Skip to main content

Indo-Pak Medicinal Plants and Their Endophytes: An Emphasis on Nutraceutical and Bioactive Potential

  • Chapter
  • First Online:
Book cover Endophytes

Abstract

The Indo-Pak region has deep historical roots of traditional medicine. In both Pakistan and India, the local population has relied upon the Unani-Tibb (Graeco-Arabic) and Ayurveda medicinal systems for centuries. With the increase in our understanding of ethnobotany and endophytes, the significance of the traditional plants in the region has also increased. The traditional Indo-Pak plants such as Neem and Tulsi have been studied not only for their wide array of pharmaceutical activities but also for their endophytes. Extracts of different parts of neem have been used as antimicrobial, antiviral, antimalarial, anti-carcinogenic, antipyretic, anti-ulcer and anti-inflammatory agents, whereas its seeds are a rich source of proteins and fatty acids. Latest researches have proved the nutraceutical potential of plants such as imli, amla and soanjna in the Indo-Pak region. Further understanding of these plants can lead to unbeatable bioactive and nutraceutical sources. In this chapter, we will focus on the traditional plants of the Indo-Pak region, their endophytes particularly the genus actinomycetes and the recent studies done on their diverse metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah M, Muhammad A (2018) Antibacterial activity of leaves and fruit extract of Tamarindus indica against clinical isolates of Escherichia coli and Shigella at Potiskum Yobe state. Nigeria J Anal Pharma Res 7:606–609

    Google Scholar 

  • Abdulhamza N (2013) Study of phytochemical composition and antibacterial activity of Emblica officinalis (Amla) fruit extract. AJVS 6:107–113

    Google Scholar 

  • Abdull Razis AF, Ibrahim MD, Kntayya SB (2014) Health benefits of Moringa oleifera. Asian Pac J Cancer Prev 15:8571–8576

    Article  PubMed  Google Scholar 

  • Ahmad SS, Husain SZ (2008) Ethno medicinal survey of plants from salt range (Kallar Kahar) of Pakistan. Pak J Bot 40:1005–1011

    Google Scholar 

  • Ahmed M et al (2020) Exploring the antioxidant potential of some common marketed nutraceuticals/drugs in Pakistan by different in vitro models. Lat Am J Pharm 39:372–375

    Google Scholar 

  • Akshatha V, Nalini M, D’Souza C, Prakash H (2014) Streptomycete endophytes from anti-diabetic medicinal plants of the Western Ghats inhibit alpha-amylase and promote glucose uptake. Lett Appl Microbiol 58:433–439

    Article  CAS  PubMed  Google Scholar 

  • Akshatha JV, Prakash HS, Nalini MS (2016) Actinomycete endophytes from the ethno medicinal plants of southern India: antioxidant activity and characterization studies. JBAPN 6:166–172

    CAS  Google Scholar 

  • Al-Samarrai G, Singh H, Syarhabil M (2012) Evaluating eco-friendly botanicals (natural plant extracts) as alternatives to synthetic fungicides. Ann Agric Environ Med 19:673–676

    PubMed  Google Scholar 

  • Androutsopoulos VP, Tsatsakis AM, Spandidos DA (2009) Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer 9:187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arora DS, Kaur N (2019) Antimicrobial potential of fungal endophytes from Moringa oleifera. Appl Biochem Biotechnol 187:628–648

    Article  CAS  PubMed  Google Scholar 

  • Asare GA et al (2012) Toxicity potentials of the nutraceutical Moringa oleifera at supra-supplementation levels. J Ethnopharmacol 139:265–272

    Article  PubMed  Google Scholar 

  • Ashok Kumar N, Pari L (2003) Antioxidant action of Moringa oleifera Lam. (drumstick) against antitubercular drugs induced lipid peroxidation in rats. J Med Food 6:255–259

    Article  CAS  PubMed  Google Scholar 

  • Asif M (2012) Antimicrobial potential of Azadirachta indica against pathogenic bacteria and fungi. J Pharmacogn Phytochem 1:78–83

    Google Scholar 

  • Asif M, Mohd I (2019) Prospects of medicinal plants derived nutraceuticals: a re-emerging new era of medicine and health aid. PCBR 2:150–169

    Google Scholar 

  • Atri N, Rai N, Singh AK, Verma M, Barik S, Gautam V, Singh SK (2020) Screening for endophytic fungi with antibacterial efficiency from Moringa oleifera and Withania somnifera. J Sci Res 64:127–133

    Google Scholar 

  • Bagul M, Sonawane SK, Arya SS (2015) Tamarind seeds: chemistry, technology, applications and health benefits. Indian Food Ind Mag 34:28–35

    Google Scholar 

  • Basit A, Fawwad A, Baqa K (2019) Pakistan and diabetes—a country on the edge. Diabetes Res Clin Pract 147:166–168

    Article  PubMed  Google Scholar 

  • Bernardini S, Tiezzi A, Laghezza Masci V, Ovidi E (2018) Natural products for human health: an historical overview of the drug discovery approaches. Nat Prod Res 32:1926–1950

    Article  CAS  PubMed  Google Scholar 

  • Caradus JR, Johnson LJ (2019) Improved adaptation of temperate grasses through mutualism with fungal endophytes. In: Schouten A (ed) Endophyte biotechnology: potential for agriculture and pharmacology, CABI biotechnology series. Wageningen University and Research Centre, Wageningen, p 85

    Chapter  Google Scholar 

  • Chandrakar S, Gupta AK (2018) Actinomycin-producing endophytic Streptomyces parvulus associated with root of Aloe vera and optimization of conditions for antibiotic production. Probiot Antimicrob 2018:1–15

    Google Scholar 

  • Chen Y, Shafi J, Li M, Fu D, Ji M (2018) Insecticidal activity of endophytic actinomycetes isolated from Azadirachta indica against Myzus persicae. Arch Biol Sci 70:349–357

    Article  Google Scholar 

  • Chigurupati S, Vijayabalan S, Selvarajan KK, Aldubayan M, Alhowail A, Mani V, Das S (2020) Antimicrobial exploration between counterpart endosymbiont and host plant (Tamarindus indica Linn.). Curr Pharm Biotechnol 21:384–389

    Article  CAS  PubMed  Google Scholar 

  • Dalee AD, Mukhurah S, Sali K, Hayeeyusoh N, Hajiwangoh Z, Salaeh P (2015) Antimicrobial substances from endophytic fungi in tamarind (Tamarindus indica, Linn), Malay apple (Eugenia malaccensis, Linn), rambutan (Nephelium lappaceum), and Indian mulberry (Morindacitrifolia, Linn). In: Abstracts of the international conference on research, implementation and education of mathematics and sciences, Yogyakarta State University, 17–19 May 2015

    Google Scholar 

  • Das R, Romi W, Das R, Sharma HK, Thakur D (2018) Antimicrobial potentiality of actinobacteria isolated from two microbiologically unexplored forest ecosystems of Northeast India. BMC Microbiol 18:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Silva NI, Brooks S, Lumyong S, Hyde KD (2019) Use of endophytes as biocontrol agents. Fungal Biol Rev 33:133–148

    Google Scholar 

  • Dureja H, Kaushik D, Kumar V (2003) Developments in nutraceuticals. Indian J Pharmacol 35:363–372

    Google Scholar 

  • Ebrahim W, Ebada SS, Proksch P (2019) Bioprospecting of endophytes. In: Schouten A (ed) Endophyte biotechnology: potential for agriculture and pharmacology, CABI biotechnology series. Wageningen University and Research Centre, Wageningen, pp 145–163

    Chapter  Google Scholar 

  • Eid AM, Salim SS, Hassan SE-D, Ismail MA, Fouda A (2019) Role of endophytes in plant health and abiotic stress management. In: Microbiome in plant health and disease. Springer, Singapore, pp 119–144

    Chapter  Google Scholar 

  • Fazil M, Akram M (2019) Factors contributing to irritability in diabetes mellitus type-2 patients. Alternat Integr Med 8:277

    Google Scholar 

  • Fazil M, Nikhat S (2019) Nutraceutical and pharmacological appraisal of Amla (Emblica officinalis Gaertn.): a review. Eur J Med Chem 30:1–13

    Google Scholar 

  • Gangwar M, Dogra S, Gupta UP, Kharwar RN (2014) Diversity and biopotential of endophytic actinomycetes from three medicinal plants in India. Afr J Microbiol Res 8:184–191

    Article  CAS  Google Scholar 

  • Gangwar M, Kaur N, Saini P, Kalia A (2015) The diversity, plant growth promoting and anti-microbial activities of endophytic actinomycetes isolated from Emblica officinalis Gaertn. Int J Adv Res 3:1062–1071

    CAS  Google Scholar 

  • Ghosh S, Chatterjee D, Das S, Bhattacharjee P (2013) Supercritical carbon dioxide extraction of eugenol-rich fraction from Ocimum sanctum Linn and a comparative evaluation with other extraction techniques: process optimization and phytochemical characterization. Ind Crop Prod 47:78–85

    Article  CAS  Google Scholar 

  • Godinez-Oviedo A, Guemes-Vera N, Acevedo-Sandoval O (2016) Nutritional and phytochemical composition of Moringa oleifera Lam and its potential use as nutraceutical plant: a review. PJN 15:397–405

    Article  CAS  Google Scholar 

  • Gohain A et al (2015) Antimicrobial biosynthetic potential and genetic diversity of endophytic actinomycetes associated with medicinal plants. FEMS Microbiol Lett 362:fnv158

    Article  PubMed  CAS  Google Scholar 

  • Gohain A, Sarma RK, Debnath R, Saikia J, Singh BP, Sarmah R, Saikia R (2019) Phylogenetic affiliation and antimicrobial effects of endophytic actinobacteria associated with medicinal plants: prevalence of polyketide synthase type II in antimicrobial strains. Folia Microbiol 64:481–496

    Article  CAS  Google Scholar 

  • Goothy SSK, Goothy S, Choudhary A, Potey G, Chakraborty H, Kumar AH, Mahadik V (2020) Ayurveda’s holistic lifestyle approach for the management of coronavirus disease (COVID-19): possible role of tulsi. Int J Res Pharm Sci 11:16–18

    Article  CAS  Google Scholar 

  • Gowda M, Sheetal A, Kole C (eds) (2019) The neem genome. Springer International Publishing, Cham, pp 21–30

    Book  Google Scholar 

  • Guilmoto C, Oliveau S (2018) Population distribution across Asia. In: Routledge handbook of Asian demography. Routledge, Abingdon, pp 268–284

    Google Scholar 

  • Haq F, Ahmad H, Alam M (2011) Traditional uses of medicinal plants of Nandiar Khuwarr catchment (District Battagram), Pakistan. J Med Plant Res 5:39–48

    Google Scholar 

  • Hasan MR, Islam MN, Islam MR (2016) Phytochemistry, pharmacological activities and traditional uses of Emblica officinalis: a review. Int Curr Pharm J 5:14–21

    Article  CAS  Google Scholar 

  • Husain SZ, Malik RN, Javaid M, Bibi S (2008) Ethonobotanical properties and uses of medicinal plants of Morgah biodiversity park, Rawalpindi. Pak J Bot 40:1897–1911

    Google Scholar 

  • Hussain K, Majeed MT, Ismail Z, Sadikun A, Ibrahim P (2009) Traditional and complementary medicines: quality assessment strategies and safe usage. South Med Rev 2:19–23

    PubMed  PubMed Central  Google Scholar 

  • Jain M, Shrivastava PN, Samar R (2018) Survey of ethnobotanical medicinal plants used by the people of district Guna, Madhya Pradesh, India. Int J Life Sci Sci Res 2455:1716

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. In: Ecosystem management. Springer, New York, pp 130–147

    Chapter  Google Scholar 

  • Joseph B, Priya RM (2011) Bioactive compounds from endophytes and their potential. Am J Biochem Mol Biol 1:291–309

    Article  Google Scholar 

  • Joshi KK, Joshi SD (2001) Genetic heritage of medicinal and aromatic plants of Nepal Himalayas. Buddha Academic Publishers, Kathmandu, p 255

    Google Scholar 

  • Joshi S, Singh AV, Prasad B (2018) Enzymatic activity and plant growth promoting potential of endophytic bacteria isolated from Ocimum sanctum and Aloe vera. Int J Curr Microbiol Appl Sci 7:2314–2326

    Article  CAS  Google Scholar 

  • Kaur N, Arora DS, Kalia N, Kaur M (2020) Antibiofilm, antiproliferative, antioxidant and antimutagenic activities of an endophytic fungus Aspergillus fumigatus from Moringa oleifera. Mol Biol Rep 47:2901–2911

    Article  CAS  PubMed  Google Scholar 

  • Kumar RR, Jadeja VJ (2016) Endophytic actinomycetes: a novel antibiotic source. Int J Curr Microbiol Appl Sci 5:164–175

    Article  CAS  Google Scholar 

  • Kuncharoen N, Kudo T, Ohkuma M, Tanasupawat S (2019) Micromonospora azadirachtae sp. nov., isolated from roots of Azadirachta indica A. Juss. var. siamensis Valeton. Ant Leeuw 112:253–262

    Article  CAS  Google Scholar 

  • Maity P, Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U (2009) The use of neem for controlling gastric hyperacidity and ulcer. Phytother Res 23:747–755

    Article  CAS  PubMed  Google Scholar 

  • Masand M, Jose PA, Menghani E, Jebakumar SRD (2015) Continuing hunt for endophytic actinomycetes as a source of novel biologically active metabolites. World J Microbiol Biotechnol 31:1863–1875

    Article  CAS  PubMed  Google Scholar 

  • Mohan L, Amberkar M, Kumari M (2011) Ocimum sanctum Linn (Tulsi)—an overview. Int J Pharm Sci Rev Res 7:51–53

    Google Scholar 

  • Mosquera WG, Criado LY, Guerra BE (2020) Actividad antimicrobiana de hongos endófitos de las plantas medicinales Mammea americana (Calophyllaceae) y Moringa oleifera (Moringaceae). Biomédica 40:55–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee PK, Kumar V, Kumar NS, Heinrich M (2008) The Ayurvedic medicine Clitoria ternatea—from traditional use to scientific assessment. J Ethnopharmacol 120:291–301

    Article  PubMed  Google Scholar 

  • Mushtaq S, Abbasi BH, Uzair B, Abbasi R (2018) Natural products as reservoirs of novel therapeutic agents. EXCLI J 17:420–451

    PubMed  PubMed Central  Google Scholar 

  • Nakatsuka N et al (2017) The promise of discovering population-specific disease-associated genes in South Asia. Nat Genet 49:1403–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nath A, Raghunatha P, Joshi S (2012) Diversity and biological activities of endophytic fungi of Emblica officinalis, an ethnomedicinal plant of India. Mycobiology 40:8–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawaz F, Tanvir R, Nawaz M, Javeed A, Sajid I (2018) The effects of polar and non polar compounds from endophytic actinomycetes in Ocmium tenuiflorum (Tulsi) and Azadirachta indica (Neem) on veterinary and human pathogens. In: MDPI AG in 4th international electronic conference on medicinal chemistry session (ECMC-4). https://doi.org/10.3390/ecmc-4-05567

  • Pandey A, Pradheep K, Gupta R, Nayar ER, Bhandari D (2011) ‘Drumstick tree’ (Moringa oleifera Lam.): a multipurpose potential species in India. Genet Resour Crop Evol 58:453–460

    Article  Google Scholar 

  • Pandey M, Rastogi S, Rawat A (2013) Indian traditional Ayurveda system of medicine and nutritional supplementation. Evid Based Complement Alternat Med 2013:1–12

    Google Scholar 

  • Parveen A, Parveen R, Akhatar A, Parveen B, Siddiqui KM, Iqbal M (2019) Concepts and quality considerations in Unani system of medicine. J AOAC Int. https://doi.org/10.5740/jaoacint.19-0284

  • Patwardhan B, Vaidya AD, Chorghade M (2004) Ayurveda and natural products drug discovery. Curr Sci 86:789–799

    Google Scholar 

  • Prakash P, Gupta N (2005) Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: a short review. Indian J Physiol Pharmacol 49:125

    CAS  PubMed  Google Scholar 

  • Prasher B, Gibson G, Mukerji M (2016) Genomic insights into Ayurveda and western approaches to personalized medicine. J Genet 95:209–228

    Article  PubMed  Google Scholar 

  • Priya FF, Islam MS (2019) Phyllanthus emblica Linn. (Amla)—a natural gift to humans: an overview. JDMP 5:1–9

    Article  Google Scholar 

  • Priyadarsini RV, Manikandan P, Kumar GH, Nagini S (2009) The neem limonoids azadirachtin and nimbolide inhibit hamster cheek pouch carcinogenesis by modulating xenobiotic-metabolizing enzymes, DNA damage, antioxidants, invasion and angiogenesis. Free Radic Res 43:492–504

    Article  CAS  PubMed  Google Scholar 

  • Radu S, Kqueen CY (2002) Preliminary screening of endophytic fungi from medicinal plants in Malaysia for antimicrobial and antitumor activity. MJMS 9:23–33

    PubMed  PubMed Central  Google Scholar 

  • Rahal A, Kumar D, Malik JK (2019) Neem extract. In: Nutraceuticals in veterinary medicine. Springer, Cham, pp 37–50

    Chapter  Google Scholar 

  • Rathod D, Dar M, Gade A, Rai M (2014) Griseofulvin producing endophytic Nigrospora oryzae from Indian Emblica officinalis Gaertn: a new report. Aust J Biotechnol Bioeng 1:5

    Google Scholar 

  • Rupani R, Chavez A (2018) Medicinal plants with traditional use: ethnobotany in the Indian subcontinent. Clin Dermatol 36:306–309

    Article  PubMed  Google Scholar 

  • Saini P, Gangwar M, Kalia A, Singh N, Narang D (2016) Isolation of endophytic actinomycetes from Syzygium cumini and their antimicrobial activity against human pathogens. J Appl Nat Sci 8:416–422

    Article  CAS  Google Scholar 

  • Sen S, Chakraborty R (2017) Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: importance, challenges and future. J Tradit Complement Med 7:234–244

    Article  PubMed  Google Scholar 

  • Shah S, Patil S (2019) Standardization of Tulsi Taila: an ayurvedic oil based medicine. J Drug Deliv Ther 9:699–702

    CAS  Google Scholar 

  • Sharma V, Saksena K (1959) ‘Sodium-nimbidinate’—in vitro study of its spermicidal action. Indian J Med Sci 13:1038

    CAS  PubMed  Google Scholar 

  • Shinde N, Bangar B, Deshmukh S, Kumbhar P (2014) Nutraceuticals: a review on current status. Res J Pharm Technol 7:110–113

    Google Scholar 

  • Shinwari ZK, Qaiser M (2011) Efforts on conservation and sustainable use of medicinal plants of Pakistan. Pak J Bot 43:5–10

    Google Scholar 

  • Singh MJ, Padmavathy S (2014) Comparative screening of enzyme producing endophytic actinomycetes from fresh and fallen leaves of Emblica officinalis in Western Ghats. Int J Biol Res 2(2):129–130

    Article  Google Scholar 

  • Singh MJ, Padmavathy S (2015) Nocardiopsis sp. 5 endophytic to tulsi leaves-isolation and antimicrobial activity. Br Microbiol 5:194–202

    Article  Google Scholar 

  • Singh AK, Rana HK, Tshabalala T, Kumar R, Gupta A, Ndhlala AR, Pandey AK (2019) Phytochemical, nutraceutical and pharmacological attributes of a functional crop Moringa oleifera Lam: an overview. S Afr J Bot. https://doi.org/10.1016/j.sajb.2019.06.017

  • Sivareddy B, Reginald BA, Sireesha D, Samatha M, Reddy KH, Subrahamanyam G (2019) Antifungal activity of solvent extracts of Piper betle and Ocimum sanctum Linn on Candida albicans: an in vitro comparative study. JOMFP 23:333

    PubMed  PubMed Central  Google Scholar 

  • Soni N, Singh VK (2019) Traditional, nutraceutical and pharmacological approaches of Tamarindus indica (Imli). Eur J Biol Res 9:141–154

    CAS  Google Scholar 

  • Srivastava AK (2018) Significance of medicinal plants in human life. In: Synthesis of medicinal agents from plants. Elsevier, Amsterdam, pp 1–24

    Google Scholar 

  • Subapriya R, Nagini S (2005) Medicinal properties of neem leaves: a review. Anti Cancer Agents Med Chem 5:149–156

    Article  CAS  Google Scholar 

  • Sundarrajan S, Arumugam M (2017) Documentation of traditional Siddha medicines for skin diseases from Katpadi taluk, Vellore District, Tamil Nadu, India. Eur J Integr Med 9:52–62

    Article  Google Scholar 

  • Surkar A, Lavania S, Pandey D, Pant M (1994) Changes in the blood lipid profile after administration of Ocimum sanctum (Tulsi) leaves in the normal albino rabbits. Indian J Physiol Pharmacol 38:311–311

    Google Scholar 

  • Taechowisan T, Peberdy JF, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol 19:381–385

    Article  CAS  Google Scholar 

  • Tandale A, Khandagale M, Palaskar R, Kulkarni S (2018) Isolation of pigment producing actinomycetes from soil and screening their antibacterial activities against different microbial isolates. Int J Curr Res Life Sci 7:2397–2402

    Google Scholar 

  • Tanvir R, Sheikh AA, Javeed A (2020) Endophytic actinomycetes in Indo-Pak medicinal plants leading to new trends in drug discovery. In: Muhammad Hatha AA (ed) A closer look at actinomycetes. Nova Science Publishers, New York, pp 41–80

    Google Scholar 

  • Variya BC, Bakrania AK, Patel SS (2016) Emblica officinalis (Amla): a review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol Res 111:180–200

    Article  CAS  PubMed  Google Scholar 

  • Verma VC, Gond SK, Kumar A, Mishra A, Kharwar RN, Gange AC (2009) Endophytic actinomycetes from Azadirachta indica A. Juss.: isolation, diversity, and anti-microbial activity. Microb Ecol 57:749–756

    Article  PubMed  Google Scholar 

  • Walter C, Shinwari ZK, Afzal I, Malik RN (2011) Antibacterial activity in herbal products used in Pakistan. Pak J Bot 43:155–162

    Google Scholar 

  • Wangchuk P, Samten U, Thinley J, Afaq S (2008) High altitude plants used in Bhutanese traditional medicine (g. so-ba-rig-pa). Ethnobotany 20:54–64

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabia Tanvir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ilyas, A., Tanvir, R., Rehman, Y. (2021). Indo-Pak Medicinal Plants and Their Endophytes: An Emphasis on Nutraceutical and Bioactive Potential. In: Patil, R.H., Maheshwari, V.L. (eds) Endophytes. Springer, Singapore. https://doi.org/10.1007/978-981-15-9371-0_4

Download citation

Publish with us

Policies and ethics