Skip to main content

Biological Implications of Polyethylene Glycol and PEGylation: Therapeutic Approaches Based on Biophysical Studies and Protein Structure-Based Drug Design Tools

  • Chapter
  • First Online:
Innovations and Implementations of Computer Aided Drug Discovery Strategies in Rational Drug Design

Abstract

Polyethylene glycol (PEG) is one of the most extensively used biocompatible polymer. PEG-modification improves the original properties of conjugates and thus being exploited in different fields. PEGs demonstrated their ability to bind DNA, dyes and proteins, in solution and in solid phase via amine and thiol groups. Covalent linkage of PEG to drug molecules improves water-solubility, bioavailability, pharmacokinetics, immunogenic properties, and biological activities. Entrapment of drugs into the PEG vesicle offers substantial benefits in the treatment of many diseases including type 2 diabetes over conventional injection-based therapies. Therapeutic enzymes are conjugated with PEG for targeted therapy of diseases in which the native enzyme was inefficient. PEG has been most extensively investigated polymers for gene delivery due to its capability to form stable complexes by electrostatic interactions with nucleic acids. Many PEG-enzymes conjugates have already obtained FDA approval for clinical implications. PEGylated copolymers have least cytotoxicity and cell-compatibility concern, high efficiency, safety and biocompatibility and thus considered as an attractive polymer for gene and drug delivery system. For instance, many tissue engineering applications, PEG and its derivatives are likely to precise control of cell behaviour in growing tissues. For this application numerous bioresponsive and intelligent biomaterials are developed and extensively used in bone and tissue regeneration. PEG-derived hydrogels increase gene expression of bone-specific markers, secretion of bone-related matrix, and mineralization and may have a potential impact on bone-engineering therapies. PEG-coated poly(amidoamine) exhibits low toxicity to human corneal epithelial cells and effectively used as antimicrobial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, J., Arfat, Y. A., Bher, A., Mulla, M., Jacob, H., & Auras, R. (2018). Active chicken meat packaging based on polylactide films and bimetallic Ag-Cu nanoparticles and essential oil. Journal of Food Science, 83, 1299–1310.

    Article  CAS  PubMed  Google Scholar 

  • Alexander, A., Ajazuddin Khan, J., Saraf, S., & Saraf, S. (2014). Polyethylene glycol (PEG)–poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 88, 575–585.

    Article  CAS  PubMed  Google Scholar 

  • AlQahtani, A. D., Al-Mansoori, L., Bashraheel, S. S., Rashidi, F. B., Al-Yafei, A., Elsinga, P., et al. (2019a). Production of “biobetter” glucarpidase variants to improve drug detoxification and antibody directed enzyme prodrug therapy for cancer treatment. European Journal of Pharmaceutical Sciences, 127, 79–91.

    Article  CAS  PubMed  Google Scholar 

  • AlQahtani, A. D., O’Connor, D., Domling, A., & Goda, S. K. (2019b). Strategies for the production of long-acting therapeutics and efficient drug delivery for cancer treatment. Biomedicine & Pharmacotherapy, 113, 108750.

    Article  CAS  Google Scholar 

  • Bailon, P., & Berthold, W. (1998). Polyethylene glycol-conjugated pharmaceutical proteins. Pharmaceutical Science & Technology Today, 1, 352–356.

    Article  CAS  Google Scholar 

  • Bharadwaz, A., & Jayasuriya, A. C. (2020). Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Materials Science & Engineering. C, Materials for Biological Applications, 110, 110698.

    Article  CAS  Google Scholar 

  • Bonetta, R., Ebejer, J. P., Seychell, B., Vella, M., Hunter, T., & Hunter, G. J. (2016). Role of protein structure in drug discovery. Journal of the Malta Chamber of Scientists, 4, 126–130.

    Google Scholar 

  • Boutet, E., Lieberherr, D., Tognolli, M., Schneider, M., Bansal, P., Bridge, A. J., et al. (2016). UniProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: How to use the entry view. Methods in Molecular Biology, 1374, 23–54.

    Article  CAS  PubMed  Google Scholar 

  • Breydo, L., Sales, A. E., Frege, T., Howell, M. C., Zaslavsky, B. Y., & Uversky, V. N. (2015). Effects of polymer hydrophobicity on protein structure and aggregation kinetics in crowded milieu. Biochemistry, 54, 2957–2966.

    Article  CAS  PubMed  Google Scholar 

  • Bryant, S. J., & Anseth, K. S. (2003). Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. Journal of Biomedical Materials Research. Part A, 64, 70–79.

    Article  PubMed  CAS  Google Scholar 

  • Christiansen, A., Wang, Q., Cheung, M. S., & Wittung-Stafshede, P. (2013). Effects of macromolecular crowding agents on protein folding in vitro and in silico. Biophysical Reviews, 5, 137–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’souza, A. A., & Shegokar, R. (2016). Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opinion on Drug Delivery, 13, 1257–1275.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, N. L., Lewis, T. E., Das, S., Lees, J. G., Lee, D., Ashford, P., et al. (2017). CATH: An expanded resource to predict protein function through structure and sequence. Nucleic Acids Research, 45, D289–D295.

    Article  CAS  PubMed  Google Scholar 

  • Dhifli, W., & Diallo, A. B. (2016). ProtNN: Fast and accurate protein 3D-structure classification in structural and topological space. BioDataMining, 9, 30.

    Google Scholar 

  • Elechalawar, C. K., Hossen, M. N., Shankarappa, P., Peer, C. J., Figg, W. D., Robertson, J. D., et al. (2020). Targeting pancreatic cancer cells and stellate cells using designer Nanotherapeutics in vitro. International Journal of Nanomedicine, 15, 991–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira, L. A., Cole, J. T., Reichardt, C., Holland, N. B., Uversky, V. N., & Zaslavsky, B. Y. (2015). Solvent properties of water in aqueous solutions of elastin-like polypeptide. International Journal of Molecular Sciences, 16, 13528–13547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira, L. A., Madeira, P. P., Breydo, L., Reichardt, C., Uversky, V. N., & Zaslavsky, B. Y. (2016). Role of solvent properties of aqueous media in macromolecular crowding effects. Journal of Biomolecular Structure & Dynamics, 34, 92–103.

    Article  CAS  Google Scholar 

  • Fonin, A. V., Darling, A. L., Kuznetsova, I. M., Turoverov, K. K., & Uversky, V. N. (2018). Intrinsically disordered proteins in crowded milieu: When chaos prevails within the cellular gumbo. Cellular and Molecular Life Sciences, 75, 3907–3929.

    Article  CAS  PubMed  Google Scholar 

  • Fonin, A. V., Silonov, S. A., Sitdikova, A. K., Kuznetsova, I. M., Uversky, V. N., & Turoverov, K. K. (2017). Structure and conformational properties of d-glucose/d-galactose-binding protein in crowded milieu. Molecules, 22, 244.

    Article  PubMed Central  CAS  Google Scholar 

  • Fonin, A. V., Stepanenko, O. V., Sitdikova, A. K., Antifeeva, I. A., Kostyleva, E. I., Polyanichko, A. M., et al. (2019). Folding of poly-amino acids and intrinsically disordered proteins in overcrowded milieu induced by pH change. International Journal of Biological Macromolecules, 125, 244–255.

    Article  CAS  PubMed  Google Scholar 

  • Fordtran, J. S., & Hofmann, A. F. (2017). Seventy years of polyethylene glycols in gastroenterology: The journey of PEG 4000 and 3350 from nonabsorbable marker to colonoscopy preparation to osmotic laxative. Gastroenterology, 152, 675–680.

    Article  PubMed  Google Scholar 

  • Fruijtier-Pölloth, C. (2005). Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology, 214, 1–38.

    Article  PubMed  CAS  Google Scholar 

  • Gao, Y., Kang, J., Lei, Z., Li, Y., Mei, X., & Wang, G. (2020). Use of the highly biocompatible Au nanocages@PEG nanoparticles as a new contrast agent for in vivo computed tomography scan imaging. Nanoscale Research Letters, 15, 53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh, S., Shahid, S., Raina, N., Ahmad, F., Hassan, M. I., & Islam, A. (2020). Molecular and macromolecular crowding-induced stabilization of proteins: Effect of dextran and its building block alone and their mixtures on stability and structure of lysozyme. International Journal of Biological Macromolecules, 150, 1238–1248.

    Article  CAS  PubMed  Google Scholar 

  • Goos, J. A., Cho, A., Carter, L. M., Dilling, T. R., Davydova, M., Mandleywala, K., et al. (2020a). Delivery of polymeric nanostars for molecular imaging and endoradiotherapy through the enhanced permeability and retention (EPR) effect. Theranostics, 10, 567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goos, J. A. C. M., Davydova, M., Dilling, T. R., Cho, A., Cornejo, M. A., Gupta, A., et al. (2020b). Design and preclinical evaluation of nanostars for the passive pretargeting of tumor tissue. Nuclear Medicine and Biology, 84-85, 63–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorrec, F. (2016). Protein crystallization screens developed at the MRC Laboratory of molecular biology. Drug Discovery Today, 21, 819–825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwald, R. (2001). PEG drugs: an overview. Journal of Controlled Release, 74, 159–171.

    Article  CAS  PubMed  Google Scholar 

  • Guin, D., & Gruebele, M. (2019). Weak chemical interactions that drive protein evolution: crowding, sticking, and quinary structure in folding and function. Chemical Reviews, 119, 10691–10717.

    Article  CAS  PubMed  Google Scholar 

  • Gullapalli, R. P., & Mazzitelli, C. L. (2015). Polyethylene glycols in oral and parenteral formulations—A critical review. International Journal of Pharmaceutics, 496, 219–239.

    Article  CAS  PubMed  Google Scholar 

  • Han, S., Sun, R., Su, H., Lv, J., Xu, H., Zhang, D., et al. (2019). Delivery of docetaxel using pH-sensitive liposomes based on D-alpha-tocopheryl poly(2-ethyl-2-oxazoline) succinate: Comparison with PEGylated liposomes. Asian Journal of Pharmaceutical Sciences, 14, 391–404.

    Article  PubMed  Google Scholar 

  • Harris, J. M., & Chess, R. B. (2003). Effect of pegylation on pharmaceuticals. Nature Reviews Drug Discovery, 2, 214–221.

    Article  CAS  PubMed  Google Scholar 

  • Hashemi, E., Mahdavi, H., Khezri, J., Razi, F., Shamsara, M., & Farmany, A. (2019). Enhanced gene delivery in bacterial and mammalian cells using PEGylated calcium doped magnetic Nanograin. International Journal of Nanomedicine, 14, 9879–9891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatakeyama, H., Akita, H., Kogure, K., Oishi, M., Nagasaki, Y., Kihira, Y., et al. (2007). Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Therapy, 14, 68–77.

    Article  CAS  PubMed  Google Scholar 

  • Hershfield, M. S. (1995). PEG-ADA replacement therapy for adenosine deaminase deficiency: An update after 8.5 years. Clinical Immunology and Immunopathology, 76, S228–S232.

    Article  CAS  PubMed  Google Scholar 

  • Hillisch, A., Heinrich, N., & Wild, H. (2015). Computational chemistry in the pharmaceutical industry: From childhood to adolescence. ChemMedChem, 10, 1958–1962.

    Article  CAS  PubMed  Google Scholar 

  • Inada, Y., Takahashi, K., Yoshimoto, T., Ajima, A., Matsushima, A., & Saito, Y. (1986). Application of polyethylene glycol-modified enzymes in biotechnological processes: Organic solvent-soluble enzymes. Trends in Biotechnology, 4, 190–194.

    Article  CAS  Google Scholar 

  • Jang, H.-J., Shin, C. Y., & Kim, K.-B. (2015). Safety evaluation of polyethylene glycol (PEG) compounds for cosmetic use. Toxicological Research, 31, 105–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, D. T., & Cozzetto, D. (2015). DISOPRED3: Precise disordered region predictions with annotated protein-binding activity. Bioinformatics, 31, 857–863.

    Article  CAS  PubMed  Google Scholar 

  • Katre, N. V. (1993). The conjugation of proteins with polyethylene glycol and other polymers: Altering properties of proteins to enhance their therapeutic potential. Advanced Drug Delivery Reviews, 10, 91–114.

    Article  CAS  Google Scholar 

  • Kim, S. H., Jeong, J. H., Lee, S. H., Kim, S. W., & Park, T. G. (2006). PEG conjugated VEGF siRNA for anti-angiogenic gene therapy. Journal of Controlled Release, 116, 123–129.

    Article  CAS  PubMed  Google Scholar 

  • Kinjo, A. R., & Takada, S. (2002). Effects of macromolecular crowding on protein folding and aggregation studied by density functional theory: Statics. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 66, 031911.

    Article  PubMed  CAS  Google Scholar 

  • Kolate, A., Baradia, D., Patil, S., Vhora, I., Kore, G., & Misra, A. (2014a). PEG - a versatile conjugating ligand for drugs and drug delivery systems. Journal of Controlled Release, 192, 67–81.

    Article  CAS  PubMed  Google Scholar 

  • Kolate, A., Baradia, D., Patil, S., Vhora, I., Kore, G., & Misra, A. (2014b). PEG — A versatile conjugating ligand for drugs and drug delivery systems. Journal of Controlled Release, 192, 67–81.

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsova, I. M., Turoverov, K. K., & Uversky, V. N. (2014). What macromolecular crowding can do to a protein. International Journal of Molecular Sciences, 15, 23090–23140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, L. S., Conover, C., Shi, C., Whitlow, M., & Filpula, D. (1999). Prolonged circulating lives of single-chain Fv proteins conjugated with polyethylene glycol: A comparison of conjugation chemistries and compounds. Bioconjugate Chemistry, 10, 973–981.

    Article  CAS  PubMed  Google Scholar 

  • Lim, Y. J., & Hong, S. J. (2014). What is the best strategy for successful bowel preparation under special conditions? World journal of gastroenterology: WJG, 20, 2741.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, G., Li, K., Luo, Q., Wang, H., & Zhang, Z. (2017). PEGylated chitosan protected silver nanoparticles as water-borne coating for leather with antibacterial property. Journal of Colloid and Interface Science, 490, 642–651.

    Article  CAS  PubMed  Google Scholar 

  • Liu, P., Santisteban, I., Burroughs, L. M., Ochs, H. D., Torgerson, T. R., Hershfield, M. S., et al. (2009). Immunologic reconstitution during PEG-ADA therapy in an unusual mosaic ADA deficient patient. Clinical Immunology, 130, 162–174.

    Article  CAS  PubMed  Google Scholar 

  • Lu, X., Shi, S., Li, H., Gerhard, E., Lu, Z., Tan, X., et al. (2020). Magnesium oxide-crosslinked low-swelling citrate-based mussel-inspired tissue adhesives. Biomaterials, 232, 119719.

    Article  CAS  PubMed  Google Scholar 

  • Mendez, U., Zhou, H., & Shikanov, A. (2018). Synthetic PEG hydrogel for engineering the environment of ovarian follicles. Methods in Molecular Biology, 1758, 115–128.

    Article  CAS  PubMed  Google Scholar 

  • Meng, X., Zhang, B., Yi, Y., Cheng, H., Wang, B., Liu, Y., et al. (2020). Accurate and real-time temperature monitoring during MR imaging guided PTT. Nano Letters, 20, 2522–2529.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, A. L., Scheremetjew, M., Denise, H., Potter, S., Tarkowska, A., Qureshi, M., et al. (2018). EBI metagenomics in 2017: Enriching the analysis of microbial communities, from sequence reads to assemblies. Nucleic Acids Research, 46, D726–D735.

    Article  CAS  PubMed  Google Scholar 

  • Molloy, K., Van, M. J., Barbara, D., & Shehu, A. (2014). Exploring representations of protein structure for automated remote homology detection and mapping of protein structure space. BMC Bioinformatics, 15(Suppl 8), S4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muegge, I., Bergner, A., & Kriegl, J. M. (2017). Computer-aided drug design at Boehringer Ingelheim. Journal of Computer-Aided Molecular Design, 31, 275–285.

    Article  CAS  PubMed  Google Scholar 

  • Nasreen, K., Ahamad, S., Ahmad, F., Hassan, M. I., & Islam, A. (2018). Macromolecular crowding induces molten globule state in the native myoglobin at physiological pH. International Journal of Biological Macromolecules, 106, 130–139.

    Article  CAS  PubMed  Google Scholar 

  • Newkome, G. R., Moorefield, C. N., & Vögtle, F. (2008). Dendritic molecules: Concepts, syntheses, perspectives. Weinheim: Wiley.

    Google Scholar 

  • Nucci, M. L., Shorr, R., & Abuchowski, A. (1991). The therapeutic value of poly (ethylene glycol)-modified proteins. Advanced Drug Delivery Reviews, 6, 133–151.

    Article  CAS  Google Scholar 

  • Parray, Z. A., Ahamad, S., Ahmad, F., Hassan, M. I., & Islam, A. (2019). First evidence of formation of pre-molten globule state in myoglobin: A macromolecular crowding approach towards protein folding in vivo. International Journal of Biological Macromolecules, 126, 1288–1294.

    Article  CAS  PubMed  Google Scholar 

  • Pasut, G., Panisello, A., Folch-Puy, E., Lopez, A., Castro-Benitez, C., Calvo, M., et al. (2016). Polyethylene glycols: An effective strategy for limiting liver ischemia reperfusion injury. World Journal of Gastroenterology, 22, 6501–6508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, L., Chang, L., Si, M., Lin, J., Wei, Y., Wang, S., et al. (2020). Hydrogel-coated dental device with adhesion-inhibiting and colony-suppressing properties. ACS Applied Materials & Interfaces, 12, 9718–9725.

    Article  CAS  Google Scholar 

  • Plosker, G. L. (2008). Pegylated liposomal doxorubicin: A review of its use in the treatment of relapsed or refractory multiple myeloma. Drugs, 68, 2535–2551.

    Article  CAS  PubMed  Google Scholar 

  • Rajan, S. S., Turovskiy, Y., Singh, Y., Chikindas, M. L., & Sinko, P. J. (2014). Poly (ethylene glycol)(PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment. Journal of Controlled Release, 194, 301–309.

    Article  PubMed Central  CAS  Google Scholar 

  • Rashmi Zabihi, F., Singh, A. K., Achazi, K., Schade, B., Hedtrich, S., Haag, R., et al. (2020). Non-ionic PEG-oligoglycerol dendron conjugated nano-carriers for dermal drug delivery. International Journal of Pharmaceutics, 580, 119212.

    Article  PubMed  CAS  Google Scholar 

  • Salmaso, V. (2018). Exploring protein flexibility during docking to investigate ligand-target recognition. Padova: University of Padova.

    Google Scholar 

  • Sánchez-Nieves, J., Fransen, P., Pulido, D., Lorente, R., Muñoz-Fernández, M. Á., Albericio, F., et al. (2014). Amphiphilic cationic carbosilane–PEG dendrimers: Synthesis and applications in gene therapy. European Journal of Medicinal Chemistry, 76, 43–52.

    Article  PubMed  CAS  Google Scholar 

  • Scaffaro, R., Lopresti, F., Maio, A., Botta, L., Rigogliuso, S., & Ghersi, G. (2017). Electrospun PCL/GO-g-PEG structures: Processing-morphology-properties relationships. Composites Part A: Applied Science and Manufacturing, 92, 97–107.

    Article  CAS  Google Scholar 

  • Shahid, S., Ahmad, F., Hassan, M. I., & Islam, A. (2019). Mixture of macromolecular crowding agents has a non-additive effect on the stability of proteins. Applied Biochemistry and Biotechnology, 188, 927–941.

    Article  CAS  PubMed  Google Scholar 

  • Shahid, S., Hassan, M. I., Islam, A., & Ahmad, F. (2017). Size-dependent studies of macromolecular crowding on the thermodynamic stability, structure and functional activity of proteins: In vitro and in silico approaches. Biochimica et Biophysica Acta - General Subjects, 1861, 178–197.

    Article  CAS  PubMed  Google Scholar 

  • Sledz, P., & Caflisch, A. (2018). Protein structure-based drug design: From docking to molecular dynamics. Current Opinion in Structural Biology, 48, 93–102.

    Article  CAS  PubMed  Google Scholar 

  • Stepanenko, O. V., Stepanenko, O. V., Kuznetsova, I. M., Uversky, V. N., & Turoverov, K. K. (2016). Peculiarities of the super-folder GFP folding in a crowded milieu. International Journal of Molecular Sciences, 17, 1805.

    Article  PubMed Central  CAS  Google Scholar 

  • Suzuki, T., Kanbara, N., Tomono, T., Hayashi, N., & Shinohara, I. (1984). Physicochemical and biological properties of poly(ethylene glycol)-coupled immunoglobuling G. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 788, 248–255.

    Article  CAS  Google Scholar 

  • Tokuriki, N., Kinjo, M., Negi, S., Hoshino, M., Goto, Y., Urabe, I., et al. (2004). Protein folding by the effects of macromolecular crowding. Protein Science, 13, 125–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsao, D., Minton, A. P., & Dokholyan, N. V. (2010). A didactic model of macromolecular crowding effects on protein folding. PLoS One, 5, e11936.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Türkkan, S., Pazarçeviren, A. E., Keskin, D., Machin, N. E., Duygulu, Ö., & Tezcaner, A. (2017). Nanosized CaP-silk fibroin-PCL-PEG-PCL/PCL based bilayer membranes for guided bone regeneration. Materials Science and Engineering: C, 80, 484–493.

    Article  CAS  Google Scholar 

  • UniProt, C. (2015). UniProt: A hub for protein information. Nucleic Acids Research, 43, D204–D212.

    Article  CAS  Google Scholar 

  • Valuckaite, V., Seal, J., Zaborina, O., Tretiakova, M., Testa, G., & Alverdy, J. C. (2013). High molecular weight polyethylene glycol (PEG 15-20) maintains mucosal microbial barrier function during intestinal graft preservation. Journal of Surgical Research, 183, 869–875.

    Article  CAS  PubMed  Google Scholar 

  • van den Berg, B., Ellis, R. J., & Dobson, C. M. (1999). Effects of macromolecular crowding on protein folding and aggregation. The EMBO Journal, 18, 6927–6933.

    Article  PubMed  PubMed Central  Google Scholar 

  • Veronese, F. M., & Mero, A. (2008). The impact of PEGylation on biological therapies. BioDrugs, 22, 315–329.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J.-Z., You, M.-L., Ding, Z.-Q., & Ye, W.-B. (2019). A review of emerging bone tissue engineering via PEG conjugated biodegradable amphiphilic copolymers. Materials Science and Engineering: C, 97, 1021–1035.

    Article  CAS  Google Scholar 

  • Wang, N., Dong, A., Radosz, M., & Shen, Y. (2008). Thermoresponsive degradable poly(ethylene glycol) analogues. Journal of Biomedical Materials Research. Part A, 84, 148–157.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, Q., Draper, S. R. E., Smith, M. S., Brown, N., Pugmire, N. A. B., Ashton, D. S., et al. (2019). Influence of PEGylation on the strength of protein surface salt bridges. ACS Chemical Biology, 14, 1652–1659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Q., & Lai, S. K. (2015). Anti-PEG immunity: Emergence, characteristics, and unaddressed questions. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 7, 655–677.

    PubMed  Google Scholar 

  • Yang, Y., Zhu, W., Cheng, L., Cai, R., Yi, X., He, J., et al. (2020a). Tumor microenvironment (TME)-activatable circular aptamer-PEG as an effective hierarchical-targeting molecular medicine for photodynamic therapy. Biomaterials, 246, 119971.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z., Guo, Q., Cai, Y., Zhu, X., Zhu, C., Li, Y., et al. (2020b). Poly(ethylene glycol)-sheddable reduction-sensitive polyurethane micelles for triggered intracellular drug delivery for osteosarcoma treatment. Journal of Orthopaedic Translation, 21, 57–65.

    Article  PubMed  Google Scholar 

  • Yeroslavsky, G., Umezawa, M., Okubo, K., Nigoghossian, K., Thi Kim Dung, D., Miyata, K., et al. (2020). Stabilization of indocyanine green dye in polymeric micelles for NIR-II fluorescence imaging and cancer treatment. Biomaterials Science, 8(8), 2245–2254.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, F., Liu, M. R., & Wan, H. T. (2014). Discussion about several potential drawbacks of PEGylated therapeutic proteins. Biological & Pharmaceutical Bulletin, 37, 335–339.

    Article  CAS  Google Scholar 

  • Zhang, L., Cheng, Z., Zhao, Q., & Wang, M. (2017). Green and efficient PEG-based ultrasound-assisted extraction of polysaccharides from superfine ground lotus plumule to investigate their antioxidant activities. Industrial Crops and Products, 109, 320–326.

    Article  CAS  Google Scholar 

  • Zhang, X., Chen, F., Turker, M. Z., Ma, K., Zanzonico, P., Gallazzi, F., et al. (2020). Targeted melanoma radiotherapy using ultrasmall 177Lu-labeled α-melanocyte stimulating hormone-functionalized core-shell silica nanoparticles. Biomaterials, 241, 119858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Z., Wang, Y., Qian, Y., Pan, X., Zhu, J., Zhang, Z., et al. (2020). Cystine dimethyl ester cross-linked PEG-poly(urethane-urea)/nano-hydroxyapatite composited biomimetic scaffold for bone defect repair. Journal of Biomaterials Science. Polymer Edition, 31, 407–422.

    Article  CAS  PubMed  Google Scholar 

  • Zinov’eva, I. V., Zakhodyaeva, Y. A., & Voshkin, A. A. (2020). Data on the extraction of benzoic, salicylic and sulfosalicylic acids from dilute solutions using PEG-based aqueous two-phase systems. Data in Brief, 28, 105033.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant from the Indian Council of Medical Research (ICMR)BIC/12(16)/2014. The authors are very indebted to Sharda University, FIST Program (SR/FST/LSI-541/2012) and Jamia Millia Islamia (a Central University) for facilitating the research.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amit Kumar Singh or Asimul Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raina, N., Singh, A.K., Islam, A. (2021). Biological Implications of Polyethylene Glycol and PEGylation: Therapeutic Approaches Based on Biophysical Studies and Protein Structure-Based Drug Design Tools. In: Singh, S.K. (eds) Innovations and Implementations of Computer Aided Drug Discovery Strategies in Rational Drug Design. Springer, Singapore. https://doi.org/10.1007/978-981-15-8936-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8936-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8935-5

  • Online ISBN: 978-981-15-8936-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics