Skip to main content

Review of the Current Status of the Hydrogen Economy

  • Chapter
  • First Online:
Hydrogen and Hydrogen-Containing Molecules on Metal Surfaces

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 71))

Abstract

The envisioned hydrogen-powered future is gradually taking shape in our time. In many countries around the world, active efforts to decarbonize energy systems have turned hydrogen into the centerpiece of grand master plans for clean and sustainable replacement to fossil fuels. This chapter tackles the current status of hydrogen economy, which provides a scientific, social, and economic perspective of hydrogen economy and its realization in our modern time. It elaborates the importance of research findings on the different aspects—hydrogen production, storage, delivery, and fuel cell—relevant to the realization of a hydrogen economy. It also illustrates the impact of the results of scientific investigations in attaining innovative hydrogen technologies. Lastly, it discusses the current technologies for hydrogen in the context of their implementation following the hydrogen roadmaps of different countries around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Rigden, Hydrogen: The Essential Element (President and Fellows of Harvard College, USA, 2002)

    Google Scholar 

  2. O.T. Benfey, J. Chem. Educ. 29, 78 (1952)

    Google Scholar 

  3. U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. s. l: https://www.energy.gov/eere/fuelcells/fuel-cell-technologies-office, Accessed October 2019

  4. C. Zou, Q. Zhao, G. Zhang, B. Xiong, Natural Gas Indus B 3, 1–11 (2016)

    Google Scholar 

  5. International Energy Outlook 2019 with projections to 2050. https://www.eia.gov/outlooks/ieo/pdf/ieo2019.pdf. Accessed October 2019

  6. J.O.M. Bockris, Int. J. Hydrogen Energy 38, 2579–2588 (2013)

    Google Scholar 

  7. G. Zini, P. Tartarini, Solar hydrogen energy systems: science and technology for the hydrogen economy. Springer Science & Business Media (2012)

    Google Scholar 

  8. M.H.Rashid, Electric Renewable Energy Systems. Academic Press (2015)

    Google Scholar 

  9. B. Ruscic, A.F. Wagner, L.B. Harding, R.L. Asher, D. Feller, D.A. Dixon, K.A. Peterson, Y. Song, X. Qian, C.Y. Ng, J. Liu, J. Phys. Chem. A 106(11), 2727–2747 (2002)

    Google Scholar 

  10. A. Le Gal, S. Abanades, J. Phys. Chem. C 116, 13516–13523 (2012)

    Google Scholar 

  11. R.B. Diver, J.E. Miller, M.D. Allendorf, N.P. Siegel, R.E. Hogan, J. Sol.Energy Eng. 130, 041001 (2008)

    Google Scholar 

  12. C.N.R. Rao, S. Dey, Proc. Natl. Acad. Sci. 114, 13385–13393 (2017)

    Google Scholar 

  13. T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W. Song, S.L. Suib, Molecules 21, 900 (2016)

    Google Scholar 

  14. Y. Asada, J. Miyake, J. Biosci. Bioeng. 88, 1–6 (1999)

    Google Scholar 

  15. S. Ye, R. Wang, M.Z. Wu, Y.P. Yuan, Appl. Surf. Sci. 358, 15–27 (2015)

    ADS  Google Scholar 

  16. K. Maeda, K. Domen, J. Phys. Chem. Lett. 1, 2655–2661 (2010)

    Google Scholar 

  17. F.M. Sapountzi, J.M. Gracia, H.O. Fredriksson, J.H. Niemantsverdriet, Prog. Energy Combust. Sci. 58, 1–35 (2017)

    Google Scholar 

  18. A. Li, H. Ooka, N. Bonnet, T. Hayashi, Y. Sun, Q. Jiang, C. Li, H. Han, R. Nakamura, R. Angew. Chem. 131, 5108–5112 (2019)

    Google Scholar 

  19. B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Nørskov, J. Am. Chem. Soc. 127, 5308 (2005)

    Google Scholar 

  20. T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 317, 100–102 (2007)

    ADS  Google Scholar 

  21. Y. Yan, B.Y. Xia, B. Zhao, X. Wang, J. Mater. Chem. A 4, 17587–17603 (2016)

    Google Scholar 

  22. L.A. King, M.A. Hubert, C. Capuano, J. Manco, N. Danilovic, E. Valle, T.R. Hellstern, K. Ayers, T.F. Jaramillo, Nat. Nanotechnol. 14, 1071–1074 (2019)

    ADS  Google Scholar 

  23. L. Wei, S. Xu, L. Zhang, C. Liu, H. Zhu, S. Liu, Int. J. Hydrogen Energy 32, 24–31 (2007)

    Google Scholar 

  24. B. Moghtaderi, Fuel 86, 2422–2430 (2007)

    Google Scholar 

  25. S. Farzad, M.A. Mandegari, J.F. Görgens, Biofuel Res. J. 3, 483–495 (2016)

    Google Scholar 

  26. N.A. Al-Mufachi, N.V. Rees, R. Steinberger-Wilkens, Renew. Sustain. Energy Rev. 47, 540–551 (2015)

    Google Scholar 

  27. W. Dong, J. Hafner, Phys. Rev. B 56, 15396–15403 (1997)

    ADS  Google Scholar 

  28. S. Sakong, C. Mosh, A. Lozano, H.F. Busnengo, A. Groß, Lowering energy barriers in surface reactions through concerted reaction mechanisms. ChemPhysChem 13, 3467–3471 (2012)

    Google Scholar 

  29. A.A.B. Padama, B. Chantaramolee, H. Nakanishi, H. Kasai, Hydrogen atom absorption in hydrogen-covered Pd(110) (1X2) missing-row surface. Int. J. Hydrogen Energy 39, 6598–6603 (2014)

    Google Scholar 

  30. A.A.B. Padama, H. Kasai, J. Alloy. Compd. 645, S123–S127 (2015)

    Google Scholar 

  31. R.J. Behm, V. Penka, M.G. Cattania, K. Christmann, G. Ertl, J. Chem. Phys. 78, 7486–7490 (1983)

    ADS  Google Scholar 

  32. B.D. Adams, A. Chen, Mater. Today 14, 282–289 (2011)

    Google Scholar 

  33. L. Semidey-Flecha, D.S. Sholl, J. Chem. Phys. 128, 144701 (2008)

    ADS  Google Scholar 

  34. S. Nayebossadri, J.D. Speight, D. Book, ACS Appl. Mater. Interfaces. 9, 2650–2661 (2017)

    Google Scholar 

  35. Y.W. Budhi, H. Rionaldo, A.A.B. Padama, H. Kasai, I. Noezar, Int. J. Hydrogen Energy 40, 10081–10089 (2015)

    Google Scholar 

  36. Y.W. Budhi, I. Noezar, F. Aldiansyah, P.V. Kemala, A.A.B. Padama, H. Kasai, Int. J. Hydrogen Energy 36, 15372–15381 (2011)

    Google Scholar 

  37. A. Basile, F. Gallucci, S. Tosti, Synthesis, Characterization, and Applications of Palladium Membranes, Membrane Science and Technology, vol 13 (Elsevier, 2008), pp 255–323

    Google Scholar 

  38. F. Gallucci, E. Fernandez, P. Corengia, M.S. Annaland, Chem. Eng. Sci. 92, 40–66 (2013)

    Google Scholar 

  39. M.D. Dolan, J. Membr. Sci. 362, 12–28 (2010)

    Google Scholar 

  40. S. Kozhakhmetov, N. Sidorov, V. Piven, I. Sipatov, I. Gabis, B. Arinov, J. Alloy. Compd. 645, S36–S40 (2015)

    Google Scholar 

  41. K. Ishikawa, H. Habaguchi, N. Obata, Y. Kobori, N. Ohtsu, K. Aoki, Int. J. Hydrogen Energy 41, 5269–5275 (2016)

    Google Scholar 

  42. N. Ohtsu, K. Ishikawa, Y. Kobori, Appl. Surf. Sci. 360, 566–571 (2016)

    ADS  Google Scholar 

  43. T.L. LeValley, A.R. Richard, M. Fan, Int. J. Hydrogen Energy 39, 16983–17000 (2014)

    Google Scholar 

  44. H. Wang, D.W. Blaylock, A.H. Dam, S.E. Liland, K.R. Rout, Y.A. Zhu, W.H. Green, A. Holmen, D. Chen, Catal. Sci. Technol. 7, 1713–1725 (2017)

    Google Scholar 

  45. Z.X. Yu, D. Chen, B. Totdal, A. Holmen, J. Phys. Chem. B 109, 6096–6102 (2005)

    Google Scholar 

  46. R.L. Arevalo, S.M. Aspera, M.C.S. Escaño, H. Nakanishi, H. Kasai, Scientific Reports 7, 13963 (2017)

    ADS  Google Scholar 

  47. I. Dincer, C. Acar, Int. J. Hydrogen Energy 40, 11094–11111 (2015)

    Google Scholar 

  48. M. Ball, M. Weeda, Int. J. Hydrogen Energy 40, 7903–7919 (2015)

    Google Scholar 

  49. R. Moradi, K.M. Groth, Int. J. Hydrogen Energy 44, 12254 (2019)

    Google Scholar 

  50. C. White, R. Steeper, A. Lutz, Int. J. Hydrogen Energy 31, 1292 (2006)

    Google Scholar 

  51. R. Ahluwalia, T. Hua, J.-K. Peng, S. Lasher, K. McKennery, J. Sinha, M. Gardiner, Int. J. Hydrogen Energy 35, 4171 (2010)

    Google Scholar 

  52. Board CAR. Staff report: Initial statement of reasons. (Online). https://www.arb.ca.gov/regact/2011/soreci2011/soreisor.pdf.

  53. I. Staffell, D. Scamman, A.V. Abad, P. Balcombe, P.E. Dodds, P. Ekins, N. Shah, K.R. Ward, Energy Environ. Sci. 12, 463–491 (2019)

    Google Scholar 

  54. S.Y. Wang, S.P. Jiang, Natl. Sci. Rev. 4, 163–166 (2017)

    Google Scholar 

  55. A. Tressaud, Fluorine: a paradoxical element, vol 5 (Academic Press, 2018)

    Google Scholar 

  56. J.K. Nørskov, T. Bligaard, B. Hvolbæk, F.A. Pedersen, I. Chorkendorff, C.H. Christensen, Chem. Soc. Rev. 37, 2163–2171 (2008)

    Google Scholar 

  57. B.G. Pollet, I. Staffell, J.L. Shang, Electrochim. Acta 84, 235–249 (2012)

    Google Scholar 

  58. P.E. Dodds, P. Ekins, Int. J. Hydrogen Energy 39, 13941–13953 (2014)

    Google Scholar 

  59. Hydrogen Stations Maps (Online). https://www.h2stations.org/stations-map/

  60. Road Map to a US Hydrogen Economy (Online) https://www.fchea.org/us-hydrogen-study

  61. Asia: Resources (Online). https://www.nationalgeographic.org/encyclopedia/asia-resources/

  62. How Asia became a global economic powerhouse (Online). https://www.asiatimes.com/2019/10/article/how-asia-became-a-global-economic-powerhouse/

  63. Asia Renewable Energy Report (Online). https://www.ren21.net/asia-report-2019/

  64. United Nations Climate Change: What is the Kyoto Protocol? (Online). https://unfccc.int/kyoto_protocol

  65. METI. Formulation of a New Strategic Roadmap for Hydrogen and Fuel Cells (Online). https://www.meti.go.jp/english/press/2019/0312_002.html.

  66. Tokyo Olympics shine light on hydrogen (Online). https://www.shell.com/inside-energy/japan-tokyo-olympics-hydrogen.html

  67. China Hydrogen and Fuel Cell Strategy. (Online). https://www.climate-change-solutions.co.uk/wp-content/uploads/2019/03/WS1AMSpeaker4RalphClagueJLR.pdf

  68. Hydrogen Energy Country (Online). https://www.energy.gov/sites/prod/files/2018/10/f56/fcto-infrastructure-workshop-2018-4-li.pdf

  69. Korean gov’t to promote hydrogen economy through car, fuel cell sectors (Online). https://english1.president.go.kr/Media/News/519.

  70. Paris Agreement, United Nations (2015)

    Google Scholar 

  71. Hydrogen Roadmap Europe, Fuel Cells and Hydrogen 2 Joint Undertaking, (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Kasai .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kasai, H., Padama, A.A.B., Chantaramolee, B., Arevalo, R.L. (2020). Review of the Current Status of the Hydrogen Economy. In: Hydrogen and Hydrogen-Containing Molecules on Metal Surfaces. Springer Series in Surface Sciences, vol 71. Springer, Singapore. https://doi.org/10.1007/978-981-15-6994-4_4

Download citation

Publish with us

Policies and ethics