Skip to main content

Nanocosmetics: Opportunities and Risks

  • Living reference work entry
  • First Online:

Abstract

Cosmetics are substances used to enhance the “appearance” of the human body. Globally millions of consumers use cosmetic products on daily basis. Cosmetic products can be used to treat conditions such as photoaging, hyperpigmentation, wrinkles, and hair damage. Due to the daily application of cosmetic products, they are required to ensure quality, safety, and performance at high level. Recently, nanotechnology has been employed in the field of cosmetics. Nanotechnology-based cosmetic products offer several advantages such as enhanced color, transparency, solubility, etc. Various types of nanomaterials employed in cosmetics include niosomes, liposomes, fullerenes, solid lipid nanoparticles, etc. However increased use of nanotechnology in cosmetic products has raised concern about the possible penetration of nanoparticles through the skin and potential hazards to the human health. This chapter aims to discuss different nanoparticles used in various classes of cosmetic products and their associated risks caused by nanoparticles on exposure.

This is a preview of subscription content, log in via an institution.

References

  1. Kaul S, Gulati N, Verma D, Mukherjee S, Nagaich U (2018) Role of nanotechnology in cosmeceuticals: a review of recent advances. J Pharm 2018:3420204

    Google Scholar 

  2. Faunce T (2010) Exploring the safety of nanoparticles in Australian sunscreens. Int J Biomed Nanosci Nanotechnol 1:87–94

    Article  CAS  Google Scholar 

  3. Singh R, Tiwari S, Tawaniya J (2013) Review on nanotechnology with several aspects. Int J Res Comput Eng Electron 2(3):1–8

    Google Scholar 

  4. Hussain CM (ed) (2018) Handbook of nanomaterials for industrial applications. Elsevier

    Google Scholar 

  5. Hussain CM (ed) (2020) The ELSI handbook of nanotechnology: risk, safety, ELSI and commercialization. Wiley

    Google Scholar 

  6. Hussain CM (ed) (2020) Handbook of functionalized nanomaterials for industrial applications. Elsevier

    Google Scholar 

  7. Hussain CM (ed) (2020) Handbook of manufacturing applications of nanomaterials. Elsevier

    Google Scholar 

  8. Hussain CM (ed) (2020) Handbook of polymer nanocomposites for industrial applications. Elsevier

    Google Scholar 

  9. Singh PP, Ambika (2021) Carbon based nanocomposites: preparation and application in environmental pollutants removal. In: Jawaid M, Ahmad A, Ismail N, Rafatullah M (eds) Environmental remediation through carbon based nano composites. Springer, Cham. (In press)

    Google Scholar 

  10. Ambika, Singh PP (2020) Advances in carbon nanomaterial-based green nanocomposites. In: Mishra AK, Hussain CM, Mishra SB (eds) . Emerging carbon-based nanocomposites for environmental applications, Wiley, pp 175–202

    Google Scholar 

  11. Ambika, Singh PP (2020) Natural polymers-based hydrogels for adsorption applications. In: Kalia S (ed) Natural polymers-based green adsorbents for water treatment. Elsevier. (In press)

    Google Scholar 

  12. Singh PP, Ambika (2018) Ruthenium compounds: a new approach in nanochemistry. In: Mishra AK, Mishra L (eds) Ruthenium chemistry. Pan Stanford, Singapore, pp 91–110

    Chapter  Google Scholar 

  13. Singh PP, Ambika (2018) Nanotechnology: an emerging field for sustainable water resources. In: Mishra AK, Hussain CM (eds) Nanotechnology for sustainable water resources. Wiley-Scrivener, pp 73–101

    Chapter  Google Scholar 

  14. Singh PP, Ambika (2017) Biopolymers: recent trends and their applications. In: Mishra AK, Hussain CM, Mishra SB (eds) Biopolymers: structure, performance and applications. Nova, New York, pp 271–286

    Google Scholar 

  15. Singh PP, Ambika (2017) Recent trends in sol-gel based nanoceramics. In: Mishra AK (ed) Smart ceramic: preparation, properties and applications. Pan Stanford, Singapore, pp 1–21

    Google Scholar 

  16. Ambika, Singh PP (2016) Polymeric nanospheres in organic waste removal. In: Mishra AK (ed) Smart materials for waste water applications, Wiley, Hoboken, p 237–256

    Chapter  Google Scholar 

  17. Ambika, Singh PP (2018) Nanotechnology: greener approach for sustainable environment. In: Hussain CM, Mishra AK (eds) Nanotechnology in environmental science. Wiley-VCH, pp 805–824

    Google Scholar 

  18. Singh PP, Ambika (2018) Environmental remediation by nano adsorbents based polymer nanocomposite. In: Hussain CM, Mishra AK (eds) New polymer nanocomposites for environmental remediation. Elsevier, pp 223–241

    Google Scholar 

  19. Singh PP, Ambika (2018) Dimensions of nanocomposites in pollution control. In: Hussain CM, Mishra AK (eds) Nanocomposites for pollution control. Pan Stanford, Singapore, pp 107–126

    Chapter  Google Scholar 

  20. Ambika, Singh PP (2020) Carbon nanocomposites: the potential heterogeneous catalysts for organic transformations. Curr Org Chem 24:1–20

    CAS  Google Scholar 

  21. Mukta S, Adam F (2010) Cosmeceuticals in day-to-day clinical practice. J Drugs Dermatol 9(5):s62–s66

    Google Scholar 

  22. Singh PP, Ambika (2013) Recent advances of multifunctional nanomedicines. In: Mishra AK (ed) Nanomedicine for drug delivery and therapeutics. Wiley, Hoboken, pp 163–184

    Chapter  Google Scholar 

  23. Patra JK, Das G, Fraceto LF, Campos EVR, del Pilar R-TM, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16:71

    Article  CAS  Google Scholar 

  24. Chrai SS, Murari R, Imran A (2001) Liposomes: a review. BioPharm 14(11):10–14

    CAS  Google Scholar 

  25. Jaiswal M, Dudhe R, Sharma PK (2015) Nanoemulsion: an advanced mode of drug delivery system. Biotech 5:123–127

    Google Scholar 

  26. Kothamasu P, Kanumur H, Ravur N, Maddu C, Parasuramrajam R, Thangavel S (2012) Nanocapsules: the weapons for novel drug delivery systems. Bioimpacts 2(2):71–81

    CAS  Google Scholar 

  27. Singh P, Ansari H, Dabre S (2016) Niosomes-A novel tool for anti-ageing cosmeceuticals. Indo Am J Pharm Res 6(10):6691–6703

    CAS  Google Scholar 

  28. Wissing S, Muller R (2003) Cosmetic applications for solid lipid nanoparticles (SLN). Int J Pharm 254:65–68

    Article  CAS  Google Scholar 

  29. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, Hanifehpour Y, Nejati-Koshki K, Pashaei-Asl R (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9:247

    Article  CAS  Google Scholar 

  30. Fennell E, Huyghe JM (2019) Chemically responsive hydrogel deformation mechanics: a review. Molecules 24(19):352

    Article  CAS  Google Scholar 

  31. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121

    Article  CAS  Google Scholar 

  32. Haque MO, Mondal MIH (2016) Synthesis and characterization of cellulose-based eco-friendly hydrogels. J Sci Eng 44:45–53

    Google Scholar 

  33. Li J, Ma L, Chen G, Zhou Z, Li Q (2010) A high water-content and high elastic dual-responsive polyurethane hydrogel for drug delivery. Iran Polym J 19(5):375–398

    Google Scholar 

  34. Shalla AH, Yaseen Z, Bhat MA, Rangreez TA, Maswal M (2019) Recent review for removal of metal ions by hydrogels. Sep Sci Technol 54(1):1–12

    Article  CAS  Google Scholar 

  35. Mohammadinejad R, Maleki H, Larraneta E, Fajardo AR, Nik AB, Sheikhi ASA, Ghorbanpour M, Farokhi M, Govindh P, Cabane E, Azizi S, Aref AR, Mozafari M, Mehrali M, Thomas S, Mano JF, Mishra YK, Thakur VK (2019) Status and future scope of plant-based green hydrogels in biomedical engineering. Appl Mater Today 16:213–246

    Article  Google Scholar 

  36. Alessandro S, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2):353–373

    Article  CAS  Google Scholar 

  37. Ramli R (2019) Slow release fertilizer hydrogels: a review. Polym Chem 10:6073–6090

    Article  CAS  Google Scholar 

  38. Montenegro L (2014) Nanocarriers for skin delivery of cosmetic antioxidants. J Pharm Pharmacogn Res 2(4):73–92

    Google Scholar 

  39. Hameed A, Fatima GR, Malik K, Muqadas A, Fazal-ur-Rehman M (2019) Scope of nanotechnology in cosmetics: dermatology and skin care products. J Med Chem Sci 2:9–16

    CAS  Google Scholar 

  40. Shanbhag S, Nayak A, Narayan R, Nayak UY (2019) Anti-aging and sunscreens: paradigm shift in cosmetics. Adv Pharm Bull 9(3):348–359

    Article  CAS  Google Scholar 

  41. Jose J, Netto G (2019) Role of solid lipid nanoparticles as photoprotective agents in cosmetics. J Cosmet Dermatol 18(1):315–321

    Article  Google Scholar 

  42. Donglikar MM, Deore SL (2016) Sunscreens: a review. Pharm J 8(3):171–179

    CAS  Google Scholar 

  43. Geoffrey K, Mwangi AN, Maru SM (2019) Sunscreen products: rationale for use, formulation development and regulatory considerations. Saudi Pharm J 27:1009–1018

    Article  CAS  Google Scholar 

  44. Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl 4:95–112

    Article  CAS  Google Scholar 

  45. Frizzo M, Feuser P, Berres P, Ricci-Junior E, Campos C, da Costa C, de Hermes APH, Sayer C (2019) Simultaneous encapsulation of zinc oxide and octocrylene in poly (methyl methacrylate-co-styrene) nanoparticles obtained by miniemulsion polymerization for use in sunscreen formulations. Colloids Surf A Physicochem Eng Asp 561:39–46

    Article  CAS  Google Scholar 

  46. Badea G, Lacatusu I, Badea N, Ott C, Meghea A (2015) Use of various vegetable oils in designing photoprotective nanostructured formulations for UV protection and antioxidant activity. Ind Crop Prod 67:18–24

    Article  CAS  Google Scholar 

  47. Shetty PK, Venuvanka V, Jagani HV, Chethan GH, Ligade VS, Musmade PB, Nayak UY, Reddy MS, Kalthur G, Udupa N, Rao CM, Mutalik S (2015) Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity. Int J Nanomedicine 10:6477–6491

    CAS  Google Scholar 

  48. Ganesan P, Choi DK (2016) Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int J Nanomedicine 11:1987–2007

    Article  CAS  Google Scholar 

  49. Khameneh B, Halimi V, Jaafari MR, Golmohammadzadeh S (2015) Safranal-loaded solid lipid nanoparticles: evaluation of sunscreen and moisturizing potential for topical applications. Iran J Basic Med Sci 18(1):58–63

    Google Scholar 

  50. Glaser DA (2004) Anti-aging products and cosmeceuticals. Facial Plast Surg Clin North Am 12(3):363–372

    Article  Google Scholar 

  51. Detoni CB, Paese K, Beck RCR, Pohlmann AR, Guterres SS (2011) Nanosized and nanoencapsulated sunscreens. In: Beck R, Guterres S, Pohlmann A (eds) Nanocosmetics and nanomedicines. Springer, Berlin/Heidelberg, pp 333–362

    Chapter  Google Scholar 

  52. Baccarin T, Mitjans M, Ramos D, Lemos-Senna E, Vinardell MP (2015) Photoprotection by Punica granatum seed oil nanoemulsion entrapping polyphenol-rich ethyl acetate fraction against UVB-induced DNA damage in human keratinocyte (HaCaT) cell line. J Photochem Photobiol B 153:127–136

    Article  CAS  Google Scholar 

  53. Baccarin T, Mitjans M, Lemos-Senna E, Vinardell MP (2015) Protection against oxidative damage in human erythrocytes and preliminary photosafety assessment of Punica granatum seed oil nanoemulsions entrapping polyphenol-rich ethyl acetate fraction. Toxicol in Vitro 30(1 Pt B):421–428

    Article  CAS  Google Scholar 

  54. Zahn S, Graef M, Patsinakidis N, Landmann A, Surber C, Wenzel J, Kuhn A (2014) Ultraviolet light protection by a sunscreen prevents interferon-driven skin inflammation in cutaneous lupus erythematosus. Exp Dermatol 23:509–528

    Article  CAS  Google Scholar 

  55. Barone A, Cristiano MC, Cilurzo F, Locatelli M, Iannotta D, Di Marzio L, Celia C, Paolino D (2020) Ammonium glycyrrhizate skin delivery from ultradeformable liposomes: a novel use as an anti-inflammatory agent in topical drug delivery. Colloids Surf B: Biointerfaces 193:111152

    Article  CAS  Google Scholar 

  56. de Souza de Bustamante Monteiro MS, Ozzetti RA, Vergnanini AL, de Brito-Gitirana L, Volpato NM, de Freitas ZMF, Ricci-Junior E, dos Santos EP (2012) Evaluation of octyl p-methoxycinnamate included in liposomes and cyclodextrins in anti-solar preparations: preparations, characterizations and in vitro penetration studies. Int J Nanomedicine 7:3045–3058

    Google Scholar 

  57. Manca ML, Matricardi P, Cencetti C, Peris JE, Melis V, Carbone C, Escribano E, Zaru M, Fadda AM, Manconi M (2016) Combination of argan oil and phospholipids for the development of an effective liposome-like formulation able to improve skin hydration and allantoin dermal delivery. Int J Pharm 505(1–2):204–211

    Article  CAS  Google Scholar 

  58. Severino P, Moraes LF, Zanchetta B, Souto EB, Santana MHA (2012) Elastic liposomes containing benzophenone-3 for Sun protection factor enhancement. Pharm Dev Technol 17(6):661–665

    Article  CAS  Google Scholar 

  59. Abbas H, Kamel R (2019) Potential role of resveratrol-loaded elastic sorbitan monostearate nanovesicles for the prevention of UV-induced skin damage. J Liposome Res 30:45–53

    Article  CAS  Google Scholar 

  60. Abbas H, Kamel R, El Sayed N (2018) Dermal anti-oxidant, anti-inflammatory and anti-aging effects of compritol ATO-based resveratrol colloidal carriers prepared using mixed surfactants. Int J Pharm 541:37–47

    Article  CAS  Google Scholar 

  61. Pentek T, Newenhouse E, O’Brien B, Chauhan AS (2017) Development of a topical resveratrol formulation for commercial applications using dendrimer nanotechnology. Molecules 22(1):137

    Article  Google Scholar 

  62. Gilbert E, Roussel L, Serre C, Sandouk R, Salmon D, Kirilov P, Haftek M, Falson F, Pirot F (2016) Percutaneous absorption of benzophenone-3 loaded lipid nanoparticles and polymeric nanocapsules: a comparative study. Int J Pharm 504(1–2):48–58

    Article  CAS  Google Scholar 

  63. Andreo-Filho N, Bim A, Kaneko T, Kitice N, Haridass I, Abd E, Lopes P, Thakur S, Parekh H, Roberts M, Grice J, Benson H, Leite-Silva V (2017) Development and evaluation of lipid nanoparticles containing natural botanical oil for sun protection: characterization and in vitro and in vivo human skin permeation and toxicity. Skin Pharmacol Physiol 31:1–9

    Article  CAS  Google Scholar 

  64. Andreani T, Dias-Ferreira J, Fangueiro JF, Souza ALR, Kiill CP, Gremiao MPD, García ML, Silva AM, Souto EB (2020) Formulating octyl methoxycinnamate in hybrid lipid-silica nanoparticles: an innovative approach for UV skin protection. Heliyon 6(5):e03831

    Article  CAS  Google Scholar 

  65. Xia Q, Saupe A, Muller RH, Souto EB (2007) Nanostructured lipid carriers as novel carrier for sunscreen formulations. Int J Cosmet Sci 29(6):473–482

    Article  CAS  Google Scholar 

  66. Suter F, Schmid D, Wandrey F, Zulli F (2016) Heptapeptide-loaded solid lipid nanoparticles for cosmetic anti-aging applications. Eur J Pharm Biopharm 108:304–309

    Article  CAS  Google Scholar 

  67. Niculae G, Lacatusu I, Bors A, Stan R (2014) Photostability enhancement by encapsulation of α-tocopherol into lipid-based nanoparticles loaded with a UV filter. C R Chim 17(10):1028–1033

    Article  CAS  Google Scholar 

  68. Niculae G, Lacatusu I, Badea N, Stan R, Vasile BS, Meghea A (2014) Rice bran and raspberry seed oil-based nanocarriers with self-antioxidative properties as safe photoprotective formulations. Photochem Photobiol Sci 13(4):703–716

    Article  CAS  Google Scholar 

  69. Lee XY, Chu CC, Hasan ZABA, Chua SK, Nyam KL (2019) Novel nanostructured lipid carriers with photoprotective properties made from carnauba wax, beeswax, and kenaf seed oil. J Am Oil Chem Soc 96:201–211

    Article  CAS  Google Scholar 

  70. Chu CC, Tan CP, Nyam KL (2019) Development of nanostructured lipid carriers (NLCs) using pumpkin and kenaf seed oils with potential photoprotective and antioxidative properties. Eur J Lipid Technol 121(10):1900082

    Article  CAS  Google Scholar 

  71. Marins D, Dario M, Oliveira F, Baby A, Velasco M, Lobenberg R, Bou-Chacra N (2018) Synergistic photoprotective activity of nanocarrier containing oil of Acrocomia aculeata (Jacq.) Lodd. Ex. Martius-Arecaceae. Ind Crop Prod 112:305–312

    Article  CAS  Google Scholar 

  72. Badea G, Badea N, Brasoveanu LI, Mihaila M, Stan R, Istrati D, Balaci T, Lacatusu I (2017) Naringenin improves the sunscreen performance of vegetable nanocarriers. New J Chem 41:480–492

    Article  CAS  Google Scholar 

  73. Asfour MH, Kassem AA, Salama A (2019) Topical nanostructured lipid carriers/inorganic sunscreen combination for alleviation of all-trans retinoic acid-induced photosensitivity: Box-Behnken design optimization, in vitro and in vivo evaluation. Eur J Pharm Sci 134:219–232

    Article  CAS  Google Scholar 

  74. Nikolic S, Keck CM, Anselmi C, Muller RH (2011) Skin photoprotection improvement: synergistic interaction between lipid nanoparticles and organic UV filters. Int J Pharm 414(1–2):276–284

    Article  CAS  Google Scholar 

  75. Muzzalupo R, Tavano L (2015) Niosomal drug delivery for transdermal targeting: recent advances. Res Rep Transdermal Drug Deliv 4:23–33

    CAS  Google Scholar 

  76. Cerqueira C, Nigro F, Campos VEB, Rossi A, Santos-Oliveira R, Cardoso V, Vermelho AB, Santos EPD, Mansur CRE (2019) Nanovesicle-based formulations for photoprotection: a safety and efficacy approach. Nanotechnology 30(34):345102

    Article  CAS  Google Scholar 

  77. Lu B, Huang Y, Chen Z, Ye J, Xu H, Chen W, Long X (2019) Niosomal nanocarriers for enhanced skin delivery of quercetin with functions of anti-tyrosinase and antioxidant. Molecules 24:2322

    Article  CAS  Google Scholar 

  78. Fernandes AR, Dario MF, Sales de Oliveira Pinto CA, Kaneko TM, Baby AR, Robles Velasco MV (2013) Stability evaluation of organic lip balm. Braz J Pharm Sci 49:293–299

    Article  CAS  Google Scholar 

  79. Lohani A, Verma A, Joshi H, Yadav N, Karki N (2014) Nanotechnology-based cosmeceuticals. ISRN Dermatol 2014:1–14

    Article  CAS  Google Scholar 

  80. Tripura P, Anushree H (2017) Novel delivery systems: current trend in cosmetic industry. Eur J Pharm Med Res 4(8):617–627

    Google Scholar 

  81. Viladot Petit JL, Gonzalez RD, Fernandez A (2013) Lipid nanoparticle capsules. European Patent US 2013/0017239 A1, 17 January, 2013

    Google Scholar 

  82. Maitra P, Zheng T (2012) Cosmetic nanocomposites bases on in-situ crosslinked POSS materials. US patent 8133478B2, 13 March, 2012

    Google Scholar 

  83. Munawiroh SZ, Nabila AN, Chabib L (2017) Development of water in olive oil (W/O) nanoemulsions as lipstick base formulation. Int J Pharm Med Biol Sci 6(2):37–42

    CAS  Google Scholar 

  84. Liu S, Hammond SK, Rojas-Cheatham A (2013) Concentrations and potential health risks of metals in lip products. Environ Health Perspect 121:705–710

    Article  Google Scholar 

  85. Piccinini P, Piecha M, Torrent SF (2013) European survey on the content of lead in lip products. J Pharm Biomed Anal 76:225–233

    Article  CAS  Google Scholar 

  86. El-Aziz RA, Abbassy MM, Hosny G (2017) Health risk assessment of some heavy metals in cosmetics in common use. Int J Sci Res Environ Sci Toxicol 5(3):53–62

    Google Scholar 

  87. Zhang Q (2010) Nanocolarants. In: Sattler KD (ed) Handbook of nanophysics: functional nanomaterials, 1st edn. CRC Press Taylor & Francis Group, pp 100–115

    Google Scholar 

  88. Nanda S, Nanda A, Lohan S, Kaur R, Singh B (2016) Nanocosmetics: performance enhancement and safety assurance. In: Grumezescu AM (ed) Nanobiomaterials in galenic formulations and cosmetics. Elsevier, pp 47–67

    Chapter  Google Scholar 

  89. Gediya SK, Mistry RB, Patel UK, Blessy M, Jain HN (2011) Herbal plants: used as a cosmetics. J Nat Prod Plant Resour 1(1):24–32

    Google Scholar 

  90. Singh PP, Ambika, Chauhan SMS (2013) Activity guided isolation of antioxidants from the roots of Rheum emodi. Nat Prod Res 27:946–949

    Article  CAS  Google Scholar 

  91. Singh PP, Ambika, Chauhan SMS (2009) Activity guided isolation of antioxidants from the leaves of Ricinus communis L. Food Chem 114:1069–1072

    Article  CAS  Google Scholar 

  92. Singh PP, Ambika, Chauhan SMS (2011) Activity guided isolation of antioxidant xanthones from Swertia chirayita (Roxb.) H. Karsten (Gentianaceae). Nat Prod Res 26:682–1686

    Google Scholar 

  93. Ambika, Singh PP, Chauhan SMS (2014) Activity guided isolation of antioxidants from Terminalia arjuna. Nat Prod Res 28:760–763

    Article  CAS  Google Scholar 

  94. Kha TC, Nguyen MH, Roach PD, Stathopoulos CE (2014) Micro-encapsulation of gac oil: optimisation of spray drying conditions using response surface methodology. Powder Technol 264:298–309

    Article  CAS  Google Scholar 

  95. Robert P, Freedes C (2015) The encapsulation of anthocyanins from berry-type fruits. Molecules 20:5875–5888

    Article  CAS  Google Scholar 

  96. Peng WL, Khanafi MA, Mohd-Setapar SH, Idham Z, Yunus MAC, Zaini MAM (2014) Development of emulsification containing natural colorant from local plant (Roselle). J Teknol 69(4):15–17

    Google Scholar 

  97. Ravichandran K, Palaniraj R, Saw NMMT, Gabr AMM, Ahmed AR, Knorr D, Smetanska I (2014) Effects of different encapsulation agents and drying process on stability of betalains extract. J Food Sci Technol 51(9):2216–2221

    Article  CAS  Google Scholar 

  98. Hu Z, Liao M, Chen Y, Cai Y, Lele M, Liu Y, Lv N, Liu Z, Yuan W (2012) A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone. Int J Nanomedicine 7:5719–5724

    CAS  Google Scholar 

  99. Pereda MDCV, Polezel MA, de Campos Dieamant G, Nogueira C, Rossan MR, Santana MHA (2012) Sericin cationic nanoparticles for application in products for hair and dyed hair. US 2012/0164.196 A1, 28 June, 2012

    Google Scholar 

  100. Fernandez E, Martinez-Teipel B, Armengol R, Barba C (2012) Coderch L efficacy of antioxidants in human hair. J Photochem Photobiol B 117:146–156

    Article  CAS  Google Scholar 

  101. Jung S, Otberg N, Thiede G, Richter H, Sterry W, Panzner S, Lademann J (2006) Innovative liposomes as a transfollicular drug delivery system: penetration into porcine hair follicles. J Invest Dermatol 126(8):1728–1732

    Article  CAS  Google Scholar 

  102. Konradsdottir F, Ogmundsdottir H, Sigurdsson V, Loftsson T (2009) Drug targeting to the hair follicles: a cyclodextrin-based drug delivery. AAPS PharmSciTech 10(1):266–269

    Article  CAS  Google Scholar 

  103. Desai PR, Shah PP, Hayden P, Singh M (2013) Investigation of follicular and non-follicular pathways for polyarginine and oleic acid-modified nanoparticles. Pharm Res 30(4):1037–1049

    Article  CAS  Google Scholar 

  104. Dickhof S, Franklin J, Busch P, Kropf C, Fischer D (2001) Cosmetic composition, for preventing greasy appearance on hair, contains nanoparticles of oxide, oxide-hydrate, hydroxide, carbonate, silicate or phosphate of calcium, magnesium, aluminum, titanium, zirconium or zinc. Patent DE19946784 A12001, 19 April 2001

    Google Scholar 

  105. Morganti P, Palombo M, Cardillo A, del Ciotto P, Morganti G, Gazzaniga G (2012) Anti-dandruff and anti-oily efficacy of hair formulations with a repairing and restructuring activity. The positive influence of the Zn-chitin nanofibrils complexes. J Appl Cosmetol 30:149–159

    Google Scholar 

  106. Zhou Z, Lenk R, Dellinger A, MacFarland D, Kumar K, Wilson SR, Kepley CL (2009) Fullerene nanomaterials potentiate hair growth. Nanomedicine 5(2):202–207

    Article  CAS  Google Scholar 

  107. Hwang S, Kim JC (2008) In vivo hair growth promotion effects of cosmetic preparations containing hinokitiol-loaded poly(ε-caprolacton) nanocapsules. J Microencapsul 25:351–356

    Article  CAS  Google Scholar 

  108. Padois K, Cantieni C, Bertholle V, Bardel C, Pirot F, Falson F (2011) Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil. Int J Pharm 416(1):300–304

    CAS  Google Scholar 

  109. Nagai N, Iwai Y, Sakamoto A, Otake H, Oaku Y, Abe A, Nagahama T (2019) Drug delivery system based on minoxidil nanoparticles promotes hair growth in C57BL/6 mice. Int J Nanomedicine 14:7921–7931

    Article  CAS  Google Scholar 

  110. Tabbakhian M, Tavakoli N, Jaafari M, Daneshamouz S (2006) Enhancement of follicular delivery of finasteride by liposomes and niosomes-1. In vitro permeation and in vivo deposition studies using hamster flank and ear models. Int J Pharm 323:1–10

    Article  CAS  Google Scholar 

  111. Wilson V, Siram K, Rajendran S, Sankar V (2018) Development and evaluation of finasteride loaded ethosomes for targeting to the pilosebaceous unit. Artif Cells Nanomed Biotechnol 46(8):1892–1901

    CAS  Google Scholar 

  112. Madheswaran T, Baskaran R, Thapa RK, Rhyu JY, Choi HY, Kim JO, Yong CS, Yoo BK (2013) Design and in vitro evaluation of finasteride-loaded liquid crystalline nanoparticles for topical delivery. AAPS PharmSciTech 14(1):45–52

    Article  CAS  Google Scholar 

  113. Tsujimoto H, Hara K, Tsukada Y, Huang CC, Kawashima Y, Arakaki M, Okayasu H, Mimura H, Miwa N (2007) Evaluation of the permeability of hair growing ingredient encapsulated PLGA nanospheres to hair follicles and their hair growing effects. Bioorg Med Chem Lett 17:4771–4777

    Article  CAS  Google Scholar 

  114. Lewis D, Mama J, Hawkes J (2013) A review of aspects of oxidative hair dye chemistry with special reference to N-nitrosamine formation. Materials (Basel) 6(2):517–534

    Article  CAS  Google Scholar 

  115. Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Cogliano V (2008) Carcinogenicity of some aromatic amines, organic dyes and related exposures. Lancet Oncol 9:322–323

    Article  Google Scholar 

  116. Nohynek GJ, Antignac E, Re T, Toutain H (2010) Safety assessment of personal care products/cosmetics and their ingredients. Toxicol Appl Pharmacol 243:239–259

    Article  CAS  Google Scholar 

  117. Lee HY, Jeong YI, Kim DH, Choi KC (2013) Permanent hair dye-incorporated hyaluronic acid nanoparticles. J Microencapsul 30(2):189–197

    Article  CAS  Google Scholar 

  118. Lee HY, Jeong YI, Choi KC (2011) Hair dye-incorporated poly-γ-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation. Int J Nanomedicine 6:2879–2888

    CAS  Google Scholar 

  119. Huang X, Kobos RK, Xu G (2008) Peptide-based carbon nanotube hair colorants and their use in hair colorant and cosmetic compositions. US patent 7452528 B2, 18 November, 2008

    Google Scholar 

  120. Santos AC, Panchal A, Rahman N, Pereira-Silva M, Pereira I, Veiga F, Lvov Y (2019) Evolution of hair treatment and care: prospects of nanotube-based formulations. Nano 9(6):903

    CAS  Google Scholar 

  121. Walter P, Welcomme E, Hallegot P, Zaluzec NJ, Deeb C, Castaing J, Veyssiere P, Breniaux R, Leveque JL, Tsoucaris G (2006) Early use of PbS nanotechnology for an ancient hair dyeing formula. Nano Lett 6:2215–2219

    Article  CAS  Google Scholar 

  122. Danelon M, Pessan JP, Neto FNS, de Camargo ER, Delbem ACB (2015) Effect of toothpaste with nano-sized trimetaphosphate on dental caries: in situ study. J Dent 43(7):806–813

    Article  CAS  Google Scholar 

  123. Swarup JS, Rao A (2012) Enamel surface remineralization: using synthetic nanohydroxyapatite. Contemp Clin Dent 3:433–436

    Article  CAS  Google Scholar 

  124. Ebadifar A, Nomani M, Fatemi SA (2017) Effect of nano-hydroxyapatite toothpaste on microhardness of artificial carious lesions created on extracted teeth. J Dent Res Dent Clin Dent Prospect 11(1):14–17

    Article  Google Scholar 

  125. Komatsu O, Nishida H, Sekino T, Yamamoto K (2014) Application of titanium dioxide nanotubes to tooth whitening. Nano Biomed 6:63–72

    Google Scholar 

  126. Jin J, Xu X, Lai G, Kunzelmann KH (2013) Efficacy of tooth whitening with different calcium phosphate-based formulations. Eur J Oral Sci 121(4):382–388

    Article  CAS  Google Scholar 

  127. Foong LK, Foroughi MM, Mirhosseini AF, Safaei M, Jahani S, Mostafavi M, Ebrahimpoor N, Sharifi M, Varma RS, Khatami M (2020) Applications of nano-materials in diverse dentistry regimes. RSC Adv 10:15430–15460

    Article  CAS  Google Scholar 

  128. Kulal R, Jayanti I, Sambashivaiah S, Bilchodmath S (2016) An in-vitro comparison of nano hydroxyapatite, novamin and proargin desensitizing toothpastes-a SEM study. J Clin Diagn Res 10(10):ZC51–ZC54

    CAS  Google Scholar 

  129. Hiller KA, Buchalla W, Grillmeier I, Neubauer C, Schmalz G (2018) In vitro effects of hydroxyapatite containing toothpastes on dentin permeability after multiple applications and ageing. Sci Rep 8:4888

    Article  CAS  Google Scholar 

  130. Colombo M, Beltrami R, Rattalino D, Mirando M, Chiesa M, Poggio C (2016) Protective effects of a zinc-hydroxyapatite toothpaste on enamel erosion: SEM study. Ann Stomatol 7:38–45

    Google Scholar 

  131. Pajor K, Pajchel L, Kolmas J (2019) Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology–a review. Materials 12(17):2683

    Article  CAS  Google Scholar 

  132. Hannig C, Basche S, Burghardt T, Al-Ahmad A, Hannig M (2013) Influence of a mouthwash containing hydroxyapatite microclusters on bacterial adherence in situ. Clin Oral Investig 17:805–814

    Article  CAS  Google Scholar 

  133. Hegazy SA, Salama RI (2016) Antiplaque and remineralizing effects of biorepair mouthwash: a comparative clinical trial. Pediatr Dent J 26:89–94

    Article  Google Scholar 

  134. Simon-Soro A, Mira A (2015) Solving the etiology of dental caries. Trends Microbiol 23:76–82

    Article  CAS  Google Scholar 

  135. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32

    Article  Google Scholar 

  136. Ahrari F, Eslami N, Rajabi O, Ghazvini K, Barati S (2015) The antimicrobial sensitivity of Streptococcus mutans and Streptococcus sanguis to colloidal solutions of different nanoparticles applied as mouthwashes. Dent Res J 12:44–49

    Article  Google Scholar 

  137. Kachoei MY, Divband B, Tabriz FD, Helali ZN, Esmailzadeh M (2018) A comparative study of antibacterial effects of mouthwashes containing Ag/ZnO or ZnO nanoparticles with chlorhexidine and investigation of their cytotoxicity. Nanomed J 5:102–110

    CAS  Google Scholar 

  138. Ghosh S, Goudar VS, Padmalekha KG, Bhat SV, Indi SS, Vasan HN (2012) ZnO/Ag nanohybrid: synthesis, characterization, synergistic antibacterial activity and its mechanism. RSC Adv 2:930–940

    Article  CAS  Google Scholar 

  139. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158(2):122–132

    Article  CAS  Google Scholar 

  140. Mostafalou S, Mohammadi H, Ramazani A, Abdollahi M (2013) Different biokinetics of nanomedicines linking to their toxicity; an overview. Daru J Pharm Sci 21(1):14

    Article  CAS  Google Scholar 

  141. Ajdary M, Moosavi MA, Rahmati M, Falahati M, Mahboubi M, Mandegary A, Jangjoo S, Mohammadinejad R, Varma RS (2018) Health concerns of various nanoparticles: a review of their in vitro and in vivo toxicity. Nano 8(9):634

    Google Scholar 

  142. Yan H, Xue Z, Xie J, Dong Y, Ma Z, Sun X, Kebebe Borga D, Liu Z, Li J (2019) Toxicity of carbon nanotubes as anti-tumor drug carriers. Int J Nanomedicine 14:10179–10194

    Article  CAS  Google Scholar 

  143. Usenko CY, Harper SL, Tanguay RL (2007) In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon 45(9):1891–1898

    Article  CAS  Google Scholar 

  144. Dhawan A, Taurozzi JS, Pandey AK, Shan W, Miller SM, Hashsham SA, Tarabara VV (2006) Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity. Environ Sci Technol 40(23):7394–7401

    Article  CAS  Google Scholar 

  145. Yamawaki H, Iwai N (2006) Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am J Phys Cell Phys 290(6):C1495–C1502

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Pratap Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ambika, Pratap Singh, P. (2021). Nanocosmetics: Opportunities and Risks. In: Handbook of Consumer Nanoproducts. Springer, Singapore. https://doi.org/10.1007/978-981-15-6453-6_59-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6453-6_59-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6453-6

  • Online ISBN: 978-981-15-6453-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics