Skip to main content

Diagnosis of Coronary Microvascular Dysfunction

  • Chapter
  • First Online:
  • 456 Accesses

Abstract

Coronary microvascular dysfunction (CMD) has emerged as a third potential mechanism of myocardial ischemia in addition to coronary atherosclerotic disease (CAD) and epicardial coronary artery spasm. Since several studies indicated that CMD could be associated with increased risk of cardiovascular events, it is important to make correct diagnosis and assessment of CMD. However, in contrast with epicardial coronary arteries, the coronary microcirculation cannot be directly visualized in vivo with coronary angiography or intracoronary imaging technique. Although there are several non-invasive (e.g. transthoracic Doppler echocardiography, positron emission tomography, cardiac magnetic resonance imaging) and invasive (e.g. assessment of coronary flow reserve and microvascular resistance using adenosine, microvascular coronary spasm with acetylcholine) approaches for the evaluation of coronary microvascular function, all of them have several limitations. Currently, the interventional diagnostic procedure, which consists of acetylcholine testing for the detection of coronary spasm as well as coronary flow reserve and microvascular resistance assessment in response to adenosine using a coronary pressure–temperature sensor guidewire, could represent the most comprehensive coronary vasomotor evaluation. Furthermore, several biomarkers have recently attracted much attention as a diagnostic tool for CMD. Especially, plasma concentration of serotonin may be a novel biomarker to dissect CMD from epicardial coronary artery spasm. Correct diagnosis of the underlying cause of angina should enable us to stratify the treatment for distinct disorders, including CMD, vasospastic angina, and non-cardiac chest pain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, Brindis RG, Douglas PS. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362(10):886–95. https://doi.org/10.1056/NEJMoa0907272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pepine CJ, Ferdinand KC, Shaw LJ, Light-McGroary KA, Shah RU, Gulati M, Duvernoy C, Walsh MN, Bairey Merz CN, ACC CVD in Women Committee. Emergence of nonobstructive coronary artery disease: a woman's problem and need for change in definition on angiography. J Am Coll Cardiol. 2015;66(17):1918–33. https://doi.org/10.1016/j.jacc.2015.08.876.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shaw LJ, Bairey Merz CN, Pepine CJ, Reis SE, Bittner V, Kelsey SF, Olson M, Johnson BD, Mankad S, Sharaf BL, Rogers WJ, Wessel TR, Arant CB, Pohost GM, Lerman A, Quyyumi AA, Sopko G, WISE Investigators. Insights from the NHLBI-sponsored Women's ischemia syndrome evaluation (WISE) study: part I: gender differences in traditional and novel risk factors, symptom evaluation, and gender-optimized diagnostic strategies. J Am Coll Cardiol. 2006;47(3 Suppl):S4–S20. https://doi.org/10.1016/j.jacc.2005.01.072.

    Article  PubMed  Google Scholar 

  4. Shimokawa H. 2014 Williams Harvey lecture: importance of coronary vasomotion abnormalities-from bench to bedside. Eur Heart J. 2014;35(45):3180–93. https://doi.org/10.1093/eurheartj/ehu427.

    Article  CAS  PubMed  Google Scholar 

  5. Takagi Y, Yasuda S, Tsunoda R, Ogata Y, Seki A, Sumiyoshi T, Matsui M, Goto T, Tanabe Y, Sueda S, Sato T, Ogawa S, Kubo N, Momomura S, Ogawa H, Shimokawa H, Japanese Coronary Spasm Association. Clinical characteristics and long-term prognosis of vasospastic angina patients who survived out-of-hospital cardiac arrest: multicenter registry study of the Japanese Coronary Spasm Association. Circ Arrhythm Electrophysiol. 2011;4(3):295–302. https://doi.org/10.1161/CIRCEP.110.959809.

    Article  PubMed  Google Scholar 

  6. Takagi Y, Takahashi J, Yasuda S, Miyata S, Tsunoda R, Ogata Y, Seki A, Sumiyoshi T, Matsui M, Goto T, Tanabe Y, Sueda S, Sato T, Ogawa S, Kubo N, Momomura S, Ogawa H, Shimokawa H, Japanese Coronary Spasm Association. Prognostic stratification of patients with vasospastic angina: a comprehensive clinical risk score developed by the Japanese Coronary Spasm Association. J Am Coll Cardiol. 2013;62(13):1144–53. https://doi.org/10.1016/j.jacc.2013.07.018.

    Article  PubMed  Google Scholar 

  7. Takahashi J, Nihei T, Takagi Y, Miyata S, Odaka Y, Tsunoda R, Seki A, Sumiyoshi T, Matsui M, Goto T, Tanabe Y, Sueda S, Momomura S, Yasuda S, Ogawa H, Shimokawa H, Japanese Coronary Spasm Association. Prognostic impact of chronic nitrate therapy in patients with vasospastic angina: multicentre registry study of the Japanese coronary spasm association. Eur Heart J. 2015;36(4):228–37. https://doi.org/10.1093/eurheartj/ehu313.

    Article  CAS  PubMed  Google Scholar 

  8. JCS Joint Working Group. Guidelines for diagnosis and treatment of patients with vasospastic angina (Coronary Spastic Angina) (JCS 2013). Circ J. 2014;78(11):2779–801. https://doi.org/10.1253/circj.cj-66-0098.

    Article  Google Scholar 

  9. Beltrame JF, Crea F, Kaski JC, Ogawa H, Ong P, Sechtem U, Shimokawa H, Bairey Merz CN, Coronary Vasomotion Disorders International Study Group (COVADIS). International standardization of diagnostic criteria for vasospastic angina. Eur Heart J. 2017;38(33):2565–8. https://doi.org/10.1093/eurheartj/ehv351.

    Article  PubMed  Google Scholar 

  10. Sueda S, Kohno H, Ochi T, Uraoka T, Tsunemitsu K. Overview of the pharmacological spasm provocation test: comparisons between acetylcholine and ergonovine. J Cardiol. 2017;69(1):57–65. https://doi.org/10.1016/j.jjcc.2016.09.012.

    Article  PubMed  Google Scholar 

  11. Zaya M, Mehta PK, Merz CN. Provocative testing for coronary reactivity and spasm. J Am Coll Cardiol. 2014;63(2):103–9. https://doi.org/10.1016/j.jacc.2013.10.038.

    Article  PubMed  Google Scholar 

  12. Kikuchi Y, Yasuda S, Aizawa K, Tsuburaya R, Ito Y, Takeda M, Nakayama M, Ito K, Takahashi J, Shimokawa H. Enhanced Rho-kinase activity in circulating neutrophils of patients with vasospastic angina: a possible biomarker for diagnosis and disease activity assessment. J Am Coll Cardiol. 2011;58(12):1231–7. https://doi.org/10.1016/j.jacc.2011.05.046.

    Article  CAS  PubMed  Google Scholar 

  13. Nihei T, Takahashi J, Tsuburaya R, Ito Y, Shiroto T, Hao K, Takagi Y, Matsumoto Y, Nakayama M, Miyata S, Sakata Y, Ito K, Shimokawa H. Circadian variation of Rho-kinase activity in circulating leukocytes of patients with vasospastic angina. Circ J. 2014;78(5):1183–90. https://doi.org/10.1253/circj.cj-13-1458.

    Article  PubMed  Google Scholar 

  14. Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: an update. Eur Heart J. 2014;35(17):1101–11. https://doi.org/10.1093/eurheartj/eht513.

    Article  PubMed  Google Scholar 

  15. Pepine CJ, Anderson RD, Sharaf BL, Reis SE, Smith KM, Handberg EM, Johnson BD, Sopko G, Bairey Merz CN. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women's ischemia syndrome evaluation) study. J Am Coll Cardiol. 2010;55(25):2825–32. https://doi.org/10.1016/j.jacc.2010.01.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Taqueti VR, Di Carli MF. Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72(21):2625–41. https://doi.org/10.1016/j.jacc.2018.09.042.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Camici PG, d'Amati G, Rimoldi O. Coronary microvascular dysfunction: mechanisms and functional assessment. Nat Rev Cardiol. 2015;12(1):48–62. https://doi.org/10.1038/nrcardio.2014.160.

    Article  PubMed  Google Scholar 

  18. Lamendola P, Lanza GA, Spinelli A, Sgueglia GA, Di Monaco A, Barone L, Sestito A, Crea F. Long-term prognosis of patients with cardiac syndrome X. Int J Cardiol. 2010;140(2):197–9. https://doi.org/10.1016/j.ijcard.2008.11.026.

    Article  PubMed  Google Scholar 

  19. Lanza GA, Crea F. Primary coronary microvascular dysfunction: clinical presentation, pathophysiology, and management. Circulation. 2010;121(21):2317–25. https://doi.org/10.1161/CIRCULATIONAHA.109.900191.

    Article  PubMed  Google Scholar 

  20. Kanatsuka H, Eastham CL, Marcus ML, Lamping KG. Effects of nitroglycerin on the coronary microcirculation in normal and ischemic myocardium. J Cardiovasc Pharmacol. 1992;19(5):755–63.

    CAS  PubMed  Google Scholar 

  21. Gulati M, Shaw LJ, Bairey Merz CN. Myocardial ischemia in women: lessons from the NHLBI WISE study. Clin Cardiol. 2012;35(3):141–8. https://doi.org/10.1002/clc.21966.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mygind ND, Michelsen MM, Pena A, Frestad D, Dose N, Aziz A, Faber R, Høst N, Gustafsson I, Hansen PR, Hansen HS, Bairey Merz CN, Kastrup J, Prescott E. Coronary microvascular function and cardiovascular risk factors in women with angina pectoris and no obstructive coronary artery disease: the iPOWER study. J Am Heart Assoc. 2016;5(3):e003064. https://doi.org/10.1161/JAHA.115.003064.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pijls NH, De Bruyne B, Bech GJ, Liistro F, Heyndrickx GR, Bonnier HJ, Koolen JJ. Coronary pressure measurement to assess the hemodynamic significance of serial stenoses within one coronary artery: validation in humans. Circulation. 2000;102(19):2371–7. https://doi.org/10.1161/01.cir.102.19.2371.

    Article  CAS  PubMed  Google Scholar 

  24. Ong P, Camici PG, Beltrame JF, Crea F, Shimokawa H, Sechtem U, Kaski JC, Noel Bairey Merz C, Coronary Vasomotion Disorders International Study Group (COVADIS). International standardization of diagnostic criteria for microvascular angina. Int J Cardiol. 2018;250:16–20. https://doi.org/10.1016/j.ijcard.2017.08.068.

    Article  PubMed  Google Scholar 

  25. Murthy VL, Naya M, Taqueti VR, Foster CR, Gaber M, Hainer J, Dorbala S, Blankstein R, Rimoldi O, Camici PG, Di Carli MF. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014;129(24):2518–27. https://doi.org/10.1161/CIRCULATIONAHA.113.008507.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bairey Merz CN, Handberg EM, Shufelt CL, Mehta PK, Minissian MB, Wei J, Thomson LE, Berman DS, Shaw LJ, Petersen JW, Brown GH, Anderson RD, Shuster JJ, Cook-Wiens G, Rogatko A, Pepine CJ. A randomized, placebo-controlled trial of late Na current inhibition (ranolazine) in coronary microvascular dysfunction (CMD): impact on angina and myocardial perfusion reserve. Eur Heart J. 2016;37(19):1504–13. https://doi.org/10.1093/eurheartj/ehv647.

    Article  CAS  PubMed  Google Scholar 

  27. Sara JD, Widmer RJ, Matsuzawa Y, Lennon RJ, Lerman LO, Lerman A. Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. JACC Cardiovasc Interv. 2015;8(11):1445–53. https://doi.org/10.1016/j.jcin.2015.06.017.

    Article  PubMed  Google Scholar 

  28. Shah NR, Cheezum MK, Veeranna V, Horgan SJ, Taqueti VR, Murthy VL, Foster C, Hainer J, Daniels KM, Rivero J, Shah AM, Stone PH, Morrow DA, Steigner ML, Dorbala S, Blankstein R, Di Carli MF. Ranolazine in symptomatic diabetic patients without obstructive coronary artery disease: impact on microvascular and diastolic function. J Am Heart Assoc. 2017;6(5):e005027. https://doi.org/10.1161/JAHA.116.005027.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Taqueti VR, Solomon SD, Shah AM, Desai AS, Groarke JD, Osborne MT, Hainer J, Bibbo CF, Dorbala S, Blankstein R, Di Carli MF. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J. 2018;39(10):840–9. https://doi.org/10.1093/eurheartj/ehx721.

    Article  CAS  PubMed  Google Scholar 

  30. Webb CM, Collins P, Di Mario C. Normal coronary physiology assessed by intracoronary Doppler ultrasound. Herz. 2005;30(1):8–16. https://doi.org/10.1007/s00059-005-2647-z.

    Article  PubMed  Google Scholar 

  31. Layland J, Carrick D, Lee M, Oldroyd K, Berry C. Adenosine: physiology, pharmacology, and clinical applications. JACC Cardiovasc Interv. 2014;7(6):581–91. https://doi.org/10.1016/j.jcin.2014.02.009.

    Article  PubMed  Google Scholar 

  32. McGuinness ME, Talbert RL. Pharmacologic stress testing: experience with dipyridamole, adenosine, and dobutamine. Am J Hosp Pharm. 1994;51(3):328–46; quiz 404-5

    CAS  PubMed  Google Scholar 

  33. Loffler AI, Bourque JM. Coronary microvascular dysfunction, microvascular angina, and management. Curr Cardiol Rep. 2016;18(1):1. https://doi.org/10.1007/s11886-015-0682-9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Saraste M, Koskenvuo J, Knuuti J, Toikka J, Laine H, Niemi P, Sakuma H, Hartiala J. Coronary flow reserve: measurement with transthoracic Doppler echocardiography is reproducible and comparable with positron emission tomography. Clin Physiol. 2001;21(1):114–22. https://doi.org/10.1046/j.1365-2281.2001.00296.x.

    Article  CAS  PubMed  Google Scholar 

  35. Caiati C, Montaldo C, Zedda N, Montisci R, Ruscazio M, Lai G, Cadeddu M, Meloni L, Iliceto S. Validation of a new noninvasive method (contrast-enhanced transthoracic second harmonic echo Doppler) for the evaluation of coronary flow reserve: comparison with intracoronary Doppler flow wire. J Am Coll Cardiol. 1999;34(4):1193–200. https://doi.org/10.1016/s0735-1097(99)00342-3.

    Article  CAS  PubMed  Google Scholar 

  36. Rigo F, Richieri M, Pasanisi E, Cutaia V, Zanella C, Della Valentina P, Di Pede F, Raviele A, Picano E. Usefulness of coronary flow reserve over regional wall motion when added to dual-imaging dipyridamole echocardiography. Am J Cardiol. 2003;91(3):269–73. https://doi.org/10.1016/s0002-9149(02)03153-3.

    Article  PubMed  Google Scholar 

  37. Kaul S. Myocardial contrast echocardiography: a 25-year retrospective. Circulation. 2008;118(3):291–308. https://doi.org/10.1161/CIRCULATIONAHA.107.747303.

    Article  PubMed  Google Scholar 

  38. Vogel R, Indermuhle A, Reinhardt J, Meier P, Siegrist PT, Namdar M, Kaufmann PA, Seiler C. The quantification of absolute myocardial perfusion in humans by contrast echocardiography: algorithm and validation. J Am Coll Cardiol. 2005;45(5):754–62. https://doi.org/10.1016/j.jacc.2004.11.044.

    Article  PubMed  Google Scholar 

  39. Gan LM, Svedlund S, Wittfeldt A, Eklund C, Gao S, Matejka G, Jeppsson A, Albertsson P, Omerovic E, Lerman A. Incremental value of transthoracic Doppler echocardiography-assessed coronary flow reserve in patients with suspected myocardial ischemia undergoing myocardial perfusion scintigraphy. J Am Heart Assoc. 2017;6(4):e004875. https://doi.org/10.1161/JAHA.116.004875.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gurudevan SV, Nelson MD, Rader F, Tang X, Lewis J, Johannes J, Belcik JT, Elashoff RM, Lindner JR, Victor RG. Cocaine-induced vasoconstriction in the human coronary microcirculation: new evidence from myocardial contrast echocardiography. Circulation. 2013;128(6):598–604. https://doi.org/10.1161/CIRCULATIONAHA.113.002937.

    Article  CAS  PubMed  Google Scholar 

  41. Camici PG, Rimoldi OE. The clinical value of myocardial blood flow measurement. J Nucl Med. 2009;50(7):1076–87. https://doi.org/10.2967/jnumed.108.054478.

    Article  PubMed  Google Scholar 

  42. Gould KL, Johnson NP, Bateman TM, Beanlands RS, Bengel FM, Bober R, Camici PG, Cerqueira MD, BJW C, Di Carli MF, Dorbala S, Gewirtz H, Gropler RJ, Kaufmann PA, Knaapen P, Knuuti J, Merhige ME, Rentrop KP, Ruddy TD, Schelbert HR, Schindler TH, Schwaiger M, Sdringola S, Vitarello J, Williams KA Sr, Gordon D, Dilsizian V, Narula J. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol. 2013;62(18):1639–53. https://doi.org/10.1016/j.jacc.2013.07.076.

    Article  PubMed  Google Scholar 

  43. Taqueti VR, Everett BM, Murthy VL, Gaber M, Foster CR, Hainer J, Blankstein R, Dorbala S, Di Carli MF. Interaction of impaired coronary flow reserve and cardiomyocyte injury on adverse cardiovascular outcomes in patients without overt coronary artery disease. Circulation. 2015;131(6):528–35. https://doi.org/10.1161/CIRCULATIONAHA.114.009716.

    Article  CAS  PubMed  Google Scholar 

  44. Gupta A, Taqueti VR, van de Hoef TP, Bajaj NS, Bravo PE, Murthy VL, Osborne MT, Seidelmann SB, Vita T, Bibbo CF, Harrington M, Hainer J, Rimoldi O, Dorbala S, Bhatt DL, Blankstein R, Camici PG, Di Carli MF. Integrated noninvasive physiological assessment of coronary circulatory function and impact on cardiovascular mortality in patients with stable coronary artery disease. Circulation. 2017;136(24):2325–36. https://doi.org/10.1161/CIRCULATIONAHA.117.029992.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Marroquin OC, Holubkov R, Edmundowicz D, Rickens C, Pohost G, Buchthal S, Pepine CJ, Sopko G, Sembrat RC, Meltzer CC, Reis SE. Heterogeneity of microvascular dysfunction in women with chest pain not attributable to coronary artery disease: implications for clinical practice. Am Heart J. 2003;145(4):628–35. https://doi.org/10.1067/mhj.2003.95.

    Article  PubMed  Google Scholar 

  46. Feher A, Sinusas AJ. Quantitative assessment of coronary microvascular function: dynamic single-photon emission computed tomography, positron emission tomography, ultrasound, computed tomography, and magnetic resonance imaging. Circ Cardiovasc Imaging. 2017;10(8):e006427. https://doi.org/10.1161/CIRCIMAGING.117.006427.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Panting JR, Gatehouse PD, Yang GZ, Grothues F, Firmin DN, Collins P, Pennell DJ. Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med. 2002;346(25):1948–53. https://doi.org/10.1056/NEJMoa012369.

    Article  PubMed  Google Scholar 

  48. Doyle M, Weinberg N, Pohost GM, Bairey Merz CN, Shaw LJ, Sopko G, Fuisz A, Rogers WJ, Walsh EG, Johnson BD, Sharaf BL, Pepine CJ, Mankad S, Reis SE, Vido DA, Rayarao G, Bittner V, Tauxe L, Olson MB, Kelsey SF, Biederman RW. Prognostic value of global MR myocardial perfusion imaging in women with suspected myocardial ischemia and no obstructive coronary disease: results from the NHLBI-sponsored WISE (Women's Ischemia Syndrome Evaluation) study. JACC Cardiovasc Imaging. 2010;3(10):1030–6. https://doi.org/10.1016/j.jcmg.2010.07.008.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liu A, Wijesurendra RS, Liu JM, Forfar JC, Channon KM, Jerosch-Herold M, Jerosch-Herold M, Piechnik SK, Neubauer S, Kharbanda RK, Ferreira VM. Diagnosis of microvascular angina using cardiac magnetic resonance. J Am Coll Cardiol. 2018;71(9):969–79. https://doi.org/10.1016/j.jacc.2017.12.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ford TJ, Berry C. How to diagnose and manage angina without obstructive coronary artery disease: lessons from the British Heart Foundation CorMicA Trial. Interv Cardiol. 2019;14(2):76–82. https://doi.org/10.15420/icr.2019.04.R1.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wei J, Mehta PK, Johnson BD, Samuels B, Kar S, Anderson RD, Azarbal B, Petersen J, Sharaf B, Handberg E, Shufelt C, Kothawade K, Sopko G, Lerman A, Shaw L, Kelsey SF, Pepine CJ, Merz CN. Safety of coronary reactivity testing in women with no obstructive coronary artery disease: results from the NHLBI-sponsored WISE (Women's ischemia syndrome evaluation) study. JACC Cardiovasc Interv. 2012;5(6):646–53. https://doi.org/10.1016/j.jcin.2012.01.023.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol. 1974;33(1):87–94. https://doi.org/10.1016/0002-9149(74)90743-7.

    Article  CAS  PubMed  Google Scholar 

  53. Pijls NH, De Bruyne B, Smith L, Aarnoudse W, Barbato E, Bartunek J, Bech GJ, Van De Vosse F. Coronary thermodilution to assess flow reserve: validation in humans. Circulation. 2002;105(21):2482–6. https://doi.org/10.1161/01.cir.0000017199.09457.3d.

    Article  PubMed  Google Scholar 

  54. McGinn AL, White CW, Wilson RF. Interstudy variability of coronary flow reserve. Influence of heart rate, arterial pressure, and ventricular preload. Circulation. 1990;81(4):1319–30. https://doi.org/10.1161/01.cir.81.4.1319.

    Article  CAS  PubMed  Google Scholar 

  55. Ford TJ, Corcoran D, Berry C. Coronary artery disease: physiology and prognosis. Eur Heart J. 2017;38(25):1990–2. https://doi.org/10.1093/eurheartj/ehx226.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fearon WF, Balsam LB, Farouque HM, Caffarelli AD, Robbins RC, Fitzgerald PJ, Yock PG, Yeung AC. Novel index for invasively assessing the coronary microcirculation. Circulation. 2003;107(25):3129–32. https://doi.org/10.1161/01.CIR.0000080700.98607.D1.

    Article  PubMed  Google Scholar 

  57. Lee BK, Lim HS, Fearon WF, Yong AS, Yamada R, Tanaka S, Lee DP, Yeung AC, Tremmel JA. Invasive evaluation of patients with angina in the absence of obstructive coronary artery disease. Circulation. 2015;131(12):1054–60. https://doi.org/10.1161/CIRCULATIONAHA.114.012636.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lee JM, Jung JH, Hwang D, Park J, Fan Y, Na SH, Doh JH, Nam CW, Shin ES, Koo BK. Coronary flow reserve and microcirculatory resistance in patients with intermediate coronary stenosis. J Am Coll Cardiol. 2016;67(10):1158–69. https://doi.org/10.1016/j.jacc.2015.12.053.

    Article  PubMed  Google Scholar 

  59. Fearon WF, Kobayashi Y. Invasive assessment of the coronary microvasculature: the index of microcirculatory resistance. Circ Cardiovasc Interv. 2017;10(12):e005361. https://doi.org/10.1161/CIRCINTERVENTIONS.117.005361.

    Article  PubMed  Google Scholar 

  60. Ng MK, Yeung AC, Fearon WF. Invasive assessment of the coronary microcirculation: superior reproducibility and less hemodynamic dependence of index of microcirculatory resistance compared with coronary flow reserve. Circulation. 2006;113(17):2054–61. https://doi.org/10.1161/CIRCULATIONAHA.105.603522.

    Article  PubMed  Google Scholar 

  61. Kaski JC, Crea F, Nihoyannopoulos P, Hackett D, Maseri A. Transient myocardial ischemia during daily life in patients with syndrome X. Am J Cardiol. 1986;58(13):1242–7. https://doi.org/10.1016/0002-9149(86)90390-5.

    Article  CAS  PubMed  Google Scholar 

  62. Lanza GA, Manzoli A, Pasceri V, Colonna G, Cianflone D, Crea F, Maseri A. Ischemic-like ST-segment changes during Holter monitoring in patients with angina pectoris and normal coronary arteries but negative exercise testing. Am J Cardiol. 1997;79(1):1–6. https://doi.org/10.1016/s0002-9149(96)00666-2.

    Article  CAS  PubMed  Google Scholar 

  63. Mohri M, Koyanagi M, Egashira K, Tagawa H, Ichiki T, Shimokawa H, Takeshita A. Angina pectoris caused by coronary microvascular spasm. Lancet. 1998;351(9110):1165–9. https://doi.org/10.1016/S0140-6736(97)07329-7.

    Article  CAS  PubMed  Google Scholar 

  64. Clarke JG, Davies GJ, Kerwin R, Hackett D, Larkin S, Dawbarn D, Lee Y, Bloom SR, Yacoub M, Maseri A. Coronary artery infusion of neuropeptide Y in patients with angina pectoris. Lancet. 1987;1(8541):1057–9. https://doi.org/10.1016/s0140-6736(87)90483-1.

    Article  CAS  PubMed  Google Scholar 

  65. Sun H, Mohri M, Shimokawa H, Usui M, Urakami L, Takeshita A. Coronary microvascular spasm causes myocardial ischemia in patients with vasospastic angina. J Am Coll Cardiol. 2002;39(5):847–51. https://doi.org/10.1016/s0735-1097(02)01690-x.

    Article  PubMed  Google Scholar 

  66. Mohri M, Shimokawa H, Hirakawa Y, Masumoto A, Takeshita A. Rho-kinase inhibition with intracoronary fasudil prevents myocardial ischemia in patients with coronary microvascular spasm. J Am Coll Cardiol. 2003;41(1):15–9. https://doi.org/10.1016/s0735-1097(02)02632-3.

    Article  CAS  PubMed  Google Scholar 

  67. Chen C, Wei J, AlBadri A, Zarrini P, Bairey Merz CN. Coronary microvascular dysfunction- epidemiology, pathogenesis, prognosis, diagnosis, risk factors and therapy. Circ J. 2016;81(1):3–11. https://doi.org/10.1253/circj.CJ-16-1002.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cosin-Sales J, Pizzi C, Brown S, Kaski JC. C-reactive protein, clinical presentation, and ischemic activity in patients with chest pain and normal coronary angiograms. J Am Coll Cardiol. 2003;41(9):1468–74. https://doi.org/10.1016/s0735-1097(03)00243-2.

    Article  CAS  PubMed  Google Scholar 

  69. Golino P, Ashton JH, Buja LM, Rosolowsky M, Taylor AL, McNatt J, Campbell WB, Willerson JT. Local platelet activation causes vasoconstriction of large epicardial canine coronary arteries in vivo. Thromboxane A2 and serotonin are possible mediators. Circulation. 1989;79(1):154–66. https://doi.org/10.1161/01.cir.79.1.154.

    Article  CAS  PubMed  Google Scholar 

  70. Figueras J, Domingo E, Cortadellas J, Padilla F, Dorado DG, Segura R, Galard R, Soler JS. Comparison of plasma serotonin levels in patients with variant angina pectoris versus healed myocardial infarction. Am J Cardiol. 2005;96(2):204–7. https://doi.org/10.1016/j.amjcard.2005.03.044.

    Article  CAS  PubMed  Google Scholar 

  71. Murakami Y, Ishinaga Y, Sano K, Murakami R, Kinoshita Y, Kitamura J, Kobayashi K, Okada S, Matsubara K, Shimada T, Morioka S. Increased serotonin release across the coronary bed during a nonischemic interval in patients with vasospastic angina. Clin Cardiol. 1996;19(6):473–6. https://doi.org/10.1002/clc.4960190606.

    Article  CAS  PubMed  Google Scholar 

  72. Odaka Y, Takahashi J, Tsuburaya R, Nishimiya K, Hao K, Matsumoto Y, Ito K, Sakata Y, Miyata S, Manita D, Hirowatari Y, Shimokawa H. Plasma concentration of serotonin is a novel biomarker for coronary microvascular dysfunction in patients with suspected angina and unobstructive coronary arteries. Eur Heart J. 2017;38(7):489–96. https://doi.org/10.1093/eurheartj/ehw448.

    Article  CAS  PubMed  Google Scholar 

  73. Sun H, Fukumoto Y, Ito A, Shimokawa H, Sunagawa K. Coronary microvascular dysfunction in patients with microvascular angina: analysis by TIMI frame count. J Cardiovasc Pharmacol. 2005;46(5):622–6. https://doi.org/10.1097/01.fjc.0000181291.96086.ae.

    Article  CAS  PubMed  Google Scholar 

  74. Ong P, Athanasiadis A, Borgulya G, Mahrholdt H, Kaski JC, Sechtem U. High prevalence of a pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries. The ACOVA study (abnormal COronary VAsomotion in patients with stable angina and unobstructed coronary arteries). J Am Coll Cardiol. 2012;59(7):655–62. https://doi.org/10.1016/j.jacc.2011.11.015.

    Article  CAS  PubMed  Google Scholar 

  75. Montone RA, Niccoli G, Fracassi F, Russo M, Gurgoglione F, Camma G, Lanza GA, Crea F. Patients with acute myocardial infarction and non-obstructive coronary arteries: safety and prognostic relevance of invasive coronary provocative tests. Eur Heart J. 2018;39(2):91–8. https://doi.org/10.1093/eurheartj/ehx667.

    Article  CAS  PubMed  Google Scholar 

  76. Suda A, Takahashi J, Hao K, Kikuchi Y, Shindo T, Ikeda S, Sato K, Sugisawa J, Matsumoto Y, Miyata S, Sakata Y, Shimokawa H. Coronary functional abnormalities in patients with angina and nonobstructive coronary artery disease. J Am Coll Cardiol. 2019;74(19):2350–60. https://doi.org/10.1016/j.jacc.2019.08.1056.

    Article  CAS  PubMed  Google Scholar 

  77. Ford TJ, Stanley B, Good R, Rocchiccioli P, McEntegart M, Watkins S, Eteiba H, Shaukat A, Lindsay M, Robertson K, Hood S, McGeoch R, McDade R, Yii E, Sidik N, McCartney P, Corcoran D, Collison D, Rush C, McConnachie A, Touyz RM, Oldroyd KG, Berry C. Stratified medical therapy using invasive coronary function testing in angina: The CorMicA Trial. J Am Coll Cardiol. 2018;72(23 Pt A):2841–55. https://doi.org/10.1016/j.jacc.2018.09.006.

    Article  PubMed  Google Scholar 

  78. Ford TJ, Stanley B, Sidik N, Good R, Rocchiccioli P, McEntegart M, Watkins S, Eteiba H, Shaukat A, Lindsay M, Robertson K, Hood S, McGeoch R, McDade R, Yii E, McCartney P, Corcoran D, Collison D, Rush C, Sattar N, McConnachie A, Touyz RM, Oldroyd KG, Berry C. 1-year outcomes of angina management guided by invasive coronary function testing (CorMicA). JACC Cardiovasc Interv. 2020;13(1):33–45. https://doi.org/10.1016/j.jcin.2019.11.001.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Shimokawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takahashi, J., Shimokawa, H. (2021). Diagnosis of Coronary Microvascular Dysfunction. In: Shimokawa, H. (eds) Coronary Vasomotion Abnormalities. Springer, Singapore. https://doi.org/10.1007/978-981-15-7594-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7594-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7593-8

  • Online ISBN: 978-981-15-7594-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics