Skip to main content

The Association of Gut Microbiota and Treg Dysfunction in Autoimmune Diseases

  • Chapter
  • First Online:
Book cover T Regulatory Cells in Human Health and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1278))

Abstract

Autoimmune conditions affect 23 million Americans or 7% of the US population. There are more than 100 autoimmune disorders, affecting every major organ system in humans. This chapter aims to further explain Treg dysfunction autoimmune disorders, including monogenic primary immune deficiency such as immune dysregulation polyendocrinopathy, enteropathy, X-linked inheritance (IPEX) syndrome, and polygenic autoimmune diseases with Treg dysfunction such as multiple sclerosis (MS), inflammatory bowel disease (IBD), and food allergy. These conditions are associated with an abnormal small intestinal and colonic microbiome. Some disorders clearly improve with therapies aimed at microbial modification, including probiotics and fecal microbiota transplantation (FMT). Approaches to prevent and treat these disorders will need to focus on the acquisition and maintenance of a healthy colonic microbiota, in addition to more focused approaches at immune suppression during acute disease exacerbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arpaia N, Campbell C, Fan X et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504(7480):451–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baratelli F, Lin Y, Zhu L et al (2005) Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J Immunol 175(3):1483–1490

    Article  CAS  PubMed  Google Scholar 

  • Bellocchi C, Fernandez-Ochoa A, Montanelli G et al (2019) Identification of a shared microbiomic and metabolomic profile in systemic autoimmune diseases. J Clin Med 8(9):1291

    Article  CAS  PubMed Central  Google Scholar 

  • Bernstein CN (2017) Review article: changes in the epidemiology of inflammatory bowel disease-clues for aetiology. Aliment Pharmacol Ther 46(10):911–919

    Article  CAS  PubMed  Google Scholar 

  • Bianco AM, Girardelli M, Tommasini A (2015) Genetics of inflammatory bowel disease from multifactorial to monogenic forms. World J Gastroenterol 21(43):12296–12310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blad CC, Tang C, Offermanns S (2012) G protein-coupled receptors for energy metabolites as new therapeutic targets. Nat Rev Drug Discov 11(8):603–619

    Article  CAS  PubMed  Google Scholar 

  • Bunyavanich S, Berin MC (2019) Food allergy and the microbiome: current understandings and future directions. J Allergy Clin Immunol 144(6):1468–1477

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell C, Dikiy S, Bhattarai SK et al (2018) Extrathymically generated regulatory T cells establish a niche for intestinal border-dwelling Bacteria and affect physiologic metabolite balance. Immunity 48(6):1245–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chehoud C, Dryga A, Hwang Y et al (2016) Transfer of viral communities between human individuals during fecal microbiota transplantation. MBio 7(2):e00322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chervonsky AV (2013) Microbiota and autoimmunity. Cold Spring Harb Perspect Biol 5(3):a007294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chinen T, Volchkov PY, Chervonsky AV et al (2010) A critical role for regulatory T cell-mediated control of inflammation in the absence of commensal microbiota. J Exp Med 207(11):2323–2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen NA, Maharshak N (2017) Novel indications for fecal microbial transplantation: update and review of the literature. Dig Dis Sci 62(5):1131–1145

    Article  PubMed  Google Scholar 

  • Cook L, Stahl M, Han X et al (2019) Suppressive and gut-reparative functions of human type 1 T regulatory cells. Gastroenterology 157(6):1584–1598

    Article  CAS  PubMed  Google Scholar 

  • Dailey FE, Turse EP, Daglilar E et al (2019) The dirty aspects of fecal microbiota transplantation: a review of its adverse effects and complications. Curr Opin Pharmacol 49:29–33

    Article  CAS  PubMed  Google Scholar 

  • Dang X, Xu M, Liu D et al (2020) Assessing the efficacy and safety of fecal microbiota transplantation and probiotic VSL#3 for active ulcerative colitis: a systematic review and meta-analysis. PLoS One 15(3):e0228846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danikowski KM, Jayaraman S, Prabhakar BS (2017) Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflammation 14(1):117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeFilipp Z, Bloom PP, Torres SM et al (2019) Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N Engl J Med 381(21):2043–2050

    Article  PubMed  Google Scholar 

  • Desreumaux P, Foussat A, Allez M et al (2012) Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn’s disease. Gastroenterology 143(5):1207–1217

    Article  CAS  PubMed  Google Scholar 

  • Di GM, Rizzo A, Franze E et al (2019) Tbet expression in regulatory T cells is required to initiate Th1-mediated colitis. Front Immunol 10:2158

    Article  CAS  Google Scholar 

  • Dingle BM, Liu Y, Fatheree NY et al (2013) FoxP3(+) regulatory T cells attenuate experimental necrotizing enterocolitis. PLoS One 8(12):e82963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dobes J, Neuwirth A, Dobesova M et al (2015) Gastrointestinal autoimmunity associated with loss of central tolerance to enteric alpha-Defensins. Gastroenterology 149(1):139–150

    Article  CAS  PubMed  Google Scholar 

  • Du TG, Roberts G, Sayre PH et al (2015) Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med 372(9):803–813

    Article  CAS  Google Scholar 

  • Du TG, Tsakok T, Lack S et al (2016) Prevention of food allergy. J Allergy Clin Immunol 137(4):998–1010

    Article  CAS  Google Scholar 

  • Dwivedi M, Kumar P, Laddha NC et al (2016) Induction of regulatory T cells: a role for probiotics and prebiotics to suppress autoimmunity. Autoimmun Rev 15(4):379–392

    Article  CAS  PubMed  Google Scholar 

  • Frank DN, St Amand AL, Feldman RA et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104(34):13780–13785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganapathy V, Thangaraju M, Prasad PD et al (2013) Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Curr Opin Pharmacol 13(6):869–874

    Article  CAS  PubMed  Google Scholar 

  • Grainger JR, Wohlfert EA, Fuss IJ et al (2013) Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection. Nat Med 19(6):713–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray DH, Gavanescu I, Benoist C et al (2007) Danger-free autoimmune disease in Aire-deficient mice. Proc Natl Acad Sci U S A 104(46):18193–18198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy LC, Smeekens JM, Kulis MD (2019) Biomarkers in food allergy immunotherapy. Curr Allergy Asthma Rep 19(12):61

    Article  CAS  PubMed  Google Scholar 

  • Harrison OJ, Powrie FM (2013) Regulatory T cells and immune tolerance in the intestine. Cold Spring Harb Perspect Biol 5(7):a018341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He B, Hoang TK, Tran DQ et al (2017a) Adenosine A2A receptor deletion blocks the beneficial effects of lactobacillus reuteri in regulatory T-deficient scurfy mice. Front Immunol 8:1680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He B, Hoang TK, Wang T et al (2017b) Resetting microbiota by lactobacillus reuteri inhibits T reg deficiency-induced autoimmunity via adenosine A2A receptors. J Exp Med 214(1):107–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He B, Hoang TK, Tian X et al (2019) Lactobacillus reuteri reduces the severity of experimental autoimmune encephalomyelitis in mice by modulating gut microbiota. Front Immunol 10:385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hetemaki I, Jarva H, Kluger N et al (2016) Anticommensal responses are associated with regulatory T cell defect in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients. J Immunol 196(7):2955–2964

    Article  PubMed  CAS  Google Scholar 

  • Hirten RP, Grinspan A, Fu SC et al (2019) Microbial engraftment and efficacy of fecal microbiota transplant for Clostridium Difficile in patients with and without inflammatory bowel disease. Inflamm Bowel Dis 25(6):969–979

    Article  PubMed  PubMed Central  Google Scholar 

  • Horwitz DA, Zheng SG, Gray JD (2008) Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. Trends Immunol 29(9):429–435

    Article  CAS  PubMed  Google Scholar 

  • Hu XF, Zhang WY, Wen Q et al (2019) Fecal microbiota transplantation alleviates myocardial damage in myocarditis by restoring the microbiota composition. Pharmacol Res 139:412–421

    Article  PubMed  Google Scholar 

  • Huang W, Solouki S, Koylass N et al (2017) ITK signalling via the Ras/IRF4 pathway regulates the development and function of Tr1 cells. Nat Commun 8:15871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ianiro G, Mullish BH, Kelly CR et al (2020) Screening of faecal microbiota transplant donors during the COVID-19 outbreak: suggestions for urgent updates from an international expert panel. Lancet Gastroenterol Hepatol 5(5):430–432

    Article  PubMed  PubMed Central  Google Scholar 

  • Ivanov II, Atarashi K, Manel N et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139(3):485–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong DY, Kim S, Son MJ et al (2019) Induction and maintenance treatment of inflammatory bowel disease: a comprehensive review. Autoimmun Rev 18(5):439–454

    Article  PubMed  Google Scholar 

  • Kawamoto S, Maruya M, Kato LM et al (2014) Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41(1):152–165

    Article  CAS  PubMed  Google Scholar 

  • Lee YK, Menezes JS, Umesaki Y et al (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 108(Suppl):14615–14622

    Google Scholar 

  • Li B, Samanta A, Song X et al (2007) FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci U S A 104(11):4571–4576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Fatheree NY, Dingle BM et al (2013) Lactobacillus reuteri DSM 17938 changes the frequency of Foxp3+ regulatory T cells in the intestine and mesenteric lymph node in experimental necrotizing enterocolitis. PLoS One 8(2):e56547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Tran DQ, Fatheree NY et al (2014) Lactobacillus reuteri DSM 17938 differentially modulates effector memory T cells and Foxp3+ regulatory T cells in a mouse model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 307(2):G177–G186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Tian X, He B et al (2019) Lactobacillus reuteri DSM 17938 feeding of healthy newborn mice regulates immune responses while modulating gut microbiota and boosting beneficial metabolites. Am J Physiol Gastrointest Liver Physiol 317(6):G824–G838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lord JD (2015) Promises and paradoxes of regulatory T cells in inflammatory bowel disease. World J Gastroenterol 21(40):11236–11245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen KL, Doyle JS, Jewell LD et al (1999) Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 116(5):1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Mahic M, Yaqub S, Johansson CC et al (2006) FOXP3+CD4+CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J Immunol 177(1):246–254

    Article  CAS  PubMed  Google Scholar 

  • Packey CD, Sartor RB (2008) Interplay of commensal and pathogenic bacteria, genetic mutations, and immunoregulatory defects in the pathogenesis of inflammatory bowel diseases. J Intern Med 263(6):597–606

    Article  CAS  PubMed  Google Scholar 

  • Platts-Mills TA (2015) The allergy epidemics: 1870-2010. J Allergy Clin Immunol 136(1):3–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Roager HM, Licht TR (2018) Microbial tryptophan catabolites in health and disease. Nat Commun 9(1):3294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosen MJ, Dhawan A, Saeed SA (2015) Inflammatory bowel disease in children and adolescents. JAMA Pediatr 169(11):1053–1060

    Article  PubMed  PubMed Central  Google Scholar 

  • Samstein RM, Josefowicz SZ, Arvey A et al (2012) Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell 150(1):29–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schepici G, Silvestro S, Bramanti P et al (2019) The gut microbiota in multiple sclerosis: an overview of clinical trials. Cell Transplant 28(12):1507–1527

    Article  PubMed  PubMed Central  Google Scholar 

  • Schirmer M, Denson L, Vlamakis H et al (2018a) Compositional and temporal changes in the gut microbiome of pediatric ulcerative colitis patients are linked to disease course. Cell Host Microbe 24(4):600–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirmer M, Franzosa EA, Lloyd-Price J et al (2018b) Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat Microbiol 3(3):337–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirmer M, Garner A, Vlamakis H et al (2019) Microbial genes and pathways in inflammatory bowel disease. Nat Rev Microbiol 17(8):497–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Yang SC, Zhu L et al (2005) Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res 65(12):5211–5220

    Article  CAS  PubMed  Google Scholar 

  • Shevach EM, Thornton AM (2014) tTregs, pTregs, and iTregs: similarities and differences. Immunol Rev 259(1):88–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PM, Howitt MR, Panikov N et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–573

    Article  CAS  PubMed  Google Scholar 

  • Su W, Chen X, Zhu W et al (2019) The cAMP-adenosine feedback loop maintains the suppressive function of regulatory T cells. J Immunol 203(6):1436–1446

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Wu W, Chen L et al (2018) Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat Commun 9(1):3555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tao R, de Zoeten EF, Ozkaynak E et al (2007) Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 13(11):1299–1307

    Article  CAS  PubMed  Google Scholar 

  • Torgerson TR, Linane A, Moes N et al (2007) Severe food allergy as a variant of IPEX syndrome caused by a deletion in a noncoding region of the FOXP3 gene. Gastroenterology 132(5):1705–1717

    Article  CAS  PubMed  Google Scholar 

  • Vitale A, Strisciuglio C, Vitale S et al (2020) Increased frequency of regulatory T cells in pediatric inflammatory bowel disease at diagnosis: a compensative role? Pediatr Res 87(5):853–861

    Article  CAS  PubMed  Google Scholar 

  • Wallin MT, Culpepper WJ, Campbell JD et al (2019) The prevalence of MS in the United States: a population-based estimate using health claims data. Neurology 92(10):e1029–e1040

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang T, Cai G, Qiu Y et al (2012) Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 6(2):320–329

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Hua W, Li C et al (2019) Protective role of fecal microbiota transplantation on colitis and colitis-associated colon cancer in mice is associated with Treg cells. Front Microbiol 10:2498

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Zhang GX, Gran B et al (2010) IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J Immunol 185(10):5953–5961

    Article  CAS  PubMed  Google Scholar 

  • Ye Z, Zhang N, Wu C et al (2018) A metagenomic study of the gut microbiome in Behcet’s disease. Microbiome 6(1):135

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Sparks JB, Karyala SV et al (2015) Host adaptive immunity alters gut microbiota. ISME J 9(3):770–781

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Olsen N, Zheng SG (2020) The progress and prospect of regulatory T cells in autoimmune diseases. J Autoimmun 111:102461

    Article  PubMed  CAS  Google Scholar 

  • Zheng P, Li Y, Wu J et al (2019) Perturbed microbial ecology in myasthenia gravis: evidence from the gut microbiome and fecal metabolome. Adv Sci (Weinh) 6(18):1901441

    Article  CAS  Google Scholar 

  • Zhou L, Sonnenberg GF (2018) Essential immunologic orchestrators of intestinal homeostasis. Sci Immunol 3(20):eaao1605

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Marc Rhoads .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Y., Tran, D.Q., Lindsey, J.W., Rhoads, J.M. (2021). The Association of Gut Microbiota and Treg Dysfunction in Autoimmune Diseases. In: Zheng, SG. (eds) T Regulatory Cells in Human Health and Diseases. Advances in Experimental Medicine and Biology, vol 1278. Springer, Singapore. https://doi.org/10.1007/978-981-15-6407-9_10

Download citation

Publish with us

Policies and ethics