Skip to main content

ROS at the Intersection of Inflammation and Immunity in Cancer

  • Reference work entry
  • First Online:
Book cover Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

Oxidative stress is a result of reactive oxygen species (ROS) which are produced in various pathways as a by-product of oxygen metabolism. Major sources of ROS production are mitochondria and NOX proteins. Inflammation and immunity are critical contributors of diseases such as cancer and neurodegeneration. ROS is interconnected with inflammation and immunity in cancer through pathways related to hypoxia and pattern recognition receptors. Cancer cells produce huge amount of ROS which in turn stabilizes HIF-1α and promotes tumor growth and invasion. HIF-1α regulates ROS levels in cancer cells below the toxicity and thereby promotes its growth. Current literature lacks in exploring the interplay of hypoxia, ROS, and NLRs in cancer. Exploring these interactions will pave for the better therapeutic development. Enhancing the oxidative stress levels above toxicity along with anti-hypoxic drugs can be an efficient therapeutic regime for the cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul-Sater AA, Saïd-Sadier N, Lam VM, Singh B, Pettengill MA, Soares F, Tattoli I, Lipinski S, Girardin SE, Rosenstiel P (2010) Enhancement of reactive oxygen species production and chlamydial infection by the mitochondrial nod-like family member NLRX1. J Biol Chem 285(53):41637–41645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfonso-Loeches S, Ureña-Peralta JR, Morillo-Bargues MJ, Guerri C (2014) Role of mitochondria ROS generation in ethanol-induced NLRP3 inflammasome activation and cell death in astroglial cells. Front Cell Neurosci 8:216

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen IC (2014) Non-inflammasome forming NLRs in inflammation and tumorigenesis. Front Immunol 5:169

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen IC, TeKippe EM, Woodford R-MT, Uronis JM, Holl EK, Rogers AB, Herfarth HH, Jobin C, Ting JP-Y (2010) The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med 207(5):1045–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnoult D, Soares F, Tattoli I, Castanier C, Philpott DJ, Girardin SE (2009) An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix. J Cell Sci 122(17):3161–3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassel SL, Eisenbarth SC, Iyer SS, Sadler JJ, Colegio OR, Tephly LA, Carter AB, Rothman PB, Flavell RA, Sutterwala FS (2008) The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci 105(26):9035–9040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutermarsh-Ott S, Eden K, Allen IC (2016) Beyond the inflammasome: regulatory NOD-like receptor modulation of the host immune response following virus exposure. J Gen Virol 97(Pt 4):825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai J, Zhang X, Li L, Chen H, Chai Y (2017) Autophagy inhibition contributes to ROS-producing NLRP3-dependent inflammasome activation and cytokine secretion in high glucose-induced macrophages. Cell Physiol Biochem 43(1):247–256

    Article  CAS  PubMed  Google Scholar 

  • DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Kenneth HY, Yeo CJ, Calhoun ES (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475(7354):106–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diebold L, Chandel NS (2016) Mitochondrial ROS regulation of proliferating cells. Free Radic Biol Med 100:86–93

    Article  CAS  PubMed  Google Scholar 

  • Du W, Jiang Y, Zheng Z, Zhang Z, Chen N, Ma Z, Yao Z, Terada L, Liu Z (2013) Feedback loop between p66Shc and Nrf2 promotes lung cancer progression. Cancer Lett 337(1):58–65

    Article  CAS  PubMed  Google Scholar 

  • Dumont A, de Rosny C, Perrey S, Berger H, Fluckiger A, Muller T, de Barros J-PP, Pichon L, Hichami A, Thomas C (2019) Docosahexaenoic acid inhibits both NLRP3 inflammasome assembly and JNK-mediated mature IL-1β secretion in 5-fluorouracil-treated MDSC: implication in cancer treatment. Cell Death Dis 10(7):1–15

    Article  CAS  Google Scholar 

  • Feng X, Luo Q, Zhang H, Wang H, Chen W, Meng G, Chen F (2017) The role of NLRP3 inflammasome in 5-fluorouracil resistance of oral squamous cell carcinoma. J Exp Clin Cancer Res 36(1):81

    Article  PubMed  PubMed Central  Google Scholar 

  • Freeman BA, Topolosky MK, Crapo JD (1982) Hyperoxia increases oxygen radical production in rat lung homogenates. Arch Biochem Biophys 216(2):477–484

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara N, Kobayashi K (2005) Current drug targets. Inflam Allergy 4:281–286

    CAS  Google Scholar 

  • Gonzalez-Dosal R, Horan KA, Rahbek SH, Ichijo H, Chen ZJ, Mieyal JJ, Hartmann R, Paludan SR (2011) HSV infection induces production of ROS, which potentiate signaling from pattern recognition receptors: role for S-glutathionylation of TRAF3 and 6. PLoS Pathog 7(9):e1002250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groß CJ, Mishra R, Schneider KS, Médard G, Wettmarshausen J, Dittlein DC, Shi H, Gorka O, Koenig P-A, Fromm S (2016) K+ efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity 45(4):761–773

    Article  PubMed  Google Scholar 

  • Guo C, Fu R, Wang S, Huang Y, Li X, Zhou M, Zhao J, Yang N (2018) NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis. Clin Exp Immunol 194(2):231–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han CY, Umemoto T, Omer M, Den Hartigh LJ, Chiba T, LeBoeuf R, Buller CL, Sweet IR, Pennathur S, Abel ED (2012) NADPH oxidase-derived reactive oxygen species increases expression of monocyte chemotactic factor genes in cultured adipocytes. J Biol Chem 287(13):10379–10393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harijith A, Ebenezer DL, Natarajan V (2014) Reactive oxygen species at the crossroads of inflammasome and inflammation. Front Physiol 5:352

    Article  PubMed  PubMed Central  Google Scholar 

  • Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458(7237):514–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Rutkowsky JM, Snodgrass RG, Ono-Moore KD, Schneider DA, Newman JW, Adams SH, Hwang DH (2012) Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J Lipid Res 53(9):2002–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung S-C, Huang P-R, Almeida-da-Silva CLC, Atanasova KR, Yilmaz O, Ojcius DM (2018) NLRX1 modulates differentially NLRP3 inflammasome activation and NF-κB signaling during Fusobacterium nucleatum infection. Microbes Infect 20(9-10):615–625

    Article  CAS  PubMed  Google Scholar 

  • Inoguchi T, Li P, Umeda F, Yu H, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H (2000) High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD (P) H oxidase in cultured vascular cells. Diabetes 49:1939–1945

    Article  CAS  PubMed  Google Scholar 

  • Ives A, Nomura J, Martinon F, Roger T, LeRoy D, Miner JN, Simon G, Busso N, So A (2015) Xanthine oxidoreductase regulates macrophage IL1β secretion upon NLRP3 inflammasome activation. Nat Commun 6(1):1–11

    Article  Google Scholar 

  • Kabe Y, Ando K, Hirao S, Yoshida M, Handa H (2005) Redox regulation of NF-κB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal 7(3-4):395–403

    Article  CAS  PubMed  Google Scholar 

  • Koblansky AA, Truax AD, Liu R, Montgomery SA, Ding S, Wilson JE, Brickey WJ, Mühlbauer M, McFadden R-MT, Hu P (2016) The innate immune receptor NLRX1 functions as a tumor suppressor by reducing colon tumorigenesis and key tumor-promoting signals. Cell Rep 14(11):2562–2575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuipers MT, van der Poll T, Schultz MJ, Wieland CW (2011) Bench-to-bedside review: damage-associated molecular patterns in the onset of ventilator-induced lung injury. Crit Care 15(6):235

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagishetty V, Parthasarathy PT, Phillips O, Fukumoto J, Cho Y, Fukumoto I, Bao H, Cox R Jr, Galam L, Lockey RF (2014) Dysregulation of CLOCK gene expression in hyperoxia-induced lung injury. Am J Phys Cell Phys 306(11):C999–C1007

    CAS  Google Scholar 

  • Lioté F, So A, Busso N (2011) Basic calcium phosphate crystals induce. J Immunol 186(4):2495–502. https://doi.org/10.4049/jimmunol.1001284. Epub 2011 Jan 14

  • Liu Z, Ren Z, Zhang J (2018) Role of ROS and nutritional antioxidants in human diseases. Front Physiol 9:477

    Article  PubMed  PubMed Central  Google Scholar 

  • MacDonald JA, Wijekoon CP, Liao KC, Muruve DA (2013) Biochemical and structural aspects of the ATP-binding domain in inflammasome-forming human NLRP proteins. IUBMB Life 65(10):851–862

    Article  CAS  PubMed  Google Scholar 

  • Mattill H (1947) Antioxidants. Annu Rev Biochem 16(1):177–192

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R, Janeway CA Jr (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9(1):4–9

    Article  CAS  PubMed  Google Scholar 

  • Moloney JN, Cotter TG (2018) ROS signalling in the biology of cancer. In: Seminars in cell & developmental biology. Elsevier, New York, pp 50–64

    Google Scholar 

  • Nakahira K, Haspel JA, Rathinam VA, Lee S-J, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12(3):222–230

    Article  CAS  PubMed  Google Scholar 

  • Oliveira MS, Barbosa MI, de Souza TB, Moreira DR, Martins FT, Villarreal W, Machado RP, Doriguetto AC, Soares MB, Bezerra DP (2019) A novel platinum complex containing a piplartine derivative exhibits enhanced cytotoxicity, causes oxidative stress and triggers apoptotic cell death by ERK/p38 pathway in human acute promyelocytic leukemia HL-60 cells. Redox Biol 20:182–194

    Article  CAS  PubMed  Google Scholar 

  • Ozbayer C, Kurt H, Kebapci M, Gunes H, Colak E, Degirmenci I (2017) Effects of genetic variations in the genes encoding NOD 1 and NOD 2 on type 2 diabetes mellitus and insulin resistance. J Clin Pharm Ther 42(1):98–102

    Article  CAS  PubMed  Google Scholar 

  • Panieri E, Saso L (2019) Potential applications of NRF2 inhibitors in cancer therapy. Oxidative Med Cell Longev 2019:1–34

    Google Scholar 

  • Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G, Migliaccio A (2020) ROS in cancer therapy: the bright side of the moon. Exp Mol Med:1–12

    Google Scholar 

  • Petty AJ, Yang Y (2017) Tumor-associated macrophages: implications in cancer immunotherapy. Immunotherapy 9(3):289–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole LB (2015) The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med 80:148–157

    Article  CAS  PubMed  Google Scholar 

  • Reczek CR, Chandel NS (2015) ROS-dependent signal transduction. Curr Opin Cell Biol 33:8–13

    Article  CAS  PubMed  Google Scholar 

  • Ruslan M, Paula P-H, Charles A (1997) A human homologue of the Drosophila toll protein signals activation of adaptive immunity. Nature 388(6640):394–397

    Article  Google Scholar 

  • Shen B, He P-J, Shao C-L (2013) Norcantharidin induced DU145 cell apoptosis through ROS-mediated mitochondrial dysfunction and energy depletion. PLoS One 8(12):e84610

    Article  PubMed  PubMed Central  Google Scholar 

  • Sies H (1986) Biochemistry of oxidative stress. Angew Chem Int Ed Engl 25(12):1058–1071

    Article  Google Scholar 

  • Tarafdar A, Pula G (2018) The role of NADPH oxidases and oxidative stress in neurodegenerative disorders. Int J Mol Sci 19(12):3824

    Article  PubMed Central  Google Scholar 

  • Teng J-F, Qin D-L, Mei Q-B, Qiu W-Q, Pan R, Xiong R, Zhao Y, Law BY-K, Wong VK-W, Tang Y (2019) Polyphyllin VI, a saponin from Trillium tschonoskii maxim. Induces apoptotic and autophagic cell death via the ROS triggered mTOR signaling pathway in non-small cell lung cancer. Pharmacol Res 147:104396

    Article  CAS  PubMed  Google Scholar 

  • Teng J-F, Mei Q-B, Zhou X-G, Tang Y, Xiong R, Qiu W-Q, Pan R, Law BY-K, Wong VK-W, Yu C-L (2020) Polyphyllin VI induces caspase-1-mediated pyroptosis via the induction of ROS/NF-κB/NLRP3/GSDMD signal axis in non-small cell lung cancer. Cancers 12(1):193

    Article  CAS  PubMed Central  Google Scholar 

  • Ting JP-Y, Lovering RC, Alnemri ESPD, Bertin J, Boss JM, Davis B, Flavell RA, Girardin SE, Godzik A, Harton JA (2008) The NLR gene family: an official nomenclature. Immunity 28(3):285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tönnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis 57(4):1105–1121

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C, An Y, Wang Y, Shen K, Wang X, Luan W, Ma F, Ni L, Liu M, Yu L (2020) Insulin-like growth factor-I activates NFκB and NLRP3 inflammatory signalling via ROS in cancer cells. Mol Cell Probes:101583

    Google Scholar 

  • Ye X, Zuo D, Yu L, Zhang L, Tang J, Cui C, Bao L, Zan K, Zhang Z, Yang X (2017) ROS/TXNIP pathway contributes to thrombin induced NLRP3 inflammasome activation and cell apoptosis in microglia. Biochem Biophys Res Commun 485(2):499–505

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Sun G, Yang Q, Chen C, Qi Q, Wang H, Li J (2017) NLRX1 accelerates cisplatin-induced ototoxity in HEI-OC1 cells via promoting generation of ROS and activation of JNK signaling pathway. Sci Rep 7(1):1–14

    Google Scholar 

  • Zhong Z, Zhai Y, Liang S, Mori Y, Han R, Sutterwala FS, Qiao L (2013) TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nat Commun 4(1):1–11

    Article  CAS  Google Scholar 

  • Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushmita Jha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Saxena, S., Jha, S. (2022). ROS at the Intersection of Inflammation and Immunity in Cancer. In: Chakraborti, S., Ray, B.K., Roychoudhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-9411-3_64

Download citation

Publish with us

Policies and ethics