradable polymers—market report. Smithers Rapra Limited, United Kingdom

    Google Scholar 

  60. Shogren R, Wood D, Orts W, Glenn G (2019) Plant-based materials and transitioning to a circular economy. Sustain Prod Consum 19:194–215

    Article  Google Scholar 

  61. Ashter SA (2016) Introduction to bioplastics engineering. William Andrew Publishing, Oxford

    Google Scholar 

  62. Ferreira FV, Cividanes LS, Gouveia RF, Lona LMF (2019) An overview on properties and applications of poly(butylene adipate-co-terephthalate)–PBAT based composites. Polym Eng Sci 59:E7–E15

    Article  CAS  Google Scholar 

  63. Markovic G, Visakh PM (2017) Polymer blends: state of art. In: Visakh PM, Markovic G, Pasquini D (eds) Recent developments in polymer macro, micro and nano blends, 1st edn. Woodhead Publishing, UK, pp 1–15

    Google Scholar 

  64. Liu W, Liu S, Wang Z, Liu J, Dai B, Chen Y, Zeng G (2020) Preparation and characterization of compatibilized composites of poly(butylene adipate-co-terephthalate) and thermoplastic starch by two-stage extrusion. Eur Polym J 122:109369

    Article  CAS  Google Scholar 

  65. Mochane MJ, Sefadi JS, Motsoeneng TS, Mokoena TE, Mofokeng TG, Mokhena TC (2020) The effect of filler localization on the properties of biopolymer blends, recent advances: a review. Polym Compos 1–22. https://doi.org/10.1002/pc.25590

  66. Ray SS, Salehiyan R (2019) Nanostructured immiscible polymer blends: migration and interface. Elsevier, Amsterdam

    Google Scholar 

  67. Lemoigne M (1926) Produit de deshydratation et de polymerisation de l’acide b-oxybutyrique. Bull Soc Chim Biol 8:770–782

    CAS  Google Scholar 

  68. Kumar M, Rathour R, Singh R, Sun Y, Pandey A, Gnansounou E, Lin KYA, Tsang DCW, Thakur IS (2020) Bacterial polyhydroxyalkanoates: opportunities, challenges, and prospects. J Clean Prod 121500:1–20

    Google Scholar 

  69. Balaji S, Gopi K, Muthuvelan B (2013) A review on production of poly β hydroxybutyrates from cyanobacteria for the production of bio plastics. Algal Res 2(3):278–285

    Article  Google Scholar 

  70. Bhatia SK, Shim YH, Jeon JM, Brigham CJ, Kim YH, Kim HJ, Seo HM, Lee JH, Kim JH, Yi DH, Lee YK, Yang YH (2015) Starch based polyhydroxybutyrate production in engineered Escherichia coli. Bioproc Biosyst Eng 38(8):1479–1484

    Article  CAS  Google Scholar 

  71. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez VA (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8(11):791–808

    Article  CAS  Google Scholar 

  72. Manikandan NA, Pakshirajan K, Pugazhenthi G (2020) Preparation and characterization of environmentally safe and highly biodegradable microbial polyhydroxybutyrate (PHB) based graphene nanocomposites for potential food packaging applications. Int J Biol Macromol 154:866–877

    Article  CAS  Google Scholar 

  73. Souza Jd, Chiaregato CG, Faez R (2018) Green composite based on PHB and montmorillonite for KNO3 and NPK delivery system. J Polym Environ 26:670–679

    Article  CAS  Google Scholar 

  74. Coltelli MB, Danti S, Trombi L, Morganti P, Donnarumma G, Baroni A, Fusco A, Lazzeri A (2018) Preparation of innovative skin compatible films to release polysaccharides for biobased beauty masks. Cosmetics 5(4):70

    Google Scholar 

  75. Coltelli MB, Panariello L, Morganti P, Danti S, Baroni A, Lazzeri A, Danti S, Baroni A, Lazzeri A, Fusco A, Donnarumma G (2020) Skin-compatible biobased beauty masks prepared by extrusion. J Funct Biomater 11(2):23

    Article  CAS  Google Scholar 

  76. Din MI, Ghaffar T, Najeeb J, Hussain Z, Khalid R, Zahid H (2020) Potential perspectives of biodegradable plastics for food packaging application—review of properties and recent developments. Food Addit Contam A 37(4):665–680

    Article  CAS  Google Scholar 

  77. Garrido-Miranda KA, Rivas BL, Pérez-Rivera MA, Sanfuentes EA, Peña-Farfal C (2018) Antioxidant and antifungal effects of eugenol incorporated in bionanocomposites of poly (3-hydroxybutyrate)-thermoplastic starch. LWT-Food Sci Technol 98:260–267

    Article  CAS  Google Scholar 

  78. Weinmann S, Bonten C (2019) Thermal and rheological properties of modified polyhydroxybutyrate (PHB). Polym Eng Sci 59(5):1057–1064

    Google Scholar 

  79. Corre YM, Bruzaud S, Audic JL, Grohens Y (2012) Morphology and functional properties of commercial polyhydroxyalkanoates: a comprehensive and comparative study. Polym Test 31(2):226–235

    Article  CAS  Google Scholar 

  80. Pachekoski WM, Dalmolin C, Agnelli JAM (2013) The influence of the industrial processing on the degradation of poly (hidroxybutyrate)-PHB. Mater Res 16(2):237–332

    Article  Google Scholar 

  81. Correa JP (2018) Nanocompuestos poliméricos: estudio de la interacción de mezclas de polímeros biodegradables con refuerzos químicamente modificados. Ph. D. thesis, Universidad de San Martín, Buenos Aires, Argentina

    Google Scholar 

  82. Yamaguchi M, Arakawa K (2006) Effect of thermal degradation on rheological properties for poly (3-hydroxybutyrate). Eur Polym J 42(7):1479–1486

    Article  CAS  Google Scholar 

  83. Renstad R, Karlsson S, Albertsson AC (1999) The influence of processing induced differences in molecular structure on the biological and non-biological degradation of poly (3-hydroxybutyrate-co-3-hydroxyvalerate), P (3-HB-co-3-HV). Polym Degrad Stabil 63(2):201–211

    Article  CAS  Google Scholar 

  84. Janigová I, Lacı́k I, Chodák I (2002) Thermal degradation of plasticized poly (3-hydroxybutyrate) investigated by DSC. Polym Degrad Stabil 77(1):35–41

    Google Scholar 

  85. Koller I, Owen AJ (1996) Starch-filled PHB and PHB/HV copolymer. Polym Int 39(3):175–181

    Article  CAS  Google Scholar 

  86. Kotnis MA, O’Brien GS, Willett JL (1995) Processing and mechanical properties of biodegradable poly (hydroxybutyrate-co-valerate)-starch compositions. J Polym Environ 3(2):97–105

    Article  CAS  Google Scholar 

  87. Rosa DDS, Rodrigues TC, Gracas Fassina Guedes CD, Calil MR (2003) Effect of thermal aging on the biodegradation of PCL, PHB-V, and their blends with starch in soil compost. J Appl Polym Sci 89(13):3539–3546

    Article  CAS  Google Scholar 

  88. Gomes Brunel D, Pachekoski WM, Dalmolin C, Marcondes Agnelli JA (2014) Natural additives for poly (hydroxybutyrate-CO-hydroxyvalerate)-PHBV: effect on mechanical properties and biodegradation. Mater Res 17(5):1145–1156

    Article  Google Scholar 

  89. Chen L, Zhu M, Song L, Yu H, Zhang Y, Chen Y, Adler H (2004) Crystallization behavior and thermal properties of blends of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(1,2-propandiolcarbonate). Macromol Symp 210:241–250

    Article  CAS  Google Scholar 

  90. Modi SJ (2010) Assessing the feasibility of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly-(lactic acid) for potential food packaging applications. M.Sc. thesis, The Ohio State University, EEUU

    Google Scholar 

  91. Yu L (2009) Biodegradable polymer blends and composites from renewable resources. Wiley, Hoboken

    Google Scholar 

  92. Don TM, Chung ChY, Lai SM, Chiu HJ (2010) Preparation and properties of blends from poly(3-hydroxybutyrate) with poly(vinyl acetate)-modified starch. Polym Eng Sci 50(4):709–718

    Article  CAS  Google Scholar 

  93. Thiré RM, Ribeiro TA, Andrade CT (2006) Effect of starch addition on compression-molded poly (3-hydroxybutyrate)/starch blends. J Appl Polym Sci 100(6):4338–4347

    Article  CAS  Google Scholar 

  94. Zhang M, Thomas NL (2010) Preparation and properties of polyhydroxybutyrate blended with different types of starch. J Appl Polym Sci 116(2):688–694

    CAS  Google Scholar 

  95. Garrido‐Miranda KA, Rivas BL, Pérez MA (2017) Poly (3‐hydroxybutyrate)–thermoplastic starch–organoclay bionanocomposites: surface properties. J Appl Polym Sci 134(34):45217(1–8)

    Google Scholar 

  96. Jian J, Xiangbin Z, Xianbo H (2020) An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT. Adv Ind Eng Polym Res 3(1):19–26

    Google Scholar 

  97. Zhai X, Wang W, Zhang H, Dai Y, Dong H, Hou H (2020) Effects of high starch content on the physicochemical properties of starch/PBAT nanocomposite films prepared by extrusion blowing. Carbohydr Polym 239:116231

    Article  CAS  Google Scholar 

  98. Meraldo A (2016) Introduction to bio-based polymers. In: Wagner JR (ed) Multilayer flexible packaging, 2nd edn. Plastics design library. William Andrew Publishing, New York, pp 47–52

    Google Scholar 

  99. Nunes MABS, Castro-Aguirre E, Auras RA, Bardi MAG, Carvalho LH (2019) Effect of babassu mesocarp incorporation on the biodegradation of a PBAT/TPS blend. Macromol Symp 383:1800043

    Article  CAS  Google Scholar 

  100. Fourati Y, Tarrés Q, Mutjé P, Boufi S (2018) PBAT/thermoplastic starch blends: effect of compatibilizers on the rheological, mechanical and morphological properties. Carbohydr Polym 199:51–57

    Article  CAS  Google Scholar 

  101. Ivanič F, Kováčová M, Chodák I (2019) The effect of plasticizer selection on properties of blends poly(butylene adipate-co-terephthalate) with thermoplastic starch. Eur Polym J 116:99–105

    Article  CAS  Google Scholar 

  102. Garcia PS, Grossmann MVE, Shirai MA, Lazaretti MM, Yamashita F, Muller CMO, Mali S (2014) Improving action of citric acid as compatibiliser in starch/polyester blown films. Ind Crop Prod 52:305–312

    Article  CAS  Google Scholar 

  103. Liu W, Liu S, Wang Z, Dai B, Liu J, Chen Y, Zeng G, He Y, Liu Y, Liu R (2019) Preparation and characterization of reinforced starch-based composites with compatibilizer by simple extrusion. Carbohydr Polym 223:115122

    Article  CAS  Google Scholar 

  104. Da Roz AL, Carvalho AJF, Gandini A, Curvelo AAS (2006) The effect of platicizers on thermoplastic starch compositions obtained by melt processing. Carbohydr Polym 63:417–424

    Article  CAS  Google Scholar 

  105. Olivato JB, Grossmann MVE, Yamashita F, Eiras D, Pessan LA (2012) Citric acid and maleic anhydride as compatibilizers in starch/poly(butylene adipate-co-terephthalate) blends by one-step reactive extrusion. Carbohydr Polym 87(4):2614–2618

    Article  CAS  Google Scholar 

  106. Wei D, Wang H, Xiao H, Zheng A, Yang Y (2015) Morphology and mechanical properties of poly(butylene adipate-co-terephthalate)/potato starch blends in the presence of synthesized reactive compatibilizer or modified poly(butylene adipate-co-terephthalate). Carbohydr Polym 123:275–282

    Article  CAS  Google Scholar 

  107. Robeson LM (2007) Polymer blends: a comprehensive review. Hanser, Munich

    Book  Google Scholar 

  108. Zhang S, He Y, Lin Z, Li J, Jiang G (2019) Effects of tartaric acid contents on phase homogeneity, morphology and properties of poly (butyleneadipate-co-terephthalate)/ thermoplastic starch bio-composities. Polym Test 76:385–395

    Article  CAS  Google Scholar 

  109. Olivato JB, Müller CMO, Carvalho GM, Yamashita F, Grossmann MVE (2014) Physical and structural characterisation of starch/polyester blends with tartaric acid. Mater Sci Eng C 39:35–39

    Article  CAS  Google Scholar 

  110. Marinho V, Pereira CAB, Vitorino MBC, Silva AS, Carvalho LH, Canedo EL (2017) Degradation and recovery in poly(butylene adipate-co-terephthalate)/thermoplastic starch blends. Polym Test 58:166–172

    Article  CAS  Google Scholar 

  111. Garcia PS, Turbiani FRB, Baron AM, Yamashita F, Eiras D, Grossmann VE (2018) Sericin as compatibilizer in starch/polyester blown films. Polímeros (São Carlos, Online) 28(5):389–394

    Google Scholar 

  112. Xiong SJ, Pang B, Zhou SJ, Li MK, Yang S, Wang YY, Shi Q, Wang SF, Yuan TQ, Sun RC (2020) Economically competitive biodegradable PBAT/lignin composites: effect of lignin methylation and compatibilizer. ACS Sustain Chem Eng 8(13):5338–5346

    Article  CAS  Google Scholar 

  113. Olivato JB, Marini J, Yamashita F, Pollet E, Grossmann MVE, Avérous L (2017) Sepiolite as a promising nanoclay for nano-biocomposites based on starch and biodegradable polyester. Mater Sci Eng C 70:296–302

    Article  CAS  Google Scholar 

  114. Lendvai L, Apostolov A, Karger-Kocsis J (2017) Characterization of layered silicate-reinforced blends of thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate). Carbohydr Polym 173:566–572

    Article  CAS  Google Scholar 

  115. He H, Liu B, Xue B, Zhang H (2019) Study on structure and properties of biodegradable PLA/PBAT/organic-modified MMT nanocomposites. J Thermoplast Compos Mater 1–18. https://doi.org/10.1177/0892705719890907

  116. Guz L, Famá L, Candal R, Goyanes S (2017) Size effect of ZnO nanorods on physicochemical properties of plasticized starch composites. Carbohydr Polym 157:1611–1619

    Article  CAS  Google Scholar 

  117. Morales NJ, Candal R, Famá L, Goyanes S, Rubiolo GH (2015) Improving the physical properties of starch using a new kind of water dispersible nano-hybrid reinforcement. Carbohydr Polym 127:291–299

    Article  CAS  Google Scholar 

  118. Florencia V, López OV, García MA (2020) Exploitation of by-products from cassava and ahipa starch extraction as filler of thermoplastic corn starch. Compos Part B Eng 182:107653

    Article  CAS  Google Scholar 

  119. Fazeli M, Keley M, Biazar E (2018) Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. Int J Biol Macromol 116:272–280

    Article  CAS  Google Scholar 

  120. Pandit P, Nadathur GT, Maiti S, Regubalan B (2018) Functionality and properties of bio-based materials. In: Ahmed S (ed) Bio-based materials for food packaging: green and sustainable advanced packaging materials, 1st edn. Springer, Singapore, pp 81–103

    Chapter  Google Scholar 

  121. Battegazzore D, Bocchini S, Nicola G, Martini E, Frache A (2015) Isosorbide, a green plasticizer for thermoplastic starch that does not retrogradate. Carbohydr Polym 119:78–84

    Article  CAS  Google Scholar 

  122. Preetha B, Sreerag G, Geethamma VG, Sabu T (2019) Mechanical and permeability properties of thermoplastic starch composites reinforced with cellulose nanofiber for packaging applications. J Siberian Federal Univ Biol 12(3):287–301

    Google Scholar 

  123. Sadegh-Hassani F, Nafchi AM (2014) Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay. Int J Biol Macromol 67:458–462

    Article  CAS  Google Scholar 

  124. Wolf C, Angellier-Coussy H, Gontard N, Doghieri F, Guillard V (2018) How the shape of fillers affects the barrier properties of polymer/non-porous particles nanocomposites: a review. J Membr Sci 556:393–418

    Article  CAS  Google Scholar 

  125. Rybak A, Rybak A, Sysel P (2018) Modeling of gas permeation through mixed-matrix membranes using novel computer application MOT. Appl Sci 8(7):1166

    Article  CAS  Google Scholar 

  126. Vinh-Thang H, Kaliaguine S (2013) Predictive models for mixed-matrix membrane performance: a review. Chem Rev 113(7):4980–5028

    Article  CAS  Google Scholar 

  127. García NL, Ribba L, Dufresne A, Aranguren MI, Goyanes S (2009) Physico-mechanical properties of biodegradable starch nanocomposites. Macromol Mater Eng 294(3):169–177

    Article  CAS  Google Scholar 

  128. García NL, Ribba L, Dufresne A, Aranguren MI, Goyanes S (2011) Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydr Polym 84(1):203–210

    Article  CAS  Google Scholar 

  129. Jiménez A, Fabra MJ, Talens P, Chiralt A (2012) Effect of re-crystallization on tensile, optical and water vapour barrier properties of corn starch films containing fatty acids. Food Hydrocolloids 26(1):302–310

    Article  CAS  Google Scholar 

  130. Gao W, Wu W, Liu P, Hou H, Li X, Cui B (2020) Preparation and evaluation of hydrophobic biodegradable films made from corn/octenylsuccinated starch incorporated with different concentrations of soybean oil. Int J Biol Macromol 142:376–383

    Article  CAS  Google Scholar 

  131. Kang X, Liu P, Gao W, Wu Z, Yu B, Wang R, Cui B, Qiu L, Sun C (2020) Preparation of starch-lipid complex by ultrasonication and its film forming capacity. Food Hydrocolloids 99:105340

    Article  CAS  Google Scholar 

  132. López OV, Castillo LA, Barbosa SE, Villar MA, Alejandra García M (2018) Processing–properties–applications relationship of nanocomposites based on thermoplastic corn starch and talc. Polym Compos 39(4):1331–1338

    Article  CAS  Google Scholar 

  133. Moghaddam MRA, Razavi SMA, Jahani Y (2018) Effects of compatibilizer and thermoplastic starch (TPS) concentration on morphological, rheological, tensile, thermal and moisture sorption properties of plasticized polylactic acid/TPS blends. J Polym Environ 26(8):3202–3215

    Article  CAS  Google Scholar 

  134. Müller CM, Laurindo JB, Yamashita F (2012) Composites of thermoplastic starch and nanoclays produced by extrusion and thermopressing. Carbohydr Polym 89(2):504–510

    Article  CAS  Google Scholar 

  135. Masclaux C, Gouanve F, Espuche E (2010) Experimental and modelling studies of transport in starch nanocomposite films as affected by relative humidity. J Membr Sci 363(1–2):221–231

    Article  CAS  Google Scholar 

  136. Beigmohammadi F, Barzoki ZM, Shabanian M (2020) Rye flour and cellulose reinforced starch biocomposite: a green approach to improve water vapor permeability and mechanical properties. Starch-Stärke 72(5–6):1900169

    Article  CAS  Google Scholar 

  137. dos Santos BH, de Souza do Prado K, Jacinto AA, da Silva S, Aparecida M (2018) Influence of sugarcane bagasse fiber size on biodegradable composites of thermoplastic starch. J Renew Mater 6(2):176–182

    Google Scholar 

  138. Li J, Zhou M, Cheng G, Cheng F, Lin Y, Zhu PX (2019) Fabrication and characterization of starch-based nanocomposites reinforced with montmorillonite and cellulose nanofibers. Carbohydr Polym 210:429–436

    Article  CAS  Google Scholar 

  139. Li J, Zhou M, Cheng F, Lin Y, Zhu P (2019) Bioinspired approach to enhance mechanical properties of starch based nacre-mimetic nanocomposite. Carbohydr Polym 221:113–119

    Article  CAS  Google Scholar 

  140. Gutiérrez TJ, Ollier R, Alvarez VA (2018) Surface properties of thermoplastic starch materials reinforced with natural fillers. In: Thakur VK, Thakur MK (eds) Functional biopolymers, 1st edn. Springer International Publishing, Cham, pp 131–158

    Chapter  Google Scholar 

  141. Abreu AS, Oliveira M, de Sá A, Rodrigues RM, Cerqueira MA, Vicente AA, Machado AV (2015) Antimicrobial nanostructured starch-based films for packaging. Carbohydr Polym 129:127–134

    Article  CAS  Google Scholar 

  142. Chen J, Chen F, Meng Y, Wang S, Long Z (2019) Oxidized microcrystalline cellulose improve thermoplastic starch-based composite films: thermal, mechanical and water-solubility properties. Polymer 168:228–235

    Article  CAS  Google Scholar 

  143. Azevedo VM, Borges SV, Marconcini JM, Yoshida MI, Neto ARS, Pereira TC, Pereira CFG (2017) Effect of replacement of corn starch by whey protein isolate in biodegradable film blends obtained by extrusion. Carbohydr Polym 157:971–980

    Article  CAS  Google Scholar 

  144. Niranjana Prabhu T, Prashantha K (2018) A review on present status and future challenges of starch based polymer films and their composites in food packaging applications. Polym Compos 39(7):2499–2522

    Article  CAS  Google Scholar 

  145. Merino D, Gutiérrez TJ, Alvarez VA (2019) Potential agricultural mulch films based on native and phosphorylated corn starch with and without surface functionalization with chitosan. J Polym Environ 27(1):97–105

    Article  CAS  Google Scholar 

  146. Famá, LM, Goyanes, S, Pettarin, V, Bernal, CR (2015) Mechanical behavior of starch–carbon nanotubes composites. In: Kar KK, Pandey JK, Rana S (eds) Handbook of polymer nanocomposites. Processing, performance and application. Springer, Berlin, pp 141–171

    Google Scholar 

  147. Cheng Y, Yu G (2020) The research of interface microdomain and corona-resistance characteristics of micro-nano-ZnO/LDPE. Polymers 12(3):563

    Article  CAS  Google Scholar 

  148. Angellier H, Molina-Boisseau S, Dole P, Dufresne A (2006) Thermoplastic starch−waxy maize starch nanocrystals nanocomposites. Biomacromolecules 7(2):531–539

    Article  CAS  Google Scholar 

  149. Dai L, Zhang J, Cheng F (2020) Cross-linked starch-based edible coating reinforced by starch nanocrystals and its preservation effect on graded Huangguan pears. Food Chem 311:125891

    Article  CAS  Google Scholar 

  150. Li X, Qiu C, Ji N, Sun C, Xiong L, Sun Q (2015) Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydr Polym 121:155–162

    Article  CAS  Google Scholar 

  151. Mukurumbira AR, Mellem JJ, Amonsou EO (2017) Effects of amadumbe starch nanocrystals on the physicochemical properties of starch biocomposite films. Carbohydr Polym 165:142–148

    Article  CAS  Google Scholar 

  152. Chang PR, Jian R, Yu J, Ma X (2010) Fabrication and characterisation of chitosan nanoparticles/plasticized-starch composites. Food Chem 120(3):736–740

    Article  CAS  Google Scholar 

  153. Othman SH, Kechik NR, Shapi’i RA, Talib RA, Tawakkal IS (2019) Water sorption and mechanical properties of starch/chitosan nanoparticle films. J Nanomater. https://doi.org/10.1155/2019/3843949

  154. Shapi’i RA, Othman SH, Nordin N, Basha RK, Naim MN (2020) Antimicrobial properties of starch films incorporated with chitosan nanoparticles: in vitro and in vivo evaluation. Carbohydr Polym 230:115602

    Google Scholar 

  155. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765

    Article  CAS  Google Scholar 

  156. Balakrishnan P, Gopi S, Geethamma VG, Kalarikkal N, Thomas S (2018) Cellulose nanofiber vs nanocrystals from pineapple leaf fiber: a comparative studies on reinforcing efficiency on starch nanocomposites. Macromol Symp 380:1800102

    Article  CAS  Google Scholar 

  157. Boufi S, Gandini A (2015) Triticale crop residue: a cheap material for high performance nanofibrillated cellulose. RSC Adv 5(5):3141–3151

    Article  CAS  Google Scholar 

  158. Anglès MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33(22):8344–8353

    Google Scholar 

  159. Iqbal MZ (2016) Structure-property relationships in graphene/polymer nanocomposites. Ph. D. thesis, Colorado School of Mines, Arthur Lakes Library

    Google Scholar 

  160. Kalogeras IM (2016) Glass-transition phenomena in polymer blends. In: Isayev AI (ed) Encyclopedia of polymer blends, vol 3: structure. Wiley-VCH, Weinheim, pp 1–134

    Google Scholar 

  161. Jabarin SA, Majdzadeh-Ardakani K, Lofgren EA (2016) Crystallization and melting behavior in polymer blends. In: Isayev AI (ed) Encyclopedia of polymer blends, vol 3: structure. Wiley-VCH, Weinheim, pp 135–190

    Google Scholar 

  162. Lai SM, Sun WW, Don TM (2015) Preparation and characterization of biodegradable polymer blends from poly (3-hydroxybutyrate)/poly (vinyl acetate)-modified corn starch. Polym Eng Sci 55(6):1321–1329

    Article  CAS  Google Scholar 

  163. Liao HT, Wu ChS (2007) Performance of an acrylic-acid-grafted poly(3-hydroxybutyric acid)/starch bio-blend: characterization and physical properties. Des Monomers Polym 10(1):1–18

    Article  Google Scholar 

  164. Innocentini-Mei LH, Bartoli JR, Baltieri RC (2003) Mechanical and thermal properties of poly(3-hydroxybutyrate) blends with starch and starch derivatives. Macromol Symp 197:77–88

    Article  CAS  Google Scholar 

  165. Florez JP, Fazeli M, Simão RA (2019) Preparation and characterization of thermoplastic starch composite reinforced by plasma-treated poly (hydroxybutyrate) PHB. Int J Biol Macromol 123:609–621

    Article  CAS  Google Scholar 

  166. Panaitescu DM, Nicolae CA, Frone AN, Chiulan I, Stanescu PO, Draghici C, Iorga M, Mihailescu M (2017) Plasticized poly(3-hydroxybutyrate) with improved melt processing and balanced properties. J Appl Pol Sci 134(19):1–14

    Article  CAS  Google Scholar 

  167. Petersen K, Nielsen PV, Olsen MB (2001) Physical and mechanical properties of biobased materials starch, polylactate and polyhydroxybutyrate. Starch-Stärke 53(8):356–361

    Article  CAS  Google Scholar 

  168. Tingwei W (2020) PHA-modified TPS/PBAT biodegradable resin and preparation method therefor. WO2020088214 (A1), 7 May 2020

    Google Scholar 

  169. Magalhães NF, Andrade CT (2013) Properties of melt-processed poly (hydroxybutyrate-co-hydroxyvalerate)/starch 1: 1 blend nanocomposites. Polímeros 23(3):366–372

    Article  CAS  Google Scholar 

  170. Bhattacharyya B, Behera HT, Mojumdar A, Raina V, Ray L (2019) Polyhydroxyalkanoates: resources, demands and sustainability. In: Jamil N, Kumar P, Batool R (eds) Soil microenvironment for bioremediation and polymer production, 1st edn. Wiley, Hoboken, pp 253–270

    Google Scholar 

  171. Kushwah BS, Kushwah AVS, Singh V (2016) Towards understanding polyhydroxyalkanoates and their use. J Polym Res 23:153

    Article  CAS  Google Scholar 

  172. Râpă M, Darie-Niţă RN, Grosu E, Tănase EE, Trifoi AR, Pap T, Vasile C (2015) Effect of plasticizers on melt processability and properties of PHB. J Optoelectron Adv Mater 17:1778–1784

    Google Scholar 

  173. Lai SM, Don TM, Huang YC (2006) Preparation and properties of biodegradable thermoplastic starch/poly (hydroxy butyrate) blends. J Appl Polym Sci 100(3):2371–2379

    Article  CAS  Google Scholar 

  174. Avella M, Errico ME, Rimedio R, Sadocco P (2002) Preparation of biodegradable polyesters/high-amylose-starch composites by reactive blending and their characterization. Appl Polym Sci 83(7):1432–1442

    Article  CAS  Google Scholar 

  175. Ma P, Xu P, Chen M, Dong W, Cai X, Schmit P, Spoelstra AB, Lemstra PJ (2014) Structure–property relationships of reactively compatibilizedPHB/EVA/starch blends. Carbohydr Polym 108:299–306

    Article  CAS  Google Scholar 

  176. Yingxin H, Tianci H, Peng W (2019) Starch-based degradable PP/PHB composite material and preparation method thereof. CN109679305 (A), 26 Apr 2019

    Google Scholar 

  177. Zhang G, Xie W, Wu D (2020) Selective localization of starch nanocrystals in the biodegradable nanocomposites probed by crystallization temperatures. Carbohydr Polym 227:115341

    Article  CAS  Google Scholar 

  178. Pan HW, Ju DD, Zhao Y, Wang Z, Yang HL, Zhang HL, Dong LS (2016) Mechanical properties, hydrophobic properties and thermal stability of the biodegradable poly(butylene adipate-co-terephthalate)/maleated thermoplastic starch blown films. Fiber Polym 17:1540–1549

    Article  CAS  Google Scholar 

  179. Hablot E, Dewasthale S, Zhao Y, Zhiguan Y, Shi X, Graiver D, Narayan R (2013) Reactive extrusion of glycerylated starch and starch–polyester graft copolymers. Eur Polym J 49(4):873–881

    Article  CAS  Google Scholar 

  180. Stagner JA, Alves VD, Narayan R (2012) Application and performance of maleated thermoplastic starch–poly (butylene adipate-co-terephthalate) blends for films. J Appl Polym Sci 126(S1):E135–E142

    Article  CAS  Google Scholar 

  181. Rhim J-W, Park H-M, Ha C-S (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10):1629–1652

    Article  CAS  Google Scholar 

  182. Spiridon I, Anghel NC, Darie-Nita RN, Iwańczuk A, Ursu RG, Spiridon IA (2019) New composites based on starch/Ecoflex®/biomass wastes: mechanical, thermal, morphological and antimicrobial properties. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.11.185

  183. Spiridon I, Darie-Nita RN, Hitruc GE, Ludwiczak J, Cianga Spiridon IA, Niculaua M (2016) New opportunities to valorize biomass wastes into green materials. J Clean Prod 133:235–242

    Article  CAS  Google Scholar 

  184. Olivato JB, Grossmann MVE, Yamashita F, Nobrega MM, Scapin MRS, Eiras D, Pessan LA (2011) Compatibilisation of starch/poly(butylene adipate co-terephthalate) blends in blown films. Int J Food Sci Technol 46:1934–1939

    Article  CAS  Google Scholar 

  185. Lekube BM, Fahrngruber B, Kozich M, Wastyn M, Burgstaller C (2019) Influence of processing on the mechanical properties and morphology of starch-based blends for film applications. J Appl Polym Sci 136(39):47990

    Article  CAS  Google Scholar 

  186. Sun S, Liu P, Ji N, Hou H, Dong H (2018) Effects of various cross-linking agents on the physicochemical properties of starch/PHA composite films produced by extrusion blowing. Food Hydrocolloids 77:964–975

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Agencia Nacional de Promoción científica y Tecnológica (ANPCyT PICT 2017-2362), Universidad de Buenos Aires (UBACyT 20020170100381BA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Goyanes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ribba, L., Lorenzo, M.C., Tupa, M., Melaj, M., Eisenberg, P., Goyanes, S. (2021). Processing and Properties of Starch-Based Thermoplastic Matrix for Green Composites. In: Thomas, S., Balakrishnan, P. (eds) Green Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-9643-8_4

Download citation

Publish with us

Policies and ethics